[go: up one dir, main page]

JPH1070131A - Heat treatment method for silicon wafer - Google Patents

Heat treatment method for silicon wafer

Info

Publication number
JPH1070131A
JPH1070131A JP24406996A JP24406996A JPH1070131A JP H1070131 A JPH1070131 A JP H1070131A JP 24406996 A JP24406996 A JP 24406996A JP 24406996 A JP24406996 A JP 24406996A JP H1070131 A JPH1070131 A JP H1070131A
Authority
JP
Japan
Prior art keywords
heat treatment
wafer
oxygen
density
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24406996A
Other languages
Japanese (ja)
Inventor
Shigeru Umeno
繁 梅野
Masahiko Okui
正彦 奥井
Tadami Tanaka
忠美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP24406996A priority Critical patent/JPH1070131A/en
Publication of JPH1070131A publication Critical patent/JPH1070131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower the density of oxygen deposition in the vicinity of wafer surface by a method wherein a silicon wafer, which is cooled under specific condition when crystal is grown by a Czochralski method, is heat-treated in an oxidizing atmosphere under specific conditions. SOLUTION: Silicon wafers, whose temperature of 450 to 550 deg.C is cooled down for two or more hours, and they are heat-treated at 1000 deg.C or higher for thirty seconds in an oxidizing atmosphere before conduction of a device process, or heat treatment is conducted at 1100 deg.C for ten, seconds in an oxidizing atmosphere. As a result, the oxygen deposition nuclei, generated in the cooling process of 450 to 550 deg.C, are contracted or vanished and the oxygen deposition deposit density in the vicinity of silicon wafer is lowered. The time of residence of crystal in the temperature range of 450 to 550 deg.C when crystal is grown becomes longer, and the oxygen deposition density in the vicinity of the surface after heat treatment is increased by the presence of oxygen deposit in high density. Therefore, the microscopic oxygen deposition nuclei are contracted or quenched.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、チョクラルスキ
ー法にて引き上げたシリコン単結晶より切り出されたウ
ェーハの表面近傍の酸素析出物密度の低減のための熱処
理方法に係り、結晶育成時に生成した酸素析出核を、予
めデバイスプロセス前に短時間の高温熱処理を施して低
減させ、デバイスプロセスでの熱処理でウェーハ表面近
傍に酸素析出核を生成させることなく、デバイス歩留ま
りを向上させることができるシリコンウェーハの熱処理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for reducing the density of oxygen precipitates in the vicinity of the surface of a wafer cut from a silicon single crystal pulled by the Czochralski method. A silicon wafer that can reduce the oxygen precipitation nuclei by performing a short-time high-temperature heat treatment before the device process in advance, and improve the device yield without generating oxygen precipitation nuclei near the wafer surface by the heat treatment in the device process. Heat treatment method.

【0002】[0002]

【従来の技術】デバイスプロセス中の高温プロセスを利
用してシリコンウェーハ表面近傍の酸素を外方拡散さ
せ、表面近傍の酸素析出を抑制することが行われてい
る。しかし、このようなプロセスでは、ウェーハの熱履
歴によってはウェーハの表面近傍に酸素析出物が生じる
場合があり、デバイスの酸化膜耐圧不良や接合リーク不
良の原因にもなっていた。
2. Description of the Related Art It has been practiced to use a high-temperature process in a device process to outwardly diffuse oxygen in the vicinity of the surface of a silicon wafer to suppress the deposition of oxygen near the surface. However, in such a process, depending on the thermal history of the wafer, an oxygen precipitate may be generated in the vicinity of the surface of the wafer, which may cause a failure in withstand voltage of an oxide film of the device or a failure in junction leakage.

【0003】[0003]

【発明が解決しようとする課題】かかる表面近傍の酸素
析出は、以下の機構で起きることを発明者らは解明し
た。すなわち、チョクラルスキー法による結晶育成時
に、引き上げ速度、引き上げ炉の構造、結晶の長さなど
の要因によって、500℃付近の温度における結晶の滞
在時間が長くなると、微小な酸素析出核が高密度に生じ
て格子間シリコン原子の濃度が高くなる。
The inventors have found that such oxygen precipitation near the surface occurs by the following mechanism. In other words, during the crystal growth by the Czochralski method, if the residence time of the crystal at a temperature of around 500 ° C. becomes longer due to factors such as the pulling speed, the structure of the pulling furnace, and the length of the crystal, the fine oxygen precipitation nuclei become denser. And the concentration of interstitial silicon atoms increases.

【0004】この状態のままでウェーハに加工され、デ
バイスプロセスで例えば900℃の熱処理を受けること
により酸素析出核が成長し、放出された格子間シリコン
原子濃度が900℃の熱平衡濃度より高くなると、表面
近傍では格子間シリコン原子の外方拡散が起こり、ウェ
ーハ内部より表面近傍の方が格子間シリコン濃度が低く
なるために、ウェーハ内部よりも表面近傍の方が酸素析
出物密度が高くなる。その後、高温のプロセスを通って
も表面近傍で成長した酸素析出物は容易に消滅せず、残
留するのである。
When the wafer is processed in this state and subjected to a heat treatment at, for example, 900 ° C. in a device process, an oxygen precipitation nucleus grows, and when the concentration of released interstitial silicon atoms becomes higher than the thermal equilibrium concentration of 900 ° C., Outward diffusion of interstitial silicon atoms occurs near the surface, and since the interstitial silicon concentration is lower near the surface than inside the wafer, the oxygen precipitate density is higher near the surface than inside the wafer. After that, even after passing through a high-temperature process, the oxygen precipitate grown near the surface does not disappear easily but remains.

【0005】この発明は、チヨクラルスキー法によって
シリコン単結晶を育成する場合、500℃付近の温度に
おける結晶の滞在時間が長くなると、当該シリコンウェ
ーハがデバイスプロセスで900℃程度の熱処理を受け
ることにより表面近傍に酸素析出物が生成して、デバイ
ス歩留まりを低下させる問題があることに鑑み、かかる
450℃〜550℃の間の温度で生じた酸素析出核をデ
バイスプロセス前に収縮あるいは消滅させることによっ
て、ウェーハ表面近傍の酸素析出物密度を低減する熱処
理方法の提供をことを目的としている。
According to the present invention, when a silicon single crystal is grown by the Czochralski method, if the staying time of the crystal at a temperature near 500 ° C. becomes longer, the silicon wafer is subjected to a heat treatment of about 900 ° C. in a device process. In view of the problem that oxygen precipitates are generated near the surface and lower the device yield, oxygen precipitate nuclei generated at a temperature between 450 ° C. to 550 ° C. are shrunk or eliminated before device processing. It is another object of the present invention to provide a heat treatment method for reducing the density of oxygen precipitates near the wafer surface.

【0006】[0006]

【課題を解決するための手段】発明者らは、シリコン単
結晶がチョクラルスキー法によって育成される際に受け
る熱履歴がシリコンウェーハの表面近傍の酸素析出挙動
に与える影響を調査することを目的として、以下の実験
を行った。
DISCLOSURE OF THE INVENTION The inventors of the present invention aimed at investigating the influence of the heat history received when a silicon single crystal is grown by the Czochralski method on the oxygen precipitation behavior near the surface of a silicon wafer. The following experiment was performed.

【0007】直径6インチのシリコン単結晶を1mm/
minの一定速度で900mm引き上げた時点で結晶の
引き上げを停止し、5時間後にシリコン単結晶をシリコ
ンの融液から切り離して急冷した。このようにして育成
されたシリコン単結晶は、引き上げ停止時のシリコン融
液からの距離、すなわち、結晶の終端からの距離に応じ
た温度で5時間保持されたことになる。
[0007] A silicon single crystal having a diameter of 6 inches
When the crystal was pulled up by 900 mm at a constant speed of min, the pulling of the crystal was stopped, and after 5 hours, the silicon single crystal was separated from the silicon melt and rapidly cooled. The silicon single crystal grown in this manner is maintained for 5 hours at a temperature corresponding to the distance from the silicon melt at the time of stopping the pulling, that is, the distance from the end of the crystal.

【0008】このシリコン単結晶の各温度で5時間保持
された部位からウェーハを切り出してサンプルとした。
図1は、結晶育成時に450℃〜600℃の各温度で5
時間保持されたウェーハに、600℃と900℃の二段
熱処理を施したときの酸素析出物のウェーハ断面方向分
布図である。この結果から450℃〜550℃の温度範
囲で保持されると、表面近傍で酸素析出物の密度が高く
なることがわかる。
A wafer was cut out from a portion of the silicon single crystal held at each temperature for 5 hours to obtain a sample.
FIG. 1 shows that at the temperature of 450 ° C. to 600 ° C. during crystal growth, 5
FIG. 6 is a distribution diagram of oxygen precipitates in a wafer cross-sectional direction when a wafer held for a time is subjected to a two-step heat treatment at 600 ° C. and 900 ° C. From this result, it can be seen that when the temperature is maintained in the temperature range of 450 ° C. to 550 ° C., the density of oxygen precipitates increases near the surface.

【0009】次に、この温度範囲での保持時間の違いと
表面近傍で酸素析出物の密度との関係を調べた。この実
験では、途中で引き上げを停止するなどの特殊な熱履歴
を受けていないシリコン単結晶から切り出したウェーハ
をサンプルとして用いた。このサンプルに500℃で1
〜4時間の熱処理を施した後、600℃と900℃の二
段熱処理を施し、酸素析出物のウェーハ断面方向分布を
調べた結果が図2である。500℃で2時間以上保持さ
れると、表面近傍で酸素析出物の密度が高くなることが
わかる。
Next, the relationship between the difference in holding time in this temperature range and the density of oxygen precipitates near the surface was examined. In this experiment, a wafer cut out of a silicon single crystal that did not receive a special heat history such as stopping the pulling halfway was used as a sample. At 500 ° C
FIG. 2 shows the results of two-step heat treatment at 600 ° C. and 900 ° C. after the heat treatment for 4 hours, and the distribution of oxygen precipitates in the wafer cross-sectional direction. It can be seen that when the temperature is maintained at 500 ° C. for 2 hours or more, the density of oxygen precipitates increases near the surface.

【0010】図1と図2の結果から450℃〜550℃
の温度範囲で2時間以上保持されると、表面近傍で酸素
析出物の密度が高くなることが明らかになった。そこ
で、表面近傍の酸素析出を抑制するには、450℃〜5
50℃の間の温度範囲で生じる微小な酸素析出核を収縮
・消滅させればよいことになる。
From the results of FIGS. 1 and 2, 450 ° C. to 550 ° C.
It was clarified that the density of oxygen precipitates increased near the surface when the temperature was maintained for 2 hours or more in the above temperature range. Therefore, in order to suppress the oxygen precipitation near the surface, the temperature is set to 450 ° C. to 5 ° C.
What is necessary is to shrink and eliminate the minute oxygen precipitation nuclei generated in the temperature range between 50 ° C.

【0011】図3は、結晶育成時に500℃で5時間保
持されたウェーハに800℃〜1100℃の熱処理をラ
ンプアニール炉で3分間行った後、600℃と900℃
の二段熱処理を施し、酸素析出物のウェーハ断面方向分
布を調べた結果である。図3より、1000℃以上の温
度が表面近傍の酸素析出を抑制するのに有効であること
が明らかになった。
FIG. 3 shows that a wafer kept at 500 ° C. for 5 hours during crystal growth is subjected to a heat treatment at 800 ° C. to 1100 ° C. for 3 minutes in a lamp annealing furnace, and then to 600 ° C. and 900 ° C.
3 shows the results of examining the distribution of oxygen precipitates in the cross-sectional direction of the wafer by performing the two-step heat treatment. FIG. 3 shows that a temperature of 1000 ° C. or higher is effective for suppressing oxygen precipitation near the surface.

【0012】すなわち、発明者らは、結晶育成時に55
0℃〜450℃の温度範囲を2時間以上かけて冷却され
たシリコンウェーハであっても、予め1000℃以上の
温度で熱処理を施しておけば、後の熱処理後の表面近傍
の酸素析出物密度が高くならないことを知見した。
That is, the present inventors have found that 55
Even if the silicon wafer is cooled in a temperature range of 0 ° C. to 450 ° C. for 2 hours or more, if heat treatment is performed in advance at a temperature of 1000 ° C. or more, the density of oxygen precipitates near the surface after the subsequent heat treatment Was found not to be high.

【0013】この発明は、チョクラルスキー法による結
晶育成時に550℃〜450℃の温度範囲を2時間以上
かけて冷却されたシリコンウェーハに対して、デバイス
プロセス前に酸化性雰囲気で1000℃以上の温度で3
0秒以上の熱処理を施し、550℃〜450℃の冷却過
程で生じた酸素析出核を収縮あるいは消滅させることに
よって、ウェーハ表面近傍の酸素析出物密度を低減する
熱処理方法である。
According to the present invention, a silicon wafer which has been cooled in a temperature range of 550 ° C. to 450 ° C. for 2 hours or more at the time of crystal growth by the Czochralski method is heated to 1000 ° C. or more in an oxidizing atmosphere before device processing. 3 at temperature
This is a heat treatment method in which oxygen precipitate nuclei generated during a cooling process at 550 ° C. to 450 ° C. are shrunk or eliminated by performing a heat treatment for 0 second or more to reduce the density of oxygen precipitates near the wafer surface.

【0014】また、この発明は、チョクラルスキー法に
よる結晶育成時に550℃〜450℃の温度範囲を2時
間以上かけて冷却されたシリコンウェーハに対して、デ
バイスプロセス前に酸化性雰囲気で1100℃以上の温
度で10秒以上の熱処理を施し、550℃〜450℃の
冷却過程で生じた酸素析出核を収縮あるいは消滅させる
ことによって、ウェーハ表面近傍の酸素析出物密度を低
減する熱処理方法である。
Further, the present invention provides a method in which a silicon wafer cooled to a temperature range of 550 ° C. to 450 ° C. for 2 hours or more at the time of crystal growth by the Czochralski method is subjected to 1100 ° C. in an oxidizing atmosphere before device processing. This is a heat treatment method in which a heat treatment is performed at the above temperature for 10 seconds or more to reduce or eliminate oxygen precipitate nuclei generated in a cooling process at 550 ° C. to 450 ° C., thereby reducing the density of oxygen precipitates near the wafer surface.

【0015】[0015]

【発明の実施の形態】結晶育成時に550℃〜450℃
の温度範囲における結晶の滞在時間が長くなり、酸素析
出核が高密度に存在することが後の熱処理後の表面近傍
の酸素析出物密度を高くするのであるから、この微小な
酸素析出核を収縮あるいは消滅させれば良い。酸素析出
核のサイズが熱処理温度における臨界核サイズより大き
ければ成長し、小さければ収縮・消滅する。この発明で
は、デバイスプロセスの前に酸化性雰囲気でウェーハを
1000℃以上で熱処理することによって、550℃〜
450℃の冷却過程で生じた酸素析出核を収縮・消滅さ
せることによって、後の熱処理後の表面近傍の酸素析出
物密度が高くなることを防ぐことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS 550 ° C. to 450 ° C. during crystal growth
Since the residence time of the crystal in the temperature range of the above becomes longer and the high density of oxygen precipitate nuclei increases the density of oxygen precipitates near the surface after the subsequent heat treatment, the fine oxygen precipitate nuclei shrink. Or it may be extinguished. If the size of the oxygen precipitation nucleus is larger than the critical nucleus size at the heat treatment temperature, it grows, and if it is smaller, it shrinks and disappears. In the present invention, the wafer is heat-treated at 1000 ° C. or more in an oxidizing atmosphere before the device process, so that
By shrinking and eliminating oxygen precipitate nuclei generated in the cooling process at 450 ° C., it is possible to prevent the density of oxygen precipitates near the surface after the subsequent heat treatment from increasing.

【0016】この発明において対象とするシリコンウェ
ーハは、口径の大小にかかわらずチョクラルスキー法に
よる結晶育成時に550℃〜450℃の温度範囲を2時
間以上かけて冷却されたものを対象とする。
The silicon wafer to be used in the present invention is a silicon wafer which has been cooled in a temperature range of 550 ° C. to 450 ° C. for 2 hours or more during crystal growth by the Czochralski method, regardless of the diameter of the silicon wafer.

【0017】デバイスプロセスの前にウェーハに施す熱
処理条件は、温度範囲として上限はウェーハの変形等の
問題がなければ特に限定しないが、1000℃以上で、
酸化性雰囲気中、少なくとも30秒以上(特に上限はな
い)の処理を行うと良い。また、1200℃以上から急
冷すると異常析出が起こることがあるため、1000℃
〜1200℃、30秒以上の処理を行うことが好まし
い。
The heat treatment conditions applied to the wafer before the device process are not particularly limited as long as there is no problem such as deformation of the wafer as the temperature range.
It is preferable to perform the treatment in an oxidizing atmosphere for at least 30 seconds or more (there is no particular upper limit). Further, if rapid cooling is performed from 1200 ° C. or more, abnormal precipitation may occur.
It is preferable to perform the treatment at a temperature of up to 1200 ° C. for 30 seconds or more.

【0018】[0018]

【実施例】【Example】

実施例1 直径6インチのシリコン単結晶を1mm/minの一定
速度で900mm引き上げた時点で結晶の引き上げを停
止し、5時間後にシリコン単結晶をシリコンの融液から
切り離して急冷した。引き上げ停止によって500℃で
5時間保持された部位からウェーハを切り出してサンプ
ルとした。
Example 1 When a silicon single crystal having a diameter of 6 inches was pulled 900 mm at a constant speed of 1 mm / min, the pulling of the crystal was stopped, and after 5 hours, the silicon single crystal was cut off from the silicon melt and rapidly cooled. The wafer was cut out from the part held at 500 ° C. for 5 hours by stopping the lifting to make a sample.

【0019】このサンプルにランプアニール炉で100
0℃で0〜60秒間の前熱処理を施した後、低温のデバ
イスプロセスを想定した600℃と900℃の二段熱処
理を施し、酸素析出物のウェーハ断面方向分布を調べた
結果を図4に示す。1000℃で30秒以上の前熱処理
を行うことによって、表面近傍の酸素析出物密度が高く
なることを防ぐことができた。
The sample was placed in a lamp annealing furnace for 100
FIG. 4 shows the results of a pre-heat treatment at 0 ° C. for 0 to 60 seconds, followed by a two-stage heat treatment at 600 ° C. and 900 ° C. assuming a low-temperature device process, and the distribution of oxygen precipitates in the wafer cross-sectional direction. Show. By performing the pre-heat treatment at 1000 ° C. for 30 seconds or more, it was possible to prevent the density of oxygen precipitates near the surface from increasing.

【0020】実施例2 直径6インチのシリコン単結晶を1mm/minの一定
速度で900mm引き上げた時点で結晶の引き上げを停
止し、5時間後にシリコン単結晶をシリコンの融液から
切り離して急冷した。引き上げ停止によって500℃で
5時間保持された部位からウェーハを切り出してサンプ
ルとした。
Example 2 When a silicon single crystal having a diameter of 6 inches was pulled 900 mm at a constant speed of 1 mm / min, the pulling of the crystal was stopped. Five hours later, the silicon single crystal was separated from the silicon melt and rapidly cooled. The wafer was cut out from the part held at 500 ° C. for 5 hours by stopping the lifting to make a sample.

【0021】このサンプルにランプアニール炉で110
0℃で5〜30秒間の前熱処理を施した後、低温のデバ
イスプロセスを想定した600℃と900℃の二段熱処
理を施し、酸素析出物のウェーハ断面方向分布を調べた
結果を図5に示す。前熱処理温度を実施例1より100
℃高い1100℃にしたことによって、実施例1より短
時間、すなわち、10秒で表面近傍の酸素析出物密度が
高くなることを防ぐことができた。
The sample was placed in a lamp annealing furnace for 110 hours.
FIG. 5 shows the results of a pre-heat treatment at 0 ° C. for 5 to 30 seconds, followed by a two-stage heat treatment at 600 ° C. and 900 ° C. assuming a low-temperature device process, and an examination of the distribution of oxygen precipitates in the wafer cross-sectional direction. Show. The pre-heat treatment temperature was set at 100
By setting the temperature to 1100 ° C., which is higher by 1 ° C., it was possible to prevent the density of oxygen precipitates near the surface from increasing in a shorter time than in Example 1, ie, 10 seconds.

【0022】実施例3 引き上げ速度0.4mm/minで育成した直径6イン
チのシリコン単結晶の肩から100mm〜200mmの
位置から切り出したウェーハをサンプルとした。この結
晶の肩から100mm〜200mmの部位は、育成時に
550℃から450℃まで冷えるのに約8時間かかって
いる。
Example 3 A wafer cut out from a position of 100 mm to 200 mm from a shoulder of a silicon single crystal having a diameter of 6 inches grown at a pulling rate of 0.4 mm / min was used as a sample. It takes about 8 hours for the portion of the crystal 100 mm to 200 mm from the shoulder to cool from 550 ° C. to 450 ° C. during growth.

【0023】このサンプルに低温デバイスプロセスを想
定した600℃と900℃の二段熱処理を施し、酸素析
出物密度の深さ方向分布を調べた。その結果を図6に示
す。表面近傍に集中的に酸素析出物が存在することがわ
かる。
This sample was subjected to a two-step heat treatment at 600 ° C. and 900 ° C. assuming a low-temperature device process, and the depth distribution of the oxygen precipitate density was examined. FIG. 6 shows the result. It can be seen that oxygen precipitates are concentrated near the surface.

【0024】一方、図7は600℃と900℃の二段熱
処理を行う前に、ランプアニール炉により1100℃で
3分間の前熱処理を行った場合の酸素析出物密度の深さ
方向分布である。わずか3分間の前熱処理により表面近
傍の酸素析出物密度が低下した。
On the other hand, FIG. 7 shows the distribution of the oxygen precipitate density in the depth direction when the pre-heat treatment is performed at 1100 ° C. for 3 minutes by the lamp annealing furnace before the two-step heat treatment at 600 ° C. and 900 ° C. . The pre-heat treatment for only 3 minutes reduced the oxygen precipitate density near the surface.

【0025】[0025]

【発明の効果】従来、チョクラルスキー法によって育成
された単結晶シリコンから切り出したシリコンウェーハ
のうち、結晶育成時に550℃〜450℃の温度範囲を
2時間以上かけて冷却されたシリコン単結晶から切り出
されたウェーハを、そのままデバイス作製に用いるとウ
ェーハの表面近傍に高密度の酸素析出物が生じるためデ
バイス歩留まりが低かった。しかし、実施例に明らかな
ようにこの発明の熱処理よれば、結晶育成時に550℃
〜450℃の温度範囲で生じた酸素析出核を収縮・消滅
させることによってウェーハ表面近傍の高密度の酸素析
出を防ぐことができ、デバイス歩留まりを向上させるこ
とができる。
According to the present invention, among silicon wafers cut from single crystal silicon grown by the Czochralski method, a silicon single crystal cooled in a temperature range of 550.degree. If the cut wafer is used as it is for device fabrication, high-density oxygen precipitates are generated near the surface of the wafer, resulting in low device yield. However, as is clear from the examples, according to the heat treatment of the present invention, 550 ° C.
By shrinking and eliminating oxygen precipitate nuclei generated in a temperature range of up to 450 ° C., high-density oxygen precipitation near the wafer surface can be prevented, and the device yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】引き上げ停止によって5時間保持された温度と
酸素析出物の断面方向分布の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the temperature maintained for 5 hours by stopping pulling and the distribution of oxygen precipitates in the cross-sectional direction.

【図2】500℃の保持時間と酸素析出物の断面方向分
布の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a holding time at 500 ° C. and a distribution of oxygen precipitates in a sectional direction.

【図3】前熱処理温度と酸素析出物の断面方向分布の関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a pre-heat treatment temperature and a cross-sectional distribution of oxygen precipitates.

【図4】1000℃の前熱処理時間と酸素析出物の断面
方向分布の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a pre-heat treatment time of 1000 ° C. and a distribution of oxygen precipitates in a cross-sectional direction.

【図5】1100℃の前熱処理時間と酸素析出物の断面
方向分布の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a pre-heat treatment time of 1100 ° C. and a distribution of oxygen precipitates in a cross-sectional direction.

【図6】引き上げ速度0.4mm/minで育成した単
結晶シリコンから切り出したウェーハに600℃で3時
間または8時間と900℃で48時間の二段熱処理を施
した場合の酸素析出物の断面方向分布を示す図である。
FIG. 6 is a cross-sectional view of oxygen precipitates when a wafer cut from single crystal silicon grown at a pulling rate of 0.4 mm / min is subjected to a two-stage heat treatment at 600 ° C. for 3 hours or 8 hours and at 900 ° C. for 48 hours. It is a figure which shows a direction distribution.

【図7】引き上げ速度0.4mm/minで育成した単
結晶シリコンから切り出したウェーハに本発明によりラ
ンプアニール炉で3分間の熱処理を施した後、600℃
で8時間と900℃で48時間の二段熱処理を施した場
合の酸素析出物の深さ方向分布を示す図である。
FIG. 7 shows a wafer cut out of single crystal silicon grown at a pulling rate of 0.4 mm / min, subjected to a heat treatment for 3 minutes in a lamp annealing furnace according to the present invention, and then at 600 ° C.
FIG. 6 is a diagram showing the depth distribution of oxygen precipitates when two-stage heat treatment is performed at 8 hours and at 900 ° C. for 48 hours.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法による結晶育成時に
550℃〜450℃の温度範囲を2時間以上かけて冷却
されたシリコン単結晶より切り出されたウェーハに対し
て、デバイスプロセス前に酸化性雰囲気で1000℃以
上の温度で30秒以上の熱処理を施し、550℃〜45
0℃の冷却過程で生じた酸素析出核を収縮あるいは消滅
させることによって、ウェーハ表面近傍の酸素析出物密
度を低減するシリコンウェーハの熱処理方法。
1. A wafer cut from a silicon single crystal cooled in a temperature range of 550 ° C. to 450 ° C. for 2 hours or more during crystal growth by the Czochralski method, in an oxidizing atmosphere before device processing. Heat treatment at a temperature of 1000 ° C. or more for 30 seconds or more;
A heat treatment method for a silicon wafer in which the density of oxygen precipitates near the wafer surface is reduced by shrinking or eliminating oxygen precipitate nuclei generated in a cooling process at 0 ° C.
【請求項2】 チョクラルスキー法による結晶育成時に
550℃〜450℃の温度範囲を2時間以上かけて冷却
されたシリコン単結晶より切り出されたウェーハに対し
て、デバイスプロセス前に酸化性雰囲気で1100℃以
上の温度で10秒以上の熱処理を施し、550℃〜45
0℃の冷却過程で生じた酸素析出核を収縮あるいは消滅
させることによって、ウェーハ表面近傍の酸素析出物密
度を低減するシリコンウェーハの熱処理方法。
2. A wafer cut from a silicon single crystal cooled in a temperature range of 550 ° C. to 450 ° C. for 2 hours or more during crystal growth by the Czochralski method, in an oxidizing atmosphere before device processing. Heat treatment at a temperature of 1100 ° C. or more for 10 seconds or more;
A heat treatment method for a silicon wafer in which the density of oxygen precipitates near the wafer surface is reduced by shrinking or eliminating oxygen precipitate nuclei generated in a cooling process at 0 ° C.
JP24406996A 1996-08-26 1996-08-26 Heat treatment method for silicon wafer Pending JPH1070131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24406996A JPH1070131A (en) 1996-08-26 1996-08-26 Heat treatment method for silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24406996A JPH1070131A (en) 1996-08-26 1996-08-26 Heat treatment method for silicon wafer

Publications (1)

Publication Number Publication Date
JPH1070131A true JPH1070131A (en) 1998-03-10

Family

ID=17113280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24406996A Pending JPH1070131A (en) 1996-08-26 1996-08-26 Heat treatment method for silicon wafer

Country Status (1)

Country Link
JP (1) JPH1070131A (en)

Similar Documents

Publication Publication Date Title
TWI420599B (en) Manufacturing method for silicon wafer
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US4868133A (en) Semiconductor wafer fabrication with improved control of internal gettering sites using RTA
US8476149B2 (en) Method of manufacturing single crystal silicon wafer from ingot grown by Czocharlski process with rapid heating/cooling process
US8231852B2 (en) Silicon wafer and method for producing the same
JP6044660B2 (en) Silicon wafer manufacturing method
JP2003524874A (en) Czochralski silicon wafer with non-oxygen precipitation
KR100850333B1 (en) Production Method for Anneal Wafer and Anneal Wafer
EP0099878B1 (en) Method for reducing oxygen precipitation in silicon wafers
JPH0232535A (en) Manufacture of silicon substrate for semiconductor device
CN104762656B (en) A kind of systemic impurity process of major diameter Czochralski silicon wafer
JPH10326790A (en) Method for heat-treating silicon wafer and silicon wafer
JPH0290531A (en) Semiconductor device manufacturing method and wafer
JPH1070131A (en) Heat treatment method for silicon wafer
JP2001077120A (en) Manufacturing method of epitaxial silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP4385539B2 (en) Heat treatment method for silicon single crystal wafer
JPH023539B2 (en)
JP2612033B2 (en) Silicon single crystal growth method
JPS6344720B2 (en)
JP3171308B2 (en) Silicon wafer and method for manufacturing the same
JP4414012B2 (en) Heat treatment method for silicon single crystal wafer
JP2002043241A (en) Silicon wafer and method of heat treating the same
JP2588632B2 (en) Oxygen precipitation method for silicon single crystal
JPH03271199A (en) Method for heat-treating gaas single crystal wafer