[go: up one dir, main page]

JPH1074502A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH1074502A
JPH1074502A JP8231063A JP23106396A JPH1074502A JP H1074502 A JPH1074502 A JP H1074502A JP 8231063 A JP8231063 A JP 8231063A JP 23106396 A JP23106396 A JP 23106396A JP H1074502 A JPH1074502 A JP H1074502A
Authority
JP
Japan
Prior art keywords
separator
porosity
negative electrode
battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8231063A
Other languages
Japanese (ja)
Inventor
Shigeki Murayama
茂樹 村山
Fuminari Itou
文就 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8231063A priority Critical patent/JPH1074502A/en
Publication of JPH1074502A publication Critical patent/JPH1074502A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the breakage of a separator arising when a battery is compressed and avoid internal short circuit by using a separator formed by stacking a first separator having the specified porosity and a second separator also having the specified porosity. SOLUTION: In a stacked electrode body formed by stacking a belt-shaped negative electrode and a belt-shaped positive electrode through a separator, a laminated separator prepared by stacking a first separator having a porosity of 30% or more but less than 50% and a second separator having a porosity of 50% or more but less than 90% is used. When a battery is compressed by the outside force, the second separator having high porosity is compressed at first, the compression force is relaxed, and the compression force is hardly applied to the first separator. The complete break down of the first separator is prevented, the insulation between the positive electrode and the negative electrode is kept, and internal short circuit can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は積層電極体を備えた
非水電解液二次電池に関し、特に上記積層電極体で用い
られるセパレータの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having a laminated electrode assembly, and more particularly to an improvement in a separator used in the above-mentioned laminated electrode assembly.

【0002】[0002]

【従来の技術】近年の電子技術のめざましい進歩は、電
子機器の小型・軽量化を次々と実現させている。それに
伴い、移動用電源としての電池に対しても益々小型・軽
量且つ高エネルギー密度であることが求められるように
なっている。
2. Description of the Related Art In recent years, remarkable progress in electronic technology has enabled electronic devices to become smaller and lighter one after another. Along with this, there is an increasing demand for batteries as mobile power sources to be smaller and lighter and have higher energy densities.

【0003】従来、一般用途の二次電池としては鉛電
池、ニッケル・カドミウム電池等の水溶液系二次電池が
主流である。しかし、これらの水溶液系二次電池はサイ
クル特性には優れるものの、電池重量やエネルギー密度
の点で十分に満足できるものとは言えない。
Conventionally, aqueous secondary batteries such as lead batteries and nickel-cadmium batteries have been mainly used as secondary batteries for general use. However, although these aqueous secondary batteries have excellent cycle characteristics, they cannot be said to be sufficiently satisfactory in terms of battery weight and energy density.

【0004】一方、最近、リチウムあるいはリチウム合
金を負極に用いる非水電解液二次電池の研究・開発が盛
んに行われている。この非水電解液二次電池は高エネル
ギー密度を有し、自己放電も少なく、軽量という優れた
特長を有するものである。
On the other hand, recently, research and development of a non-aqueous electrolyte secondary battery using lithium or a lithium alloy for a negative electrode have been actively conducted. This nonaqueous electrolyte secondary battery has excellent features of high energy density, low self-discharge, and light weight.

【0005】しかし、リチウムを負極に用いた場合で
は、充放電サイクルが進行するのに伴って充電時に負極
上にリチウムがデントライト状に結晶成長し、終には正
極に到達して内部ショートに至るといった可能性が高
い。また、リチウム合金を負極に用いた場合には、充放
電サイクルに伴って、負極のリチウム合金が微粒子化し
てしまう。いずれにおいても、実用化は困難である。
However, when lithium is used for the negative electrode, the lithium grows in a dendritic manner on the negative electrode during charging as the charge / discharge cycle progresses, and finally reaches the positive electrode to cause an internal short circuit. There is a high possibility that it will be reached. Further, when a lithium alloy is used for the negative electrode, the lithium alloy of the negative electrode becomes fine particles with the charge / discharge cycle. In any case, practical application is difficult.

【0006】そこで、さらに、負極に炭素材料を使用し
た非水電解液二次電池が提案されている。この非水電解
液二次電池は、炭素材料の炭素層間あるいは微細孔にリ
チウムがドープ/脱ドープされることを電池反応に利用
したものであり、充放電サイクルが進行しても負極上に
デンドライト状リチウムが析出するといった現象は認め
られず、高エネルギー密度を有し、軽量であるとともに
優れた充放電サイクル特性を示す。
Therefore, a non-aqueous electrolyte secondary battery using a carbon material for the negative electrode has been proposed. This non-aqueous electrolyte secondary battery utilizes the doping / dedoping of lithium between carbon layers or fine pores of a carbon material in a battery reaction. Even when a charge / discharge cycle proceeds, dendrite remains on a negative electrode. No phenomenon such as the precipitation of lithium in the form is observed, and it has a high energy density, is lightweight, and has excellent charge / discharge cycle characteristics.

【0007】このような非水電解液二次電池の電極構造
としては、電極面積が広くとれることから積層電極構造
が採られるのが一般的である。この積層電極体は、負極
活物質を含有する負極合剤が集電体の両面に塗布されて
なる帯状負極と、正極活物質を含有する正極合剤が集電
体の両面に塗布されてなる帯状正極とがセパレータを介
して積層され、この積層体が渦巻状に巻回されてなるも
のである。
As the electrode structure of such a non-aqueous electrolyte secondary battery, a laminated electrode structure is generally adopted because the electrode area can be widened. The laminated electrode body has a band-shaped negative electrode in which a negative electrode mixture containing a negative electrode active material is applied to both surfaces of a current collector, and a positive electrode mixture containing a positive electrode active material is applied to both surfaces of a current collector. A band-shaped positive electrode is laminated via a separator, and the laminated body is spirally wound.

【0008】[0008]

【発明が解決しようとする課題】ところで、この積層電
極体のセパレータとしては、ポリプロピレンあるいはポ
リエチレン等よりなる微多孔質高分子フィルムが用いら
れる。この微多孔質高分子フィルムでは、負極/正極間
の絶縁を確実に保つとともに電解質塩の透過性を考慮し
て厚さや空孔率が設定され、たとえば厚さが50μm、
空孔率が30〜50%程度とされるのが通常である。
Incidentally, a microporous polymer film made of polypropylene, polyethylene or the like is used as a separator of the laminated electrode assembly. In this microporous polymer film, the thickness and the porosity are set in consideration of the permeability of the electrolyte salt while ensuring the insulation between the negative electrode and the positive electrode.
Usually, the porosity is about 30 to 50%.

【0009】しかしながら、このような厚さ及び空孔率
となされたセパレータは、電池が何らかの外力によって
圧縮された場合に、破断を生じ易く、内部ショートを生
じさせる可能性が高いといった問題がある。
However, such a separator having such a thickness and porosity has a problem that when the battery is compressed by some external force, the battery is easily broken, and the possibility of causing an internal short circuit is high.

【0010】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、電池が圧縮された場合
に、セパレータの破断が防止され、内部ショートが回避
される非水電解液二次電池を提供することを目的とす
る。
Accordingly, the present invention has been proposed in view of such a conventional situation. When the battery is compressed, the separator is prevented from being broken and the internal short circuit is avoided. It is intended to provide a secondary battery.

【0011】[0011]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液二次電池は、帯状負極と帯状
正極とがセパレータを介して積層されてなる積層電極体
を備えた非水電解液二次電池であって、上記セパレータ
は、空孔率が30%以上50%未満の第1のセパレータ
と空孔率が50%以上90%以下の第2のセパレータを
積層してなることを特徴とするものである。
In order to achieve the above-mentioned object, a non-aqueous electrolyte secondary battery of the present invention comprises a laminated electrode body in which a strip-shaped negative electrode and a strip-shaped positive electrode are stacked via a separator. In the non-aqueous electrolyte secondary battery, the separator is obtained by laminating a first separator having a porosity of 30% or more and less than 50% and a second separator having a porosity of 50% or more and 90% or less. It is characterized by becoming.

【0012】空孔率が30%以上50%未満の第1のセ
パレータと空孔率が50%以上90%以下の第2のセパ
レータよりなる積層セパレータでは、電池が外力によっ
て圧縮されたときに、先ず、空孔率の高い第2のセパレ
ータが先に圧縮されるので、それによって緩和され、第
1のセパレータの方にはほとんど圧縮力がかからない。
したがって、第1のセパレータが全面的な破断に至るこ
とがなく、負極と正極の絶縁が保たれ、内部ショートが
回避される。
In the case of a laminated separator comprising a first separator having a porosity of 30% or more and less than 50% and a second separator having a porosity of 50% or more and 90% or less, when the battery is compressed by an external force, First, since the second separator having a high porosity is compressed first, it is relaxed by the compression, and almost no compressive force is applied to the first separator.
Therefore, the first separator does not break completely, the insulation between the negative electrode and the positive electrode is maintained, and an internal short circuit is avoided.

【0013】[0013]

【発明の実施の形態】以下、本発明の非水電解液二次電
池の実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the nonaqueous electrolyte secondary battery of the present invention will be described.

【0014】本発明が適用される非水電解液二次電池
は、帯状負極と帯状正極とがセパレータを介して積層さ
れてなる積層電極体を備えたものである。
The non-aqueous electrolyte secondary battery to which the present invention is applied has a laminated electrode body in which a strip-shaped negative electrode and a strip-shaped positive electrode are stacked with a separator interposed therebetween.

【0015】本発明では、この積層電極体のセパレータ
として、空孔率が30%以上50%未満の第1のセパレ
ータと空孔率が50%以上90%以下の第2のセパレー
タが積層されてなる積層セパレータを使用する。
In the present invention, as a separator of the laminated electrode assembly, a first separator having a porosity of 30% or more and less than 50% and a second separator having a porosity of 50% or more and 90% or less are laminated. Is used.

【0016】このような積層セパレータでは、電池が外
力によって圧縮されたときに、先ず、空孔率の高い第2
のセパレータが先に圧縮されるので、それによって緩和
され、第1のセパレータの方にはほとんど圧縮力がかか
らない。したがって、第1のセパレータが全面的な破断
に至ることがなく、負極と正極の絶縁が保たれ、内部シ
ョートが回避される。
In such a laminated separator, when the battery is compressed by an external force, the second separator having a high porosity is first used.
Of the first separator is compressed first, so that it is alleviated, and almost no compressive force is applied to the first separator. Therefore, the first separator does not break completely, the insulation between the negative electrode and the positive electrode is maintained, and an internal short circuit is avoided.

【0017】積層セパレータにおいて、第1のセパレー
タには、従来より非水電解液二次電池のセパレータとし
て用いられている空孔率が30%以上50%未満の微多
孔質高分子フィルム等が使用される。材質としては、ポ
リプロピレンあるいはポリエチレン等が一般的である。
In the laminated separator, as the first separator, a microporous polymer film having a porosity of 30% or more and less than 50%, which has been conventionally used as a separator for a non-aqueous electrolyte secondary battery, is used. Is done. As a material, polypropylene or polyethylene is generally used.

【0018】一方、第2のセパレータとしては、アルミ
ナ等の無機短繊維と合成パルプからなる不織布に樹脂を
含浸させたもの等が用いられる。不織布は、従来より公
知の方法によって製造でき、たとえば丸網抄造機あるい
は長網抄造機等が用いられる。得られた不織布は樹脂を
適量含浸させることによって所望の範囲に空孔率が制御
される。
On the other hand, as the second separator, a material obtained by impregnating a resin with a nonwoven fabric made of synthetic pulp and inorganic short fibers such as alumina is used. The nonwoven fabric can be manufactured by a conventionally known method, for example, a round net machine or a long net machine. The porosity of the obtained nonwoven fabric is controlled in a desired range by impregnating the resin with an appropriate amount.

【0019】この積層セパレータの全厚は、単層セパレ
ータの場合と同様に、負極/正極間の絶縁を充分に図り
ながら、電極充填密度を損なわない範囲に選択され、具
体的には10〜100μmとするのが適当である。
As in the case of the single-layer separator, the total thickness of the laminated separator is selected within a range that does not impair the electrode packing density while sufficiently achieving insulation between the negative electrode and the positive electrode. Is appropriate.

【0020】一方、第1のセパレータと第2のセパレー
タのそれぞれの厚さは、電池圧縮時に第1のセパレータ
の破断を確実に防止する点から、第1のセパレータの厚
さよりも第2のセパレータの厚さの方が厚いことが望ま
しい。
On the other hand, the thickness of each of the first separator and the second separator is larger than the thickness of the first separator from the viewpoint of reliably preventing the breakage of the first separator when the battery is compressed. Is desirably thicker.

【0021】本発明では、以上のようなセパレータを使
用するが負極や正極としては、この種の非水電解液二次
電池で通常用いられているものがいずれも使用可能であ
る。
In the present invention, the separator as described above is used. As the negative electrode and the positive electrode, any of those usually used in this type of non-aqueous electrolyte secondary battery can be used.

【0022】たとえば、負極としては、リチウム金属、
リチウム合金が帯状の金属板として用いられる。
For example, as the negative electrode, lithium metal,
A lithium alloy is used as the strip-shaped metal plate.

【0023】この他、リチウムを吸蔵することが可能な
炭素質材料が負極活物質として使用可能である。炭素質
材料としては、熱分解炭素類、コークス類(ピッチコー
クス、ニードルコークス、石油コークス等)、黒鉛類、
ガラス状炭素類、有機高分子化合物焼成体(フラン樹脂
等を適当な温度で焼成し炭素化したもの)、炭素繊維、
活性炭等が挙げられる。これらの炭素質材料を活物質と
して帯状負極を構成するには、この炭素質材料の粉末を
結着剤とともに溶剤に分散させて負極合剤スラリーを調
製し、この負極合剤スラリーを集電体の両面に塗布、乾
燥した後、成形する。
In addition, a carbonaceous material capable of storing lithium can be used as the negative electrode active material. Examples of carbonaceous materials include pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites,
Glassy carbons, organic polymer compound fired bodies (furan resin etc. fired at appropriate temperature and carbonized), carbon fiber,
Activated carbon etc. are mentioned. In order to form a strip-shaped negative electrode using these carbonaceous materials as an active material, a powder of the carbonaceous material is dispersed in a solvent together with a binder to prepare a negative electrode mixture slurry, and the negative electrode mixture slurry is used as a current collector. After coating and drying on both sides of, it is molded.

【0024】正極活物質としては、リチウム含有化合
物、例えば、一般式LiX MO2 (但し、Mは1種以上
の遷移金属、好ましくはMn、Co、Niの少なくとも
1種を表し、xは0.05≦x≦1.10である)で表
されるリチウム遷移金属複合酸化物が使用される。特
に、LiCoO2,LiNiO2は、電池電圧を高くで
き、エネルギー密度の向上に有利である。これらの遷移
金属複合酸化物を活物質として帯状正極を構成するに
は、この酸化物の粉末を結着剤及び導電剤とともに溶剤
に分散させて正極合剤スラリーを調製し、この正極合剤
スラリーを集電体の両面に塗布、乾燥した後、成形す
る。
As the positive electrode active material, a lithium-containing compound, for example, a general formula Li X MO 2 (where M represents one or more transition metals, preferably at least one of Mn, Co and Ni, and x represents 0 0.05 ≦ x ≦ 1.10) is used. In particular, LiCoO 2 and LiNiO 2 can increase the battery voltage and are advantageous for improving the energy density. To form a belt-shaped positive electrode using these transition metal composite oxides as an active material, a powder of this oxide is dispersed in a solvent together with a binder and a conductive agent to prepare a positive electrode mixture slurry. Is applied to both sides of the current collector, dried, and then molded.

【0025】非水電解液としては、有機溶媒にリチウム
塩が溶解されたものが用いられる。有機溶媒としては、
プロピレンカーボネート、エチレンカーボネート、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、γ
−ブチロラクトン、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、1,3−ジオキソラン、4−メチル
−1,3−ジオキソラン、スルホラン、メチルスルホラ
ン、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、メチルプロピルカーボネート
等が使用可能である。
As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. As an organic solvent,
Propylene carbonate, ethylene carbonate, 1,
2-dimethoxyethane, 1,2-diethoxyethane, γ
-Butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, sulfolane, methylsulfolane, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate and the like can be used. .

【0026】また、支持電解質としては、LiCl
4、LiAsF6、LiPF6、LiBF4、LiB(C
654、CH3SO3Li、CF3SO3Li、LiN
(CF3SO22、LiC(CF3SO23、LiCl、
LiBr等が挙げられる。
The supporting electrolyte is LiCl
O 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C
6 H 5) 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN
(CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCl,
LiBr and the like.

【0027】[0027]

【実施例】以下、本発明の実施例について実験結果に基
づいて説明する。
Embodiments of the present invention will be described below based on experimental results.

【0028】実施例1 まず、負極を次のようにして作製した。 Example 1 First, a negative electrode was manufactured as follows.

【0029】出発原料として石油ピッチを用い、これを
焼成することで粗粒状のピッチコークスを得た。この粗
粒状のピッチコークスを粉砕して平均粒径20μmの粉
末とした。そして、このピッチコークスの粉末を、不活
性ガス中、温度1000℃で焼成することによって不純
物を除去し、コークス材料粉末を生成した。
A petroleum pitch was used as a starting material, and was baked to obtain coarse-grained pitch coke. This coarse-grained pitch coke was pulverized into a powder having an average particle diameter of 20 μm. Then, this pitch coke powder was baked at a temperature of 1000 ° C. in an inert gas to remove impurities to produce a coke material powder.

【0030】このようにして生成したコークス材料粉末
を負極活物質担持体とし、このコークス材料粉末90重
量部、結着剤としてポリフッ化ビニリデン(PVdF)
10重量部とを混合して負極合剤を調製し、溶剤である
N−メチルピロリドンに分散させてスラリーとした。続
いて、この負極合剤スラリーを、負極集電体となる厚さ
10μmの帯状銅箔に塗布、乾燥した後、ローラプレス
機により圧縮成形することで帯状負極(厚さ:190μ
m、幅:55.6mm、長さ:551.5mm)を作製
した。
The coke material powder thus produced was used as a negative electrode active material carrier, 90 parts by weight of the coke material powder, and polyvinylidene fluoride (PVdF) as a binder.
The mixture was mixed with 10 parts by weight to prepare a negative electrode mixture, which was dispersed in N-methylpyrrolidone as a solvent to obtain a slurry. Subsequently, the negative electrode mixture slurry is applied to a 10 μm-thick strip-shaped copper foil serving as a negative electrode current collector, dried, and then compression-molded by a roller press to form a strip-shaped negative electrode (thickness: 190 μm).
m, width: 55.6 mm, length: 551.5 mm).

【0031】続いて、正極を次のようにして作製した。Subsequently, a positive electrode was produced as follows.

【0032】炭酸リチウム0.5モルと炭酸コバルト1
モルを混合し、空気中、温度900℃で5時間焼成する
ことによってLiCoO2を生成した。
0.5 mol of lithium carbonate and cobalt carbonate 1
The moles were mixed and calcined at 900 ° C. for 5 hours in air to produce LiCoO 2 .

【0033】このようにして生成したLiCoO2を正
極活物質とし、このLiCoO291重量部、導電剤と
してグラファイト6重量部、結着剤としてポリフッ化ビ
ニリデン3重量部を混合して正極合剤を調製し、N−メ
チルピロリドンに分散させてスラリーとした。続いて、
この正極合剤スラリーを、正極集電体となる厚さ20μ
mの帯状のアルミニウム箔の両面に塗布、乾燥した後、
ローラープレス機により圧縮成形することで帯状正極
(厚み:160μm、幅:53.6mm,長さ:52
3.5mm)を作製した。
The thus prepared LiCoO 2 is used as a positive electrode active material, 91 parts by weight of this LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder are mixed to form a positive electrode mixture. It was prepared and dispersed in N-methylpyrrolidone to form a slurry. continue,
This positive electrode mixture slurry is coated with a 20 μm thick positive electrode current collector.
After applying and drying both sides of the aluminum foil strip
A belt-shaped positive electrode (thickness: 160 μm, width: 53.6 mm, length: 52) is formed by compression molding using a roller press.
(3.5 mm).

【0034】次に、第1のセパレータとして空孔率が4
0%のポリプロピレン製の多孔質フィルム(厚さ:25
μm)を用意するとともに、第2のセパレータを次のよ
うにして作製した。
Next, as the first separator, a porosity of 4
0% polypropylene porous film (thickness: 25
μm) and a second separator was produced as follows.

【0035】すなわち、第2のセパレータを作製するに
は、アルミナ短繊維とポリオレフィン系合成パルプを7
5重量%:25重量%の混合比でパルパー中に投入し、
これらの3%スラリー分散液を調製する。そして、この
スラリーをチェストに貯留し、暫時、抄紙機の供給す
る。抄紙機は、すき網部、プレス部、乾燥部によって構
成されている、スラリーは、始めにすき網部で脱水さ
れ、湿紙が形成される。この湿紙は、プレス部で機械的
に圧搾脱水された後、乾燥部で加熱乾燥されて不織布が
作製される。
That is, in order to fabricate the second separator, short alumina fibers and polyolefin-based synthetic pulp are mixed for 7 minutes.
5% by weight: 25% by weight and put into the pulper,
Prepare these 3% slurry dispersions. Then, the slurry is stored in a chest and supplied to a paper machine for a while. The paper machine is composed of a mesh part, a press part and a drying part. The slurry is first dewatered in the mesh part to form a wet paper. This wet paper is mechanically squeezed and dewatered in a press section, and then heated and dried in a drying section to produce a nonwoven fabric.

【0036】このようにして作製された不織布に、ポリ
フッ化ビニリデン(PVDF)10重量部を含有するN
−メチルピロリドン溶液を含浸させ、乾燥させた。その
後、所定の寸法に裁断することによって空孔率が80%
の第2のセパレータ(厚さ:25μm、幅:58.1m
m、長さ:555mm)を作製した。
[0036] The nonwoven fabric thus produced is mixed with N containing 10 parts by weight of polyvinylidene fluoride (PVDF).
-Methylpyrrolidone solution impregnated and dried. Then, the porosity is reduced to 80% by cutting to a predetermined size.
Second separator (thickness: 25 μm, width: 58.1 m)
m, length: 555 mm).

【0037】次に、この第2のセパレータと、先に用意
しておいた第1のセパレータを積層して積層セパレータ
とし、帯状負極と帯状正極及び積層セパレータを、負
極、積層セパレータ、正極、積層セパレータなる順序で
積層した。そして、この積層体を、負極を内側にした状
態で長さ方向に沿って多数回巻き回し、最外周セパレー
タの最終端部をテープで固定することによって渦巻式電
極体を作製した。
Next, the second separator and the previously prepared first separator are laminated to form a laminated separator, and the band-shaped negative electrode, the band-shaped positive electrode, and the laminated separator are replaced with the negative electrode, the laminated separator, the positive electrode, and the laminated separator. The layers were stacked in the order of separators. Then, this laminate was wound many times along the length direction with the negative electrode inside, and the final end of the outermost peripheral separator was fixed with a tape to produce a spiral electrode body.

【0038】このようにして作製した渦巻式電極体を、
ニッケルメッキを施した鉄製の電池缶に収納し、電極体
の上下両面に絶縁体を配置した。続いて、負極及び正極
からの集電を行うために、アルミニウム製正極リードを
正極集電体から導出して電池蓋に溶接し、ニッケル製負
極リードを負極集電体から導出して電池缶に溶接した。
The spiral electrode body manufactured as described above is
The battery was housed in a nickel-plated iron battery can, and insulators were arranged on both upper and lower surfaces of the electrode body. Subsequently, in order to collect current from the negative electrode and the positive electrode, an aluminum positive electrode lead was led out from the positive electrode current collector and welded to the battery lid, and a nickel negative electrode lead was drawn out from the negative electrode current collector and put into a battery can. Welded.

【0039】その後、電池缶の中に、プロピレンカーボ
ネートとジエチルカーボネートとの等量混合溶媒にLi
PF6を1mol/lなる濃度で溶解した非水電解液を
5.0g注入し、渦巻式電極体に含浸させた。
Then, Li was added to a mixed solvent of propylene carbonate and diethyl carbonate in an equal amount in a battery can.
5.0 g of a non-aqueous electrolyte in which PF 6 was dissolved at a concentration of 1 mol / l was injected, and impregnated in the spiral electrode body.

【0040】続いて、アスファルトで表面を塗布した絶
縁封口ガスケットを介して電池缶をかしめることによっ
て電池蓋を固定し、電池内の気密性を保持させることで
直径18mm,高さ65mmの円筒型非水電解液二次電
池を作製した。
Subsequently, the battery lid is fixed by caulking the battery can through an insulating sealing gasket coated on the surface with asphalt, and the airtightness in the battery is maintained to form a cylindrical type having a diameter of 18 mm and a height of 65 mm. A non-aqueous electrolyte secondary battery was manufactured.

【0041】比較例1 積層セパレータの代わりに、空孔率が40%のポリプロ
ピレン製多孔質フィルム(厚さ:50μm)をセパレー
タに用いること以外は実施例1と同様にして非水電解液
二次電池を作製した。
Comparative Example 1 A non-aqueous electrolyte secondary solution was prepared in the same manner as in Example 1, except that a polypropylene porous film having a porosity of 40% (thickness: 50 μm) was used instead of the laminated separator. A battery was manufactured.

【0042】以上のようにして作製した電池について、
丸棒を用いて電池径の3/4まで圧縮し、この圧縮過程
での電圧変化を調べた。その結果を図1に示す。
With respect to the battery manufactured as described above,
The battery was compressed to / of the battery diameter using a round bar, and the voltage change during the compression process was examined. The result is shown in FIG.

【0043】図1のうち、まず積層セパレータを用いた
実施例1の場合を見ると、この電池では、圧縮しても電
池電圧の急激な変動が見られず、内部ショートが防止さ
れていることがわかる。これに対して、低空孔率の多孔
質フィルムを単独でセパレータに用いた比較例1の電池
では、圧縮直後に電池電圧が急激に低下しており、内部
ショートが誘発されている。
Referring to FIG. 1, first, in the case of the first embodiment using the laminated separator, it can be seen that the battery does not show a sudden change in the battery voltage even when compressed, and prevents an internal short circuit. I understand. On the other hand, in the battery of Comparative Example 1 in which the porous film having a low porosity was used alone for the separator, the battery voltage was rapidly reduced immediately after compression, and an internal short circuit was induced.

【0044】[0044]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池では、空孔率が30〜50%の
第1のセパレータと空孔率が50〜90%の第2のセパ
レータを積層してなる積層セパレータを用いるので、外
力によって圧縮された場合でもセパレータが破断せず、
内部ショートを防止することができる。したがって、本
発明は、電池の信頼性向上に多いに貢献できる。
As is apparent from the above description, in the nonaqueous electrolyte secondary battery of the present invention, the first separator having a porosity of 30 to 50% and the first separator having a porosity of 50 to 90%. Since the laminated separator obtained by laminating the second separator is used, the separator does not break even when compressed by an external force,
Internal short circuit can be prevented. Therefore, the present invention can greatly contribute to improving the reliability of the battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮による電池電圧の経時変化を示す特性図で
ある。
FIG. 1 is a characteristic diagram showing a change over time of a battery voltage due to compression.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 帯状負極と帯状正極とがセパレータを介
して積層されてなる積層電極体を備えた非水電解液二次
電池において、 上記セパレータは、空孔率が30%以上50%未満の第
1のセパレータと空孔率が50%以上90%以下の第2
のセパレータが積層されてなることを特徴とする非水電
解液二次電池。
1. A non-aqueous electrolyte secondary battery including a laminated electrode body in which a strip-shaped negative electrode and a strip-shaped positive electrode are stacked with a separator interposed therebetween, wherein the separator has a porosity of 30% or more and less than 50%. A first separator having a porosity of 50% or more and 90% or less;
A non-aqueous electrolyte secondary battery comprising:
【請求項2】 第2のセパレータの厚さが、第1のセパ
レータの厚さよりも厚いことを特徴とする請求項1記載
の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the second separator is larger than the thickness of the first separator.
【請求項3】 セパレータの厚さが、10〜100μm
であることを特徴とする請求項1記載の非水電解液二次
電池。
3. The separator has a thickness of 10 to 100 μm.
The non-aqueous electrolyte secondary battery according to claim 1, wherein
【請求項4】 第1のセパレータは、ポリプロピレンま
たはポリエチレンからなる微多孔質フィルムよりなるこ
とを特徴とする請求項1記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the first separator is made of a microporous film made of polypropylene or polyethylene.
【請求項5】 第2のセパレータは、不織布よりなるこ
とを特徴とする請求項1記載の非水電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the second separator is made of a nonwoven fabric.
JP8231063A 1996-08-30 1996-08-30 Nonaqueous electrolyte secondary battery Withdrawn JPH1074502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8231063A JPH1074502A (en) 1996-08-30 1996-08-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8231063A JPH1074502A (en) 1996-08-30 1996-08-30 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH1074502A true JPH1074502A (en) 1998-03-17

Family

ID=16917712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8231063A Withdrawn JPH1074502A (en) 1996-08-30 1996-08-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH1074502A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006164596A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Secondary battery and method for producing porous film thereof
JP2007018861A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Separator for battery and battery using this
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
EP1251573A3 (en) * 2001-04-20 2008-02-27 Sony Corporation Non-aqueous electrolyte secondary cell
JP2013118057A (en) * 2011-12-01 2013-06-13 Gs Yuasa Corp Separator and nonaqueous electrolyte secondary battery using the same
JP2013120832A (en) * 2011-12-07 2013-06-17 Taiyo Yuden Co Ltd Separator for electrochemical device, and electrochemical device
JP2014120291A (en) * 2012-12-14 2014-06-30 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US20160276643A1 (en) * 2015-03-18 2016-09-22 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251573A3 (en) * 2001-04-20 2008-02-27 Sony Corporation Non-aqueous electrolyte secondary cell
US7867649B2 (en) 2001-04-20 2011-01-11 Sony Corporation Non-aqueous electrolyte secondary cell
JP2006004873A (en) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006164596A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Secondary battery and method for producing porous film thereof
JP2007018861A (en) * 2005-07-07 2007-01-25 Nissan Motor Co Ltd Separator for battery and battery using this
JP2008016210A (en) * 2006-07-03 2008-01-24 Sony Corp Secondary battery and its manufacturing method
JP2013118057A (en) * 2011-12-01 2013-06-13 Gs Yuasa Corp Separator and nonaqueous electrolyte secondary battery using the same
US9490462B2 (en) 2011-12-01 2016-11-08 Gs Yuasa International Ltd. Separator and nonaqueous electrolytic secondary battery including the same
JP2013120832A (en) * 2011-12-07 2013-06-17 Taiyo Yuden Co Ltd Separator for electrochemical device, and electrochemical device
JP2014120291A (en) * 2012-12-14 2014-06-30 Toyota Motor Corp Nonaqueous electrolyte secondary battery
US20160276643A1 (en) * 2015-03-18 2016-09-22 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery
US10581048B2 (en) * 2015-03-18 2020-03-03 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte battery having first separator layer with total pore volume larger than second separator layer

Similar Documents

Publication Publication Date Title
JP3371301B2 (en) Non-aqueous electrolyte secondary battery
KR101730762B1 (en) Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP3932653B2 (en) Non-aqueous electrolyte secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP5031065B2 (en) Lithium ion secondary battery
JP2012003997A (en) Nonaqueous electrolyte secondary cell
JPH08171917A (en) Cell
JP5523506B2 (en) Method for producing lithium ion secondary battery
JPH1074502A (en) Nonaqueous electrolyte secondary battery
JP2001023685A (en) Electrolyte and secondary battery using it
JP3309449B2 (en) Non-aqueous electrolyte secondary battery
JP3444302B2 (en) Non-aqueous electrolyte secondary battery
JP7143943B2 (en) Negative electrode active material, negative electrode and secondary battery
JP3501365B2 (en) Non-aqueous electrolyte secondary battery
JP2001015157A (en) Electrolytic solution and secondary battery using same
JP4737949B2 (en) Nonaqueous electrolyte secondary battery
JP3132008B2 (en) Non-aqueous electrolyte secondary battery
JP2932516B2 (en) Non-aqueous electrolyte secondary battery
JP3104264B2 (en) Coin type non-aqueous electrolyte secondary battery
JPH0883625A (en) Nonaqueous electrolyte secondary battery
JPH08273670A (en) Nonqueous electrolyt secondary battery
JPH10208774A (en) Polymer electrolyte secondary battery
JPH05182691A (en) Nonaqueous electrolyte secondary battery
JPH04206364A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104