JPH1070067A - X-ray exposure mask and method of manufacturing the same - Google Patents
X-ray exposure mask and method of manufacturing the sameInfo
- Publication number
- JPH1070067A JPH1070067A JP22729096A JP22729096A JPH1070067A JP H1070067 A JPH1070067 A JP H1070067A JP 22729096 A JP22729096 A JP 22729096A JP 22729096 A JP22729096 A JP 22729096A JP H1070067 A JPH1070067 A JP H1070067A
- Authority
- JP
- Japan
- Prior art keywords
- film
- mask
- ray
- light
- ray exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体装置等の製造
に用いられるX線露光用マスク及びその製造方法に関す
る。The present invention relates to an X-ray exposure mask used for manufacturing a semiconductor device and the like, and a method for manufacturing the same.
【0002】半導体ウェーハとX線マスクとの位置合わ
せに,光ヘテロダイン干渉法を利用したアライメント方
法が用いられている。本発明のX線露光用マスクはこの
方法のアライメント精度を向上するために用いることが
できる。2. Description of the Related Art An alignment method utilizing optical heterodyne interferometry has been used for positioning a semiconductor wafer and an X-ray mask. The X-ray exposure mask of the present invention can be used to improve the alignment accuracy of this method.
【0003】[0003]
【従来の技術】光ヘテロダイン干渉法は,半導体ウェー
ハとX線マスクとの位置ずれ量を光ヘテロダイン干渉し
たビート信号の位相差から検出している。2. Description of the Related Art In the optical heterodyne interferometry, the amount of displacement between a semiconductor wafer and an X-ray mask is detected from the phase difference between beat signals that have undergone optical heterodyne interference.
【0004】図7は光ヘテロダイン干渉法によるアライ
メント方法の説明図である。図において,X線マスク72
上に形成したX線吸収層からなる回折格子(マスクマー
ク領域74)と半導体ウェーハ71上に形成した回折格子
(ウェーハマーク領域75)に2波長(f1,f2) のレーザ光
76, 77を入射し,マスクマークとウェーハマークからそ
れぞれ出射する光ヘテロダイン干渉光の位相差を光電変
換したビート信号から検出し,位置合わせを行う。図
で,73はマスク透過窓領域である。FIG. 7 is an explanatory diagram of an alignment method using optical heterodyne interferometry. In the figure, an X-ray mask 72 is shown.
Two wavelengths (f 1 , f 2 ) of laser light are applied to the diffraction grating (mask mark area 74) formed on the X-ray absorption layer formed thereon and the diffraction grating (wafer mark area 75) formed on the semiconductor wafer 71.
76 and 77 are incident, and the phase difference between the optical heterodyne interference light emitted from the mask mark and the wafer mark is detected from the photoelectrically converted beat signal to perform alignment. In the figure, 73 is a mask transmission window area.
【0005】ところが,図8に示されるように,X線マ
スクと半導体ウェーハが近接して配置されているため,
入射光または入射光によって生じた回折光の一部はX線
マスク及び半導体ウェーハ面で多重反射し,位相差検出
信号を不安定にし,位置合わせ精度を落とすという欠点
を持っている。[0005] However, as shown in FIG. 8, since the X-ray mask and the semiconductor wafer are arranged close to each other,
The incident light or a part of the diffracted light generated by the incident light has multiple drawbacks on the surface of the X-ray mask and the semiconductor wafer, making the phase difference detection signal unstable and deteriorating the alignment accuracy.
【0006】そこで,図1(b) のように,従来方法 (特
開平04-372112 号公報) では,ウェーハマークと対向し
たアライメント光のマスク透過窓領域 7に反射防止(AR)
膜16を形成することにより, 位置検出用レーザ光に対し
てマスク側の透過率が向上し,マスク面での反射光強度
が小さくなる。このとき,反射防止膜はマスク基板の両
面に被着する。Therefore, as shown in FIG. 1 (b), in the conventional method (Japanese Patent Laid-Open No. 04-372112), anti-reflection (AR) is applied to the mask transmission window region 7 of the alignment light facing the wafer mark.
By forming the film 16, the transmittance on the mask side with respect to the laser beam for position detection is improved, and the intensity of the reflected light on the mask surface is reduced. At this time, the anti-reflection film is applied to both sides of the mask substrate.
【0007】また,ウェーハ側のX線感光性膜に対向す
るマスクマーク領域 8に不透明膜(遮光膜)15を形成す
ることにより,マスクを透過してウェーハ側に達するレ
ーザ光強度が小さくなる。従って,多重反射による干渉
の影響をなくすることができる。Further, by forming an opaque film (light-shielding film) 15 in the mask mark area 8 facing the X-ray photosensitive film on the wafer side, the intensity of the laser beam that passes through the mask and reaches the wafer side is reduced. Therefore, the influence of interference due to multiple reflection can be eliminated.
【0008】図9はタンタル(Ta)回折格子パターンから
なるマスクマーク領域にチタン(Ti)からなる遮光膜を成
膜したときの遮光膜膜厚と回折効率の関係を示す図であ
る。図で遮光膜厚が大きくなるほど, 回折光強度が弱ま
る。これは,回折格子パターンを形成しているX線吸収
体材料(ここではTa) と遮光膜 (金属膜) との屈折率が
ほぼ等しいために,格子面が平坦であるように見做さ
れ, 遮光すればするほど回折格子の周期の区別がつきに
くくなることによる。FIG. 9 is a diagram showing the relationship between the light-shielding film thickness and the diffraction efficiency when a light-shielding film made of titanium (Ti) is formed in a mask mark region made of a tantalum (Ta) diffraction grating pattern. In the figure, as the light-shielding film thickness increases, the intensity of the diffracted light decreases. This is because the refractive index of the X-ray absorber material (here, Ta) forming the diffraction grating pattern and the light-shielding film (metal film) are almost equal, and the grating surface is regarded as flat. This is because the more the light is blocked, the more difficult it is to distinguish the period of the diffraction grating.
【0009】その結果, ビート信号の検出が困難にな
り,ノイズの影響を受けやすくなり,アライメント精度
を悪くしていた。従って, 遮光膜厚を大きくすれば多重
干渉の影響を抑制できるが, 信号強度が小さくなってし
まうという問題が生じる。As a result, it has become difficult to detect a beat signal, to be easily affected by noise, and to deteriorate the alignment accuracy. Therefore, if the light-shielding film thickness is increased, the influence of multiple interference can be suppressed, but a problem occurs in that the signal intensity decreases.
【0010】前記の従来方法 (特開平04-372112 号公
報) では,マスクマーク領域の基板に密着して遮光膜を
1層または数層成膜するため,この問題が生じる。In the conventional method (Japanese Patent Laid-Open No. 04-372112), this problem occurs because one or several light-shielding films are formed in close contact with the substrate in the mask mark area.
【0011】[0011]
【発明が解決しようとする課題】本発明は,光ヘテロダ
イン法による位置合わせで,ビート信号強度を大きくし
且つ多重反射を抑制して信号検出を容易にし,アライメ
ント精度を向上することを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to increase the beat signal intensity and suppress multiple reflections in positioning by the optical heterodyne method to facilitate signal detection and improve alignment accuracy. .
【0012】[0012]
【課題を解決するための手段】上記課題の解決は, 1)メンブレン上に直にX線吸収体膜により形成された
回折格子からなるマスクマーク領域に,アライメント光
に対して透明膜と不透明膜とを順に成膜してなるX線露
光用マスク,あるいは 2)前記透明膜が反射防止膜である前記1記載のX線露
光用マスク,あるいは 3)前記反射防止膜がアルミナ(Al2O3) 膜である前記2
記載のX線露光用マスク,あるいは 4)前記不透明膜がタンタル(Ta)またはタンタル化合物
膜である前記1記載のX線露光用マスク,あるいは 5)ステンシルマスクを用いて,位置合わせに光ヘテロ
ダイン干渉法を用いるX線露光用マスクのマスクマーク
領域とアライメント光が透過するマスク透過窓領域とを
同時に反射防止膜を成膜するX線露光用マスクの製造方
法により達成される。Means for solving the above problems are as follows: 1) A transparent film and an opaque film for alignment light are provided on a mask mark area composed of a diffraction grating formed by an X-ray absorber film directly on a membrane. Or 2) the X-ray exposure mask according to 1 above, wherein the transparent film is an anti-reflection film, or 3) the anti-reflection film is alumina (Al 2 O 3). ) The said 2 which is a membrane
4) The X-ray exposure mask according to 1), wherein the opaque film is a tantalum (Ta) or tantalum compound film, or 5) The optical heterodyne interference for alignment using the stencil mask. This is achieved by a method for manufacturing an X-ray exposure mask in which an anti-reflection film is simultaneously formed on a mask mark region of the X-ray exposure mask and a mask transmission window region through which the alignment light is transmitted by using the method.
【0013】本発明では,マスクマーク領域に遮光膜を
形成する前に,メンブレンと遮光膜の間に中間層となる
透明膜を被着している。このようにすると,透明膜内で
位相差を発生させることができるため,回折光強度を上
げることができる。さらに,透明膜に反射防止膜材を使
用すれば効率がよくなる。In the present invention, before forming the light shielding film in the mask mark area, a transparent film serving as an intermediate layer is applied between the membrane and the light shielding film. With this configuration, a phase difference can be generated in the transparent film, so that the intensity of diffracted light can be increased. Further, if an antireflection film material is used for the transparent film, the efficiency is improved.
【0014】図1は本発明の構造説明図である。ここで
は,比較のために2つの従来例と並べて示す。図1(a)
は従来のX線マスクの位置合わせ部の断面図である。FIG. 1 is an explanatory view of the structure of the present invention. Here, two conventional examples are shown side by side for comparison. Fig. 1 (a)
FIG. 3 is a cross-sectional view of a positioning portion of a conventional X-ray mask.
【0015】図において, 2はSiC 等からなるメンブレ
ン, 3はX線吸収体膜, 7はマスク透過窓領域, 8はマ
スクマーク領域である。図1(b) は従来技術で説明した
改良された従来例の断面図である。In the figure, 2 is a membrane made of SiC or the like, 3 is an X-ray absorber film, 7 is a mask transmission window area, and 8 is a mask mark area. FIG. 1B is a cross-sectional view of the improved conventional example described in the prior art.
【0016】図において,15は遮光膜, 16は反射防止膜
である。図1(c) は本発明のX線マスクの位置合わせ部
の断面図で, 9, 10, 11, 12は反射防止膜 (透明膜), 1
5 は遮光膜 (不透明膜) である。この場合の特徴は,X
線吸収体膜 3はメンブレン 2上に直に形成され,かつマ
スクマーク領域 8では遮光膜15の下に反射防止膜12が形
成されている点である。In FIG. 1, reference numeral 15 denotes a light-shielding film, and 16 denotes an antireflection film. FIG. 1 (c) is a cross-sectional view of the alignment portion of the X-ray mask of the present invention.
5 is a light shielding film (opaque film). The feature in this case is X
The point is that the line absorber film 3 is formed directly on the membrane 2, and the antireflection film 12 is formed under the light shielding film 15 in the mask mark area 8.
【0017】図2は,遮光膜(Ti)を 600Åと厚くして,
中間層に反射防止膜材(AR film)を使用し,その膜厚を
変化させたときの回折効率の変化を示す図である。反射
防止膜が無反射条件膜厚 (d=λ/4n=1200Å ; d
は膜厚,λは波長= 780nm,nは膜の屈折率=1.62)に
等しいとき, 回折効率が最大となり,遮光膜を被着して
いないときの2倍以上となる。FIG. 2 shows that the light-shielding film (Ti) is thickened to 600 °,
FIG. 9 is a diagram illustrating a change in diffraction efficiency when an antireflection film material (AR film) is used for an intermediate layer and the film thickness is changed. Anti-reflection film has anti-reflection film thickness (d = λ / 4n = 1200 °; d)
Is equal to the film thickness, λ is the wavelength = 780 nm, and n is the refractive index of the film = 1.62). The diffraction efficiency is maximized, which is more than twice that when the light shielding film is not applied.
【0018】このように,マスクマーク領域に反射防止
膜を被着して,その上に遮光膜を被覆すると,遮光して
多重反射を抑制するだけでなく,マスクマーク領域から
の信号を大きくすることができる。As described above, when the anti-reflection film is applied to the mask mark area and the light-shielding film is coated thereon, not only the light is shielded to suppress the multiple reflection, but also the signal from the mask mark area is increased. be able to.
【0019】また,図1(c) に示されるように,マスク
透過窓領域 7とマスクマーク領域 8に反射防止膜を同時
に同じ膜厚で被覆すると,従来と同じ工程数で本発明を
実行できる。As shown in FIG. 1C, when the mask transmission window region 7 and the mask mark region 8 are simultaneously coated with an anti-reflection film with the same film thickness, the present invention can be carried out with the same number of steps as in the prior art. .
【0020】さらに,遮光膜はどんな材料でも利用でき
るため,Ta等のX線吸収材料でも可能であり,また,マ
スク洗浄に対しても有利な材料を選択することができ
る。特に, Ta及びその化合物を用いると洗浄に対して強
いため,実用上極めて有利である。Furthermore, since any material can be used for the light-shielding film, an X-ray absorbing material such as Ta can be used, and a material that is advantageous for mask cleaning can be selected. In particular, use of Ta and its compounds is extremely advantageous in practical use because it is strong against washing.
【0021】[0021]
【発明の実施の形態】図3,4は本発明を適用するため
のX線マスクの製造工程の説明図である。図3(a) にお
いて,気相成長(CVD) 法により,シリコン(Si)基板 1上
に,X線マスクの支持基板(メンブレン)2 となる炭化
珪素(SiC) を2μm程度成膜する。3 and 4 are explanatory views of a manufacturing process of an X-ray mask to which the present invention is applied. In FIG. 3A, a silicon carbide (SiC) film serving as a support substrate (membrane) 2 for an X-ray mask is formed to a thickness of about 2 μm on a silicon (Si) substrate 1 by a vapor phase growth (CVD) method.
【0022】図3(b) において,Si基板 1の背面のSiC
膜 2をエッチング除去し,表面のSiC 膜 2を研磨して平
坦化する。図3(c) において,スパッタ法により,SiC
膜 2の上に, X線吸収体となる重金属膜としてTa膜 3を
成膜する。In FIG. 3 (b), the SiC
The film 2 is removed by etching, and the surface SiC film 2 is polished and flattened. In FIG. 3 (c), the SiC
On the film 2, a Ta film 3 is formed as a heavy metal film serving as an X-ray absorber.
【0023】図3(d) において,Si基板 1をフレーム 4
に接着し,Si基板 1の背面からSiのエッチングを行う。
図4(e) において,Ta膜 3の上にレジスト膜 5を塗布す
る。In FIG. 3D, the Si substrate 1 is
Then, etching of Si is performed from the back surface of the Si substrate 1.
In FIG. 4E, a resist film 5 is applied on the Ta film 3.
【0024】図4(f) において,電子描画を行い,現
像,エッチングを行い,レジスト膜 5にX線吸収体用の
パターンを形成する。図4(g) において,レジスト膜 5
をマスクにして, Ta膜 3をエッチングする。In FIG. 4F, electron drawing, development and etching are performed to form a pattern for the X-ray absorber on the resist film 5. In FIG. 4 (g), the resist film 5
Using the as a mask, the Ta film 3 is etched.
【0025】図4(h) において,Ta膜 3にパターンを形
成後, アライメント後に生じる多重反射光の影響を抑制
するために,アライメントマーク領域に反射防止膜およ
び遮光膜を被着する。次に,図5を用いてこの工程を詳
細に説明する。In FIG. 4H, after a pattern is formed on the Ta film 3, an antireflection film and a light-shielding film are applied to the alignment mark area in order to suppress the influence of the multiple reflection light generated after the alignment. Next, this step will be described in detail with reference to FIG.
【0026】図5は本発明の実施の形態の説明図であ
る。図5(a) において,まず,マスク透過窓領域 7及び
マスクマーク領域 8に対応する領域を開口したステンシ
ルマスク(1) 6を用いて, メンブレンの裏面に反射防止
膜材を蒸着する。FIG. 5 is an explanatory diagram of an embodiment of the present invention. In FIG. 5A, first, an anti-reflection film material is deposited on the back surface of the membrane by using a stencil mask (1) 6 having an opening corresponding to the mask transmission window region 7 and the mask mark region 8.
【0027】図5(b) において,マスク透過窓領域7 及
びマスクマーク領域 8に反射防止膜9, 10を被着する。
次いで, ステンシルマスク(2) 13を用いて, メンブレン
の表面 (Ta膜側) に反射防止膜材を蒸着する。In FIG. 5B, anti-reflection films 9 and 10 are applied to the mask transmission window region 7 and the mask mark region 8, respectively.
Next, using a stencil mask (2) 13, an antireflection film material is deposited on the surface of the membrane (Ta film side).
【0028】図5(c) において,ステンシルマスク(2)
13を用いて, マスク透過窓領域 7及びマスクマーク領域
8に反射防止膜11, 12を被着する。次いで, ステンシル
マスク(3)14を用いて, マスクマーク領域 8に遮光膜を
蒸着する。In FIG. 5C, a stencil mask (2)
13, the mask transmission window area 7 and the mask mark area
8 is coated with antireflection films 11 and 12. Next, a light-shielding film is deposited on the mask mark area 8 using the stencil mask (3).
【0029】図5(d) において,マスクマーク領域 8の
反射防止膜12の上に遮光膜15が形成される。ここで,
反射防止膜材はメンブレンの屈折率によって決められ,
SiC メンブレン (屈折率: 2.64)の場合は, アルミナ(A
l2O3) (屈折率:1.62≒2.641/2)が最適である。In FIG. 5D, a light shielding film 15 is formed on the antireflection film 12 in the mask mark area 8. here,
The anti-reflective coating material is determined by the refractive index of the membrane,
In the case of SiC membrane (refractive index: 2.64), alumina (A
l 2 O 3 ) (refractive index: 1.62 ≒ 2.64 1/2 ) is optimal.
【0030】反射防止膜は, 蒸着法またはスパッタ法に
よって成膜を行い, メタルマスク(ステンシルマスク)
を用いて, 部分的に成膜する。また,反射防止膜は,メ
ンブレンの両面に被着しないと効果がないため,メンブ
レンの裏面にもステンシルマスクを用いて反射防止膜を
被着している。The antireflection film is formed by a vapor deposition method or a sputtering method, and is formed by a metal mask (stencil mask).
Is used to partially form a film. In addition, since the antireflection film has no effect unless it is applied to both surfaces of the membrane, the antireflection film is also applied to the back surface of the membrane using a stencil mask.
【0031】ここで,ステンシルマスクを用いて部分的
に被着することは, 被着した膜の持つ応力によるマスク
(メンブレン) 歪みを極力低減でき, また,被膜が部分
的に被着されているため, X線照射による膜変質の影響
も小さくできるために有利である。Here, the partial deposition using the stencil mask is performed by using a mask due to the stress of the deposited film.
(Membrane) This is advantageous because distortion can be reduced as much as possible, and since the coating is partially applied, the influence of film deterioration due to X-ray irradiation can be reduced.
【0032】次に,マスクマーク領域のみに,ステンシ
ルマスクを用いて遮光膜を被着する場合も蒸着またはス
パッタ法によって成膜を行う。遮光膜はクロム,タンタ
ル,タングステン等が有効であり,図6に示されるよう
に,厚さが 400Å程度であれば遮光できる。Next, also when a light-shielding film is applied to only the mask mark area using a stencil mask, the film is formed by vapor deposition or sputtering. Chromium, tantalum, tungsten or the like is effective for the light-shielding film, and light can be shielded if the thickness is about 400 mm as shown in FIG.
【0033】図6はTi膜の厚さと波長 780nmの光に対す
る透過率の関係を示す図である。FIG. 6 is a diagram showing the relationship between the thickness of the Ti film and the transmittance for light having a wavelength of 780 nm.
【0034】[0034]
【発明の効果】本発明によれば,従来と同じ工程数で,
マスクマーク領域からのビート信号強度を大きくするこ
とができ,且つ多重反射による干渉効果を抑制できるの
で,信号検出が容易になり,アライメント精度を向上す
ることができる。According to the present invention, with the same number of steps as in the prior art,
Since the intensity of the beat signal from the mask mark area can be increased and the interference effect due to multiple reflection can be suppressed, signal detection becomes easier and alignment accuracy can be improved.
【図1】 本願発明の構造説明図FIG. 1 is a structural explanatory view of the present invention.
【図2】 反射防止膜の膜厚と回折効率の関係を示す図FIG. 2 is a diagram showing the relationship between the thickness of an antireflection film and diffraction efficiency.
【図3】 本発明を適用するためのX線マスクの製造工
程の説明図(1)FIG. 3 is an explanatory view of a manufacturing process of an X-ray mask for applying the present invention (1).
【図4】 本発明を適用するためのX線マスクの製造工
程の説明図(2)FIG. 4 is an explanatory view of a manufacturing process of an X-ray mask for applying the present invention (2).
【図5】 本発明の実施の形態の説明図FIG. 5 is an explanatory diagram of an embodiment of the present invention.
【図6】 遮光膜(Ti)の膜厚と透過率の関係を示す図FIG. 6 is a diagram showing the relationship between the thickness of a light-shielding film (Ti) and transmittance.
【図7】 光ヘテロダイン干渉を利用したアライメント
法の説明図FIG. 7 is an explanatory diagram of an alignment method using optical heterodyne interference;
【図8】 マスクとウェーハ間の多重反射の説明図FIG. 8 is an explanatory diagram of multiple reflection between a mask and a wafer.
【図9】 遮光膜(Ti)の膜厚と回折効率の関係を示す図FIG. 9 is a diagram showing the relationship between the thickness of a light-shielding film (Ti) and diffraction efficiency.
1 シリコン(Si)基板 2 メンブレン(SiC) 3 X線吸収体膜 4 フレーム 5 レジスト膜 6 ステンシルマスク(1) 7 マスク透過窓領域 8 マスクマーク領域 9, 10, 11, 12 反射防止膜 (透明膜) 13 ステンシルマスク(2) 14 ステンシルマスク(3) 15 遮光膜 (不透明膜) 1 Silicon (Si) substrate 2 Membrane (SiC) 3 X-ray absorber film 4 Frame 5 Resist film 6 Stencil mask (1) 7 Mask transmission window area 8 Mask mark area 9, 10, 11, 12 Anti-reflection film (transparent film ) 13 Stencil mask (2) 14 Stencil mask (3) 15 Light shielding film (opaque film)
Claims (5)
形成された回折格子からなるマスクマーク領域に,アラ
イメント光に対して透明膜と不透明膜とを順に成膜して
なることを特徴とするX線露光用マスク。1. A transparent film and an opaque film are sequentially formed on an alignment mark in a mask mark area formed of a diffraction grating formed by an X-ray absorber film on a membrane. X-ray exposure mask.
徴とする請求項1記載のX線露光用マスク。2. The X-ray exposure mask according to claim 1, wherein said transparent film is an anti-reflection film.
あることを特徴とする請求項2記載のX線露光用マス
ク。3. The X-ray exposure mask according to claim 2, wherein said anti-reflection film is an alumina (Al 2 O 3 ) film.
タル化合物膜であることを特徴とする請求項1記載のX
線露光用マスク。4. The X according to claim 1, wherein said opaque film is a tantalum (Ta) or tantalum compound film.
Line exposure mask.
に光ヘテロダイン干渉法を用いるX線露光用マスクのマ
スクマーク領域とアライメント光が透過するマスク透過
窓領域とに同時に反射防止膜を成膜することを特徴とす
るX線露光用マスクの製造方法。5. An anti-reflection film is simultaneously formed on a mask mark region of an X-ray exposure mask using optical heterodyne interference for alignment and a mask transmission window region through which alignment light is transmitted, using a stencil mask. A method for producing an X-ray exposure mask, characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729096A JPH1070067A (en) | 1996-08-29 | 1996-08-29 | X-ray exposure mask and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22729096A JPH1070067A (en) | 1996-08-29 | 1996-08-29 | X-ray exposure mask and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1070067A true JPH1070067A (en) | 1998-03-10 |
Family
ID=16858501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22729096A Withdrawn JPH1070067A (en) | 1996-08-29 | 1996-08-29 | X-ray exposure mask and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1070067A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316151B1 (en) | 1998-12-18 | 2001-11-13 | Hyundai Electronics Industries Co., Ltd. | Stencil mask |
KR100310540B1 (en) * | 1998-10-13 | 2001-11-15 | 박종섭 | Method for manufacturing cell projection mask of semiconductor device |
US6319636B1 (en) | 1998-12-28 | 2001-11-20 | Hyundai Electronics Industries Co., Ltd. | Cell projection mask |
US6696205B2 (en) | 2000-12-21 | 2004-02-24 | International Business Machines Corporation | Thin tantalum silicon composite film formation and annealing for use as electron projection scatterer |
JP2012032837A (en) * | 2006-09-08 | 2012-02-16 | Nikon Corp | Mask, exposure apparatus and device manufacturing method |
-
1996
- 1996-08-29 JP JP22729096A patent/JPH1070067A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100310540B1 (en) * | 1998-10-13 | 2001-11-15 | 박종섭 | Method for manufacturing cell projection mask of semiconductor device |
US6316151B1 (en) | 1998-12-18 | 2001-11-13 | Hyundai Electronics Industries Co., Ltd. | Stencil mask |
US6319636B1 (en) | 1998-12-28 | 2001-11-20 | Hyundai Electronics Industries Co., Ltd. | Cell projection mask |
US6696205B2 (en) | 2000-12-21 | 2004-02-24 | International Business Machines Corporation | Thin tantalum silicon composite film formation and annealing for use as electron projection scatterer |
JP2012032837A (en) * | 2006-09-08 | 2012-02-16 | Nikon Corp | Mask, exposure apparatus and device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5482799A (en) | Phase shift mask and manufacturing method thereof | |
JP3513236B2 (en) | X-ray mask structure, method for manufacturing X-ray mask structure, X-ray exposure apparatus and X-ray exposure method using the X-ray mask structure, and semiconductor device manufactured using the X-ray exposure method | |
EP1152292B1 (en) | Halftone phase shift photomask and blank for halftone phase shift photomask | |
US20030091910A1 (en) | Reflection mask for EUV-lithography and method for fabricating the reflection mask | |
WO2009136564A1 (en) | Reflective mask, reflective mask blank and method for manufacturing reflective mask | |
US5733713A (en) | Method of manufacturing semiconductor device | |
US7090948B2 (en) | Reflection mask and method for fabricating the reflection mask | |
US7118832B2 (en) | Reflective mask with high inspection contrast | |
US20040126670A1 (en) | High performance EUV mask | |
US5262257A (en) | Mask for lithography | |
US20060099517A1 (en) | Phase shift mask fabrication method thereof and fabrication method of semiconductor apparatus | |
JP2001166453A (en) | Non-absorptive reticle and method for manufacturing the same | |
JP2012054412A (en) | Reflective mask with light blocking region, reflective mask blank, method of manufacturing reflective mask | |
JP2004118186A (en) | Chrome black light shield | |
JP2771907B2 (en) | Photomask and method of manufacturing the same | |
JPH1070067A (en) | X-ray exposure mask and method of manufacturing the same | |
JP3240189B2 (en) | Optical element and method for manufacturing optical element | |
GB2302962A (en) | Phase shift mask | |
US5962174A (en) | Multilayer reflective mask | |
JP2801270B2 (en) | How to make a mask | |
US7060401B1 (en) | Phase-shift reflective mask for lithography, and method of using and fabricating | |
JPH07146543A (en) | Manufacture of mask for formation of pattern of semiconductor element | |
US5744268A (en) | Phase shift mask, method of manufacturing a phase shift mask and method of forming a pattern with phase shift mask | |
JPH0697052A (en) | X-ray masking material and x-ray mask made out of it | |
JP3178516B2 (en) | Phase shift mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031104 |