JPH1080634A - Catalyst synthesizing liquid phase methanol - Google Patents
Catalyst synthesizing liquid phase methanolInfo
- Publication number
- JPH1080634A JPH1080634A JP8257484A JP25748496A JPH1080634A JP H1080634 A JPH1080634 A JP H1080634A JP 8257484 A JP8257484 A JP 8257484A JP 25748496 A JP25748496 A JP 25748496A JP H1080634 A JPH1080634 A JP H1080634A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- methanol
- graphite
- solvent
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 203
- 239000003054 catalyst Substances 0.000 title claims abstract description 75
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 5
- 239000007791 liquid phase Substances 0.000 title claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 34
- 239000010439 graphite Substances 0.000 claims abstract description 34
- 239000010949 copper Substances 0.000 claims abstract description 33
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 239000002904 solvent Substances 0.000 claims abstract description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910002090 carbon oxide Inorganic materials 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 239000011701 zinc Substances 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 238000003786 synthesis reaction Methods 0.000 claims description 15
- 239000002994 raw material Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 239000003021 water soluble solvent Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 23
- 239000008246 gaseous mixture Substances 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical class [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 238000000975 co-precipitation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- VODBHXZOIQDDST-UHFFFAOYSA-N copper zinc oxygen(2-) Chemical compound [O--].[O--].[Cu++].[Zn++] VODBHXZOIQDDST-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003637 basic solution Substances 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水素と炭素酸化物(二
酸化炭素、一酸化炭素)との混合ガスから溶媒の存在下
でメタノ−ルを製造するための液相メタノール合成触媒
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase methanol synthesis catalyst for producing methanol from a mixed gas of hydrogen and carbon oxides (carbon dioxide, carbon monoxide) in the presence of a solvent. is there.
【0002】[0002]
【従来の技術】現在、メタノ−ルは、水素と炭素酸化物
とからなる原料ガスを気相反応にて銅−亜鉛酸化物触媒
と接触させることにより工業的に製造されている。2. Description of the Related Art At present, methanol is industrially produced by bringing a raw material gas comprising hydrogen and carbon oxide into contact with a copper-zinc oxide catalyst in a gas phase reaction.
【0003】そして、この気相プロセスの問題点である
反応熱を除去する観点から、液相プロセスの開発研究も
数多く行われている。[0003] From the viewpoint of removing the heat of reaction, which is a problem of the gas phase process, there have been many studies on the development of the liquid phase process.
【0004】後者の液相プロセスは、反応器内に熱容量
の大きな液体溶媒を共存させ、反応熱を液体溶媒に吸収
させて系外に除去する方法である。この方法によれば、
反応熱の除去は気相プロセスの場合よりはるかに容易に
なるため、原料ガスの転化率およびメタノール収率を向
上させることが可能になると期待され、液相プロセスに
よるメタノールの生産は大きな注目を浴びている。The latter liquid phase process is a method in which a liquid solvent having a large heat capacity coexists in a reactor, and the reaction heat is absorbed by the liquid solvent and removed from the system. According to this method,
Since the removal of the heat of reaction is much easier than in the case of the gas phase process, it is expected that the conversion rate of the raw material gas and the methanol yield can be improved, and the production of methanol by the liquid phase process has received considerable attention. ing.
【0005】たとえば、エアプロダクツ・アンド・ケミ
カルズ社にて開発中の方法(米国特許第4031123
号)は、水不溶性溶媒に銅−亜鉛酸化物触媒を懸濁さ
せ、200〜270℃、60気圧にて原料ガスを下方よ
り吹き込み、生成したメタノールと未反応原料ガスとを
反応器より上方へ気体状で排出させるものである。For example, a method under development at Air Products and Chemicals (US Pat. No. 4,031,123)
No.) suspends a copper-zinc oxide catalyst in a water-insoluble solvent, blows a raw material gas from below at 200 to 270 ° C. and 60 atm, and moves generated methanol and unreacted raw material gas upward from the reactor. It is discharged in gaseous form.
【0006】また、Catalyst Deactivation 1991の学会
においては、触媒が劣化した場合、触媒の一部を抜き出
して新しい触媒を補充することにより、メタノール生成
量を維持しようとしている。[0006] In addition, at the meeting of Catalyst Deactivation 1991, when the catalyst is deteriorated, it is attempted to maintain the amount of methanol produced by extracting a part of the catalyst and replenishing it with a new catalyst.
【0007】[0007]
【発明が解決しようとする課題】水素と炭素酸化物とか
らなる原料ガスを液相反応にて銅−亜鉛酸化物触媒と接
触させることによりメタノールを合成するとき、上述の
懸濁床による場合は、メタノ−ル生成量を維持するため
に操業したまま触媒の一部を入れ替えることが可能であ
るが、反応初期のメタノール生成速度を維持することが
困難となる。一方、固定床の場合には、操業を停止し、
触媒を入れ替える必要がある。When methanol is synthesized by bringing a raw material gas composed of hydrogen and carbon oxide into contact with a copper-zinc oxide catalyst in a liquid phase reaction, when the above-mentioned suspension bed is used, Although it is possible to replace part of the catalyst while operating to maintain the amount of methanol produced, it is difficult to maintain the methanol production rate at the beginning of the reaction. On the other hand, in the case of a fixed floor, the operation is stopped,
The catalyst needs to be replaced.
【0008】従って、懸濁床、固定床のいずれの場合
も、メタノール生成速度の経時変化が少ない安定性にす
ぐれた触媒の開発が望まれる。[0008] Therefore, it is desired to develop a catalyst having excellent stability with little change over time in the rate of methanol generation in both the suspension bed and the fixed bed.
【0009】水素と、二酸化炭素を含む炭素酸化物との
混合ガスから、メタノールを製造する場合、メタノール
と共に水が生成するため、溶媒の存在下で反応させる液
相プロセスにあっては副生する水が触媒に悪影響をもた
らす。When methanol is produced from a mixed gas of hydrogen and carbon oxides containing carbon dioxide, water is produced together with methanol, so that by-products are produced in a liquid phase process in which the reaction is carried out in the presence of a solvent. Water has a negative effect on the catalyst.
【0010】この影響を低減するために、リーらは「FU
EL SCIENCE AND TECHNOLOGY INT' L., 9(8), 977 (199
1) 」において、銅−酸化亜鉛系のメタノール合成触媒
を二酸化炭素で前処理することにより、触媒に含有され
る酸化亜鉛を炭酸亜鉛にし、銅の結晶成長を抑制するこ
とが可能であると述べている。しかしこの方法も、安定
なメタノール生成速度を得るには不充分である。To reduce this effect, Lee et al.
EL SCIENCE AND TECHNOLOGY INT 'L., 9 (8), 977 (199
1)) states that by pre-treating a copper-zinc oxide-based methanol synthesis catalyst with carbon dioxide, it is possible to turn zinc oxide contained in the catalyst into zinc carbonate and to suppress copper crystal growth. ing. However, this method is also insufficient for obtaining a stable methanol production rate.
【0011】本発明は、このような背景下において、水
素と炭素酸化物との混合ガスより溶媒の存在下でメタノ
ールを製造する方法において、メタノール生成速度の経
時変化が非常に小さい安定性にすぐれた触媒を提供する
ことを目的とするものである。Under such a background, the present invention provides a method for producing methanol from a mixed gas of hydrogen and carbon oxide in the presence of a solvent, which is excellent in stability with a very small change in methanol production rate with time. It is an object of the present invention to provide a catalyst.
【0012】[0012]
【課題を解決するための手段】本発明の液相メタノール
合成触媒は、水素と炭素酸化物とからなる原料ガスを溶
媒の存在下に反応させてメタノ−ルを合成するための触
媒であって、該触媒が、銅および亜鉛を主成分とする金
属成分からなると共にさらに灰分1重量%以下の黒鉛を
含有し、かつその黒鉛の触媒全体に占める含有量が10
〜30重量%であることを特徴とするものである。The liquid phase methanol synthesis catalyst of the present invention is a catalyst for synthesizing methanol by reacting a raw material gas comprising hydrogen and carbon oxide in the presence of a solvent. The catalyst comprises a metal component mainly composed of copper and zinc, further contains graphite having an ash content of 1% by weight or less, and the content of the graphite in the whole catalyst is 10%.
-30% by weight.
【0013】[0013]
【発明の実施の形態】以下本発明を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
【0014】〈触媒組成〉本発明においては、液相メタ
ノール合成触媒として、銅および亜鉛を主成分とする金
属成分からなると共に、さらに黒鉛を含有するものを用
いる。このように黒鉛を含有させる点が本発明のポイン
トである。<Catalyst Composition> In the present invention, a liquid phase methanol synthesis catalyst which comprises a metal component containing copper and zinc as main components and further contains graphite is used. The point of the present invention is that graphite is contained as described above.
【0015】この触媒は、上述の銅、亜鉛および黒鉛に
加えて、さらにアルミニウム、ジルコニウムおよびガリ
ウムからなる群より選ばれた少なくとも1種の金属成分
を含有していてもよい。This catalyst may further contain at least one metal component selected from the group consisting of aluminum, zirconium and gallium, in addition to the above-mentioned copper, zinc and graphite.
【0016】触媒中における金属成分は、通常、銅はC
uあるいは一部Cuの酸化物の形態で、亜鉛はZnOや
場合によりZnCO3 の形態で、アルミニウムはAl2O
3 の形態で、ジルコニウムはZrO2 の形態で、ガリウ
ムはGa2O3 の形態で、それぞれ存在している。The metal component in the catalyst is usually copper
u or partially in the form of oxides of Cu, zinc in the form of ZnO and optionally ZnCO 3 , and aluminum in the form of Al 2 O
In the form ( 3 ), zirconium is present in the form of ZrO 2 and gallium is present in the form of Ga 2 O 3 .
【0017】触媒に占める銅成分(銅あるいは酸化銅)
の含有量は20〜80重量%が適当であり、亜鉛成分
(亜鉛化合物)の含有量は10〜70重量%が適当であ
る。その他の金属成分(アルミニウム、ジルコニウムお
よびガリウムの化合物)の含有量は、併せて0〜60重
量%が適当である。これら金属成分の含有量を反応原料
ガスの組成に応じて適切に定めることにより、最適の触
媒性能を得ることができる。Copper component (copper or copper oxide) in the catalyst
Is suitably 20 to 80% by weight, and the content of the zinc component (zinc compound) is suitably 10 to 70% by weight. The content of other metal components (compounds of aluminum, zirconium and gallium) is suitably from 0 to 60% by weight in total. By appropriately determining the content of these metal components according to the composition of the reaction raw material gas, optimal catalytic performance can be obtained.
【0018】そして本発明においては、触媒中に共存さ
せる黒鉛として、その灰分量が1重量%以下(好ましく
は 0.5重量%以下、さらに好ましくは 0.1重量%以下)
のものを用いる。灰分量が1重量%を越える場合には、
純粋の黒鉛の量が少なくなるため効果が低減するだけで
なく、黒鉛中の灰分の主成分であるSiO2 が活性成分
である金属成分と反応するため活性成分が減少し、メタ
ノール生成速度の経時変化を許容範囲内に抑制すること
が難しくなる。In the present invention, the ash content of the graphite coexisting in the catalyst is 1% by weight or less (preferably 0.5% by weight or less, more preferably 0.1% by weight or less).
Use If the ash content exceeds 1% by weight,
Not only does the effect decrease because the amount of pure graphite decreases, but also the active component decreases because SiO 2, which is the main component of the ash component in the graphite, reacts with the metal component that is the active component. It is difficult to suppress the change within an allowable range.
【0019】黒鉛中の灰分は塩酸やフッ酸などの酸を用
いて低減させることができ、灰分量は少なければ少ない
ほど有利であるが、灰分を完全に除去することは困難で
あり、コストがかかりすぎる。しかしながら、上記のよ
うに灰分量を1重量%以下にすることは比較的容易であ
り、また灰分量が1重量%以下であれば活性の低下が許
容範囲に保たれる。The ash content in graphite can be reduced by using an acid such as hydrochloric acid or hydrofluoric acid. The smaller the ash content, the more advantageous. However, it is difficult to completely remove the ash, and the cost is low. It takes too much. However, as described above, it is relatively easy to reduce the ash content to 1% by weight or less, and if the ash content is 1% by weight or less, the decrease in activity is kept within an allowable range.
【0020】触媒全体に占める黒鉛の量は10〜30重
量%に設定される。黒鉛の量が余りに少ないときは、触
媒の劣化防止効果、活性の向上効果が充分には得られ
ず、メタノール生成速度の経時変化が大きくなる。一
方、黒鉛の量が余りに多いときは、触媒の劣化防止の点
では効果はあるものの、相対的に黒鉛以外の成分の割合
が少なくなるため、その分だけ実質的に反応器への充填
量が少なくなり、その結果メタノールの生産性が低下す
る。The amount of graphite in the whole catalyst is set at 10 to 30% by weight. When the amount of graphite is too small, the effect of preventing the catalyst from deteriorating and the effect of improving the activity cannot be sufficiently obtained, and the change over time in the methanol production rate becomes large. On the other hand, when the amount of graphite is too large, although there is an effect in terms of preventing catalyst deterioration, the proportion of components other than graphite is relatively small, so that the amount charged into the reactor is substantially reduced accordingly. And as a result, the productivity of methanol decreases.
【0021】〈触媒の調製〉触媒の調製方法としては、
銅、亜鉛(場合によりさらにジルコニウム、アルミニウ
ムまたはガリウムの少なくとも1種)の塩を含有する溶
液に塩基性溶液を加えてこれらの塩を沈殿させる共沈法
が好適に採用される。また、銅、亜鉛(場合によりさら
にジルコニウム、アルミニウムまたはガリウムの少なく
とも1種)の塩のうち、はじめに一成分または二成分を
含む溶液に塩基性溶液を加えて一成分または二成分を沈
殿させ、ついで該沈殿物を含む液中で残りの成分を加え
て同様に沈殿させる逐次沈殿法も好適に採用される。<Preparation of catalyst>
A coprecipitation method in which a basic solution is added to a solution containing a salt of copper or zinc (and optionally at least one of zirconium, aluminum or gallium) to precipitate these salts is preferably employed. In addition, among salts of copper and zinc (and optionally at least one of zirconium, aluminum and gallium), a basic solution is first added to a solution containing one or two components to precipitate one or two components, A sequential precipitation method in which the remaining components are added in a liquid containing the precipitate and precipitation is similarly performed is also suitably employed.
【0022】そして沈殿物を洗浄後、空気中で300〜
500℃程度の温度で焼成して、酸化物の状態にする。
この焼成物に黒鉛を所定量添加し、混練機等で混合す
る。黒鉛を添加混合する場合にアルコール等の溶媒で湿
潤させると、より均一に混合することができる。After washing the precipitate, the precipitate is dried in air at 300-300.
It is fired at a temperature of about 500 ° C. to be in an oxide state.
A predetermined amount of graphite is added to the fired product and mixed with a kneader or the like. If graphite is added and mixed and wetted with a solvent such as alcohol, it can be mixed more uniformly.
【0023】得られた混合物は、これを公知の方法で成
型して触媒とする。触媒の粒子径や形状は、反応方式、
反応器の形状によって任意に選択しうる。この触媒は、
使用に先立ちH2 などの還元性のガスで還元し、CuO
の大部分をCuに変換させて用いる。The obtained mixture is molded into a catalyst by a known method. The particle size and shape of the catalyst depends on the reaction method,
It can be arbitrarily selected depending on the shape of the reactor. This catalyst
Prior to use, it is reduced with a reducing gas such as H 2 and CuO
Is converted to Cu for use.
【0024】〈液相メタノール合成〉上記の触媒を固定
床、懸濁床の形態で用いて、水素と炭素酸化物とからな
る原料ガスを溶媒の存在下に反応させてメタノ−ルが合
成される。<Synthesis of Liquid Phase Methanol> Using the above catalyst in the form of a fixed bed or a suspension bed, a raw material gas comprising hydrogen and carbon oxide is reacted in the presence of a solvent to synthesize methanol. You.
【0025】炭素酸化物としては、二酸化炭素単独ガ
ス、または二酸化炭素と一酸化炭素との混合ガスが用い
られる。溶媒としては、炭化水素系溶媒をはじめ、水不
溶性ないし水難溶性の溶媒が好適に用いられる。As the carbon oxide, a single gas of carbon dioxide or a mixed gas of carbon dioxide and carbon monoxide is used. As the solvent, a water-insoluble or hardly water-soluble solvent such as a hydrocarbon solvent is suitably used.
【0026】この液相メタノール合成反応は、典型的に
は、反応温度150〜300℃、反応圧力50〜200
気圧にて行われる。This liquid phase methanol synthesis reaction is typically carried out at a reaction temperature of 150 to 300 ° C. and a reaction pressure of 50 to 200.
Performed at atmospheric pressure.
【0027】〈作用〉二酸化炭素および水素を含む混合
ガスよりメタノールを合成する場合、合成ガス(一酸化
炭素と水素)からメタノールを合成する下記の(ロ)の
反応とは異なり、下記の(イ)の反応式で示されるよう
にメタノールと等モルの水が生成する。 (イ) CO2 + 3 H2 = CH3OH + H2O (ロ) CO + 2 H2 = CH3OH<Action> When methanol is synthesized from a mixed gas containing carbon dioxide and hydrogen, unlike the reaction (b) below in which methanol is synthesized from synthesis gas (carbon monoxide and hydrogen), the following (a) As shown in the reaction formula of (2), water is produced in an equimolar amount with methanol. (B) CO 2 + 3 H 2 = CH 3 OH + H 2 O (b) CO + 2 H 2 = CH 3 OH
【0028】従って、水素と、二酸化炭素を含む炭素酸
化物との混合ガスから、メタノールを合成する場合に
は、生成する水の影響を受けて触媒の劣化が進み、安定
なメタノール生成速度を維持することが難しい。特に、
液相法によるメタノール合成の場合には、水不溶性ない
し水難溶性の溶媒を用いることが多いため、生成した水
が親水性である触媒に吸着されやすく、劣化をひき起こ
す大きな要因になるものと考えられる。Therefore, when synthesizing methanol from a mixed gas of hydrogen and carbon oxides containing carbon dioxide, the deterioration of the catalyst proceeds under the influence of the generated water, and a stable methanol production rate is maintained. Difficult to do. Especially,
In the case of methanol synthesis by the liquid phase method, since a water-insoluble or poorly water-soluble solvent is often used, the generated water is likely to be adsorbed by a hydrophilic catalyst, which is considered to be a major factor causing deterioration. Can be
【0029】そこで本発明者らは、水による触媒の劣化
を防ぐ方法を種々検討する中で、水に比較的濡れにくい
黒鉛を触媒に添加混合するとの着想に基いて鋭意研究を
行った結果、灰分量の少ない黒鉛の特定量を触媒中に含
有させることにより、メタノール生産性を低下させるこ
となく、安定なメタノール生成速度を保つことを見い出
したのである。The inventors of the present invention have studied various methods for preventing the catalyst from deteriorating due to water, and as a result of intensive research based on the idea of adding and mixing graphite, which is relatively hard to wet with water, to the catalyst. It has been found that by including a specific amount of graphite having a low ash content in the catalyst, a stable methanol production rate can be maintained without lowering the methanol productivity.
【0030】なお触媒に疎水性を付与する物質として
は、たとえばポリテトラフルオロエチレンがあり、これ
は疎水性の点では黒鉛よりもはるかに効果がある。しか
しながら、ポリテトラフルオロエチレンは、メタノール
反応を行う250℃〜300℃と言うような高温での長
時間の使用には不向きである。A substance that imparts hydrophobicity to the catalyst is, for example, polytetrafluoroethylene, which is far more effective than graphite in terms of hydrophobicity. However, polytetrafluoroethylene is not suitable for long-term use at a high temperature such as 250 ° C. to 300 ° C. for performing a methanol reaction.
【0031】通常、工業用触媒は円筒状等に成型して使
用されており、このとき成型助剤として黒鉛が数%程度
使用されることがあるが、黒鉛はあくまで成型のしやす
さのために使用されているだけであって、触媒の劣化や
活性の安定性の観点から使われているわけではなく、ま
たそのときの黒鉛量も触媒の疎水性を確保できるほどの
量ではない。Usually, an industrial catalyst is used after being molded into a cylindrical shape or the like. At this time, about several percent of graphite is used as a molding aid. However, graphite is used only for ease of molding. It is not used from the viewpoint of catalyst deterioration or activity stability, and the amount of graphite at that time is not enough to ensure the hydrophobicity of the catalyst.
【0032】[0032]
【実施例】以下実施例をあげて本発明をさらに詳細に説
明する。以下「部」、「%」とあるのは重量基準で表わ
したものである。The present invention will be described in more detail with reference to the following examples. Hereinafter, “parts” and “%” are expressed on a weight basis.
【0033】実施例1 常法に従って共沈法により調製したCu/ZnO/Zr
O2 /Al2O3 (重量比で40/30/25/5)触媒
75部に、灰分0.05%の黒鉛25部を添加、混合後、成
型し、1〜2mmの触媒を調製した。Example 1 Cu / ZnO / Zr prepared by a coprecipitation method according to a conventional method
25 parts of graphite having an ash content of 0.05% was added to 75 parts of an O 2 / Al 2 O 3 (40/30/25/5 by weight) catalyst, mixed and molded to prepare a 1 to 2 mm catalyst.
【0034】この触媒を水素とヘリウムとの混合ガスで
還元し、X線回折装置により触媒中のCu結晶子サイズ
を測定したところ 7.0nmであり、メタノール合成に活性
であるCuが高分散していることがわかった。This catalyst was reduced with a mixed gas of hydrogen and helium, and the size of Cu crystallites in the catalyst was measured by an X-ray diffractometer. The result was 7.0 nm, indicating that Cu active in methanol synthesis was highly dispersed. I knew it was there.
【0035】黒鉛の添加効果を確認するため、上記の触
媒を水およびメタノールを添加した系で加熱処理するこ
とにより、Cuの結晶成長が抑制されているかどうかを
測定した。すなわち、この黒鉛添加触媒 0.5gを内容積
110mlのオートクレーブに入れ、このオートクレーブ
に溶媒としてドデカン50ml、水2.25gおよびメタノー
ル 4.0gを加え、250℃、50時間加熱処理したとこ
ろ、Cuの結晶子サイズは22.0nmであった。Cuの結晶
子サイズは大きくなっているものの、後述の比較例1に
示した触媒に比し、Cuの結晶成長が抑制されているこ
とが判明した。In order to confirm the effect of adding graphite, it was measured whether or not the crystal growth of Cu was suppressed by subjecting the above catalyst to a heat treatment in a system to which water and methanol were added. That is, 0.5 g of the graphite-added catalyst was placed in an autoclave having an internal volume of 110 ml, and 50 ml of dodecane, 2.25 g of water and 4.0 g of methanol were added to the autoclave as a solvent and heated at 250 ° C. for 50 hours. Was 22.0 nm. Although the crystallite size of Cu was large, it was found that the crystal growth of Cu was suppressed as compared with the catalyst shown in Comparative Example 1 described later.
【0036】そこで、活性試験を実施して活性の安定性
を評価した。すなわち、黒鉛添加触媒3mlを目開きが
0.5mmの金網により構成されたバスケットに詰め込み、
これを内容積220mlのオートクレーブの撹拌軸に取り
付け、回転しうるようにした。このオートクレーブに反
応溶媒としてのドデカン170mlを加え、H2 /CO2
=75/25の容積比からなる原料ガスをオートクレー
ブに供給して、反応圧力15MPa、反応温度250
℃、撹拌速度500rpm にて反応を行った。オートクレ
ーブ底部より 5.0ml/minにて連続的に反応液を抜き取っ
て液液分離槽に導入し、反応溶媒を液液分離槽上部から
連続的に抜き取り、オートクレーブに戻した。一方、液
液分離槽において相分離されたメタノール水溶液は、こ
れを液液分離槽下部から抜き取り、常圧に戻し、水とメ
タノール生成量を定量した。なお、上記の反応において
は、反応の進行と共に消費される分の原料ガスを、一定
圧力になるように圧力調整バルブを通じて連続的にオー
トクレーブ内に圧入した。Then, an activity test was carried out to evaluate the stability of the activity. That is, the opening of 3 ml of graphite-added catalyst is
Packed in a basket composed of 0.5mm wire mesh,
This was attached to a stirring shaft of an autoclave having an inner volume of 220 ml, and was allowed to rotate. 170 ml of dodecane as a reaction solvent was added to this autoclave, and H 2 / CO 2 was added.
= 75/25, and the reaction gas was supplied to the autoclave at a reaction pressure of 15 MPa and a reaction temperature of 250.
The reaction was carried out at a temperature of 500 ° C. and a stirring speed of 500 rpm. The reaction solution was continuously withdrawn at a rate of 5.0 ml / min from the bottom of the autoclave, introduced into the liquid-liquid separation tank, the reaction solvent was continuously drawn from the top of the liquid-liquid separation tank, and returned to the autoclave. On the other hand, the aqueous methanol solution that had been phase-separated in the liquid-liquid separation tank was extracted from the lower part of the liquid-liquid separation tank, returned to normal pressure, and the amounts of water and methanol produced were quantified. In the above reaction, the raw material gas consumed as the reaction proceeded was continuously injected into the autoclave through a pressure regulating valve so as to maintain a constant pressure.
【0037】反応の結果、反応初期のメタノール生成速
度は504 (g-MeOH/L-Cat・hr) で、200時間後のメ
タノール生成速度は499 (g-MeOH/L-Cat・hr) とな
り、メタノール生成速度の変化はほとんどなく安定であ
った。また、約200時間反応した後のメタノール生成
速度は後述の比較例1に比較して高かった。As a result of the reaction, the methanol production rate at the beginning of the reaction was 504 (g-MeOH / L-Cat · hr), and the methanol production rate after 200 hours was 499 (g-MeOH / L-Cat · hr). The methanol production rate was stable with little change. Further, the methanol production rate after reacting for about 200 hours was higher than that of Comparative Example 1 described later.
【0038】図1に、この実施例1におけるメタノール
生成速度と反応時間との関係を示した。図1には、後述
の実施例2および比較例1の結果も併せて示した。FIG. 1 shows the relationship between the methanol production rate and the reaction time in Example 1. FIG. 1 also shows the results of Example 2 and Comparative Example 1 described below.
【0039】実施例2 共沈法により調製したCu/ZnO/ZrO2 /Al2O
3 (重量比で40/30/25/5) 触媒85部に、灰
分0.05%の黒鉛15部を添加、混合後、成型し、1〜2
mmの触媒を調製した。Example 2 Cu / ZnO / ZrO 2 / Al 2 O prepared by the coprecipitation method
3 (40/30/25/5 by weight) To 85 parts of the catalyst, 15 parts of graphite having an ash content of 0.05% was added, mixed, molded, and then
mm of catalyst was prepared.
【0040】この触媒を水素とヘリウムとの混合ガスで
還元し、X線回折装置により触媒中のCu結晶子サイズ
を測定したところ、 7.0nmであった。実施例1と同様の
方法で水−メタノールの存在下で加熱処理した結果、C
uの結晶子サイズは22.9nmであった。Cuの結晶子サイ
ズは実施例1と同様に大きくなっているものの、後述の
比較例1に示した触媒に比し、Cuの結晶成長が抑制さ
れていることが判明した。This catalyst was reduced with a mixed gas of hydrogen and helium, and the Cu crystallite size in the catalyst was measured by an X-ray diffractometer to find that it was 7.0 nm. As a result of heat treatment in the presence of water-methanol in the same manner as in Example 1, C
The crystallite size of u was 22.9 nm. Although the crystallite size of Cu was large as in Example 1, it was found that Cu crystal growth was suppressed as compared with the catalyst shown in Comparative Example 1 described later.
【0041】そこで、実施例1と同様の方法で活性試験
を実施し、活性の安定性を評価した。その結果、反応初
期にメタノール生成速度が495 (g-MeOH/L-Cat・hr)
から465 (g-MeOH/L-Cat・hr) まで低下したが、それ
以降はほとんど低下せず、約200時間後のメタノール
生成速度は455 (g-MeOH/L-Cat・hr) となり、メタノ
ール生成速度はほとんど変化せず安定であった。図1
に、この実施例2におけるメタノール生成速度と反応時
間との関係を示した。Therefore, an activity test was carried out in the same manner as in Example 1 to evaluate the stability of the activity. As a result, the methanol generation rate at the beginning of the reaction was 495 (g-MeOH / L-Cat.hr)
To 465 (g-MeOH / L-Cat.hr), but hardly decreased thereafter, and the methanol production rate after about 200 hours was 455 (g-MeOH / L-Cat.hr). The formation rate was stable with little change. FIG.
The relationship between the methanol production rate and the reaction time in Example 2 is shown below.
【0042】比較例1 共沈法により調製したCu/ZnO/ZrO2 /Al2O
3 (重量比で40/30/25/5)触媒を成型し、1
〜2mmの触媒を調製した。Comparative Example 1 Cu / ZnO / ZrO 2 / Al 2 O prepared by the coprecipitation method
3 (40/30/25/5 by weight ratio)
A ~ 2 mm catalyst was prepared.
【0043】実施例1と同様の方法で水−メタノール存
在下で加熱処理した結果、Cuの結晶子サイズは26.1nm
であった。Cuの結晶子サイズは実施例1に比し大きく
なっていた。As a result of heat treatment in the same manner as in Example 1 in the presence of water-methanol, the crystallite size of Cu was 26.1 nm.
Met. The crystallite size of Cu was larger than in Example 1.
【0044】実施例1と同様の方法で活性試験を実施し
た。その結果、反応初期のメタノール生成速度は530
(g-MeOH/L-Cat・hr) で、約200時間後のメタノール
生成速度は410 (g-MeOH/L-Cat・hr) となり、メタノ
ール生成速度は大きく低下していることがわかった。図
1に、この比較例1におけるメタノール生成速度と反応
時間との関係を示した。An activity test was carried out in the same manner as in Example 1. As a result, the methanol production rate at the beginning of the reaction was 530.
(g-MeOH / L-Cat.hr), the methanol production rate after about 200 hours was 410 (g-MeOH / L-Cat.hr), indicating that the methanol production rate was greatly reduced. FIG. 1 shows the relationship between the methanol production rate and the reaction time in Comparative Example 1.
【0045】比較例2 共沈法により調製したCu/ZnO/ZrO2 /Al2O
3 (重量比で40/30/25/5)触媒75部に灰分
12%を含有する黒鉛25部を添加、混合後、成型し、
1〜2mmの触媒を調製した。Comparative Example 2 Cu / ZnO / ZrO 2 / Al 2 O prepared by the coprecipitation method
3 (40/30/25/5 by weight ratio) 25 parts of graphite containing 12% of ash was added to 75 parts of the catalyst, mixed, and molded.
A 1-2 mm catalyst was prepared.
【0046】実施例1と同様の方法で水−メタノール存
在下で加熱処理した結果、Cuの結晶子サイズは24.0nm
であり、同量添加した実施例1に比しCuの結晶子サイ
ズは大きくなっている。As a result of heat treatment in the presence of water-methanol in the same manner as in Example 1, the crystallite size of Cu was 24.0 nm.
The crystallite size of Cu was larger than that of Example 1 in which the same amount was added.
【0047】比較例3 共沈法により調製したCu/ZnO/ZrO2 /Al2O
3 (重量比で40/30/25/5)触媒65部に、灰
分50ppm の黒鉛35部を添加、混合後、成型し、1〜
2mmの触媒を調製した。Comparative Example 3 Cu / ZnO / ZrO 2 / Al 2 O prepared by the coprecipitation method
3 (40/30/25/5 by weight ratio) 35 parts of graphite having an ash content of 50 ppm were added to 65 parts of the catalyst, mixed, molded, and
A 2 mm catalyst was prepared.
【0048】実施例1と同様の方法で水−メタノール存
在下で加熱処理した結果、Cuの結晶子サイズは20.6nm
で、Cuの結晶子サイズは実施例1に比し小さく、黒鉛
の添加効果は大きかった。しかしながら、メタノール生
成速度は370 (g-MeOH/L-Cat・hr) と小さかった。As a result of heat treatment in the same manner as in Example 1 in the presence of water-methanol, the crystallite size of Cu was 20.6 nm.
The crystallite size of Cu was smaller than that of Example 1, and the effect of adding graphite was large. However, the methanol production rate was as low as 370 (g-MeOH / L-Cat.hr).
【0049】[0049]
【発明の効果】本発明の液相メタノール合成触媒は、灰
分量の少ない黒鉛の特定量を触媒中に含有させるという
特別の工夫を行っているため、メタノール生産性を低下
させることなく、安定なメタノール生成速度を保つこと
ができる。よって本発明により、工業的に有利に液相メ
タノール合成を行うことができる。The liquid-phase methanol synthesis catalyst of the present invention is specially designed so that a specific amount of graphite having a small ash content is contained in the catalyst. The methanol production rate can be maintained. Therefore, according to the present invention, liquid-phase methanol synthesis can be carried out industrially advantageously.
【図1】実施例1、2および比較例1におけるメタノー
ル生成速度と反応時間との関係を示したグラフである。FIG. 1 is a graph showing a relationship between a methanol production rate and a reaction time in Examples 1 and 2 and Comparative Example 1.
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成8年12月4日[Submission date] December 4, 1996
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】発明の名称[Correction target item name] Name of invention
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【発明の名称】 液相メタノール合成触媒[Title of Invention] liquid phase meth no Le synthesis catalyst
───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 大器 東京都港区西新橋2−8−11 第7東洋海 事ビル8階 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 萩原 康之輔 東京都港区西新橋2−8−11 第7東洋海 事ビル8階 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 斉藤 昌弘 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Daiki Watanabe 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8th Floor Research Institute of Innovative Technology for the Global Environment (CO2) 72) Inventor Konosuke Hagiwara 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 8th floor of the 7th Oriental Maritime Building Research Institute for Innovative Technology for the Earth, CO2 fixation project room (72) Inventor Masahiro Saito Ibaraki 16-3 Onogawa, Tsukuba City, National Institute of Advanced Industrial Science and Technology
Claims (4)
媒の存在下に反応させてメタノ−ルを合成するための触
媒であって、該触媒が、銅および亜鉛を主成分とする金
属成分からなると共にさらに灰分1重量%以下の黒鉛を
含有し、かつその黒鉛の触媒全体に占める含有量が10
〜30重量%であることを特徴とする液相メタノール合
成触媒。1. A catalyst for synthesizing methanol by reacting a raw material gas comprising hydrogen and carbon oxide in the presence of a solvent, the catalyst comprising a metal mainly composed of copper and zinc. And further contains graphite having an ash content of 1% by weight or less, and the content of the graphite in the entire catalyst is 10%.
Liquid-phase methanol synthesis catalyst, characterized in that the amount is from 30 to 30% by weight.
らにアルミニウム、ジルコニウムおよびガリウムからな
る群より選ばれた少なくとも1種の金属成分を含有して
いる請求項1記載の液相メタノールの合成触媒。2. The liquid-phase methanol according to claim 1, wherein the catalyst further contains, in addition to copper, zinc and graphite, at least one metal component selected from the group consisting of aluminum, zirconium and gallium. Synthetic catalyst.
項1〜2のいずれかに記載の液相メタノ−ル合成触媒。3. The liquid phase methanol synthesis catalyst according to claim 1, wherein the ash content in the graphite is 0.1% by weight or less.
る請求項1〜3のいずれかに記載の液相メタノ−ル合成
触媒。4. The liquid phase methanol synthesis catalyst according to claim 1, wherein the solvent is a water-insoluble or poorly water-soluble solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25748496A JP3268302B2 (en) | 1996-09-06 | 1996-09-06 | Liquid phase methanol synthesis catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25748496A JP3268302B2 (en) | 1996-09-06 | 1996-09-06 | Liquid phase methanol synthesis catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1080634A true JPH1080634A (en) | 1998-03-31 |
JP3268302B2 JP3268302B2 (en) | 2002-03-25 |
Family
ID=17306944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25748496A Expired - Lifetime JP3268302B2 (en) | 1996-09-06 | 1996-09-06 | Liquid phase methanol synthesis catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3268302B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9810715B2 (en) | 2014-12-31 | 2017-11-07 | Tektronix, Inc. | High impedance compliant probe tip |
-
1996
- 1996-09-06 JP JP25748496A patent/JP3268302B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3268302B2 (en) | 2002-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406896B1 (en) | Catalyst for reforming hydrocarbon with steam | |
CN116056789B (en) | Catalyst for ammonia decomposition reaction and hydrogen production method using the same | |
ZA200601435B (en) | High temperature shift catalyst prepared with a high purity iron precursor | |
JP3005647B2 (en) | Photocatalyst, method for producing the same, and method for producing hydrogen using the same | |
US4223001A (en) | Production of hydrogen from carbon monoxide and water | |
CN112041271B (en) | Composite oxides, metal supports and ammonia synthesis catalysts | |
CN117085689B (en) | A copper-based catalyst for preparing methanol by hydrogenation of carbon dioxide and a preparation method thereof | |
JP5258618B2 (en) | Method for producing copper catalyst | |
JPH01143838A (en) | Conversion of methane to higher hydrocarbons | |
JP2004313984A (en) | Dimethycarbonate synthetic catalyst | |
JP4724973B2 (en) | Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst | |
JP2000143209A (en) | Conversion method and catalyst for carbon monoxide | |
JP3268302B2 (en) | Liquid phase methanol synthesis catalyst | |
JP4110241B2 (en) | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst | |
JPH06122501A (en) | Method for producing hydrogen and catalyst used therefor | |
JP3837520B2 (en) | Catalyst for CO shift reaction | |
JP3651761B2 (en) | Method for producing methanol | |
JP3240300B2 (en) | Methanol synthesis catalyst | |
US4740492A (en) | Process for the production of a synthesis gas conversion catalyst | |
CN106674173A (en) | Dehydrogenation catalyst and method for making delta-valerolactone | |
JP2001205089A (en) | Catalyst for methanol synthesis and method for producing the same | |
JP4163292B2 (en) | Hydrocarbon reforming catalyst and reforming method | |
JP4399790B2 (en) | Propylene production method | |
JP4012965B2 (en) | Catalyst for high temperature CO shift reaction | |
WO2012102256A1 (en) | Catalyst for fischer-tropsch synthesis, and production method therefor, as well as hydrocarbon production method using fischer-tropsch synthesis catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011107 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100118 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100118 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |