JPH1068692A - Near-infrared analyzer - Google Patents
Near-infrared analyzerInfo
- Publication number
- JPH1068692A JPH1068692A JP9203178A JP20317897A JPH1068692A JP H1068692 A JPH1068692 A JP H1068692A JP 9203178 A JP9203178 A JP 9203178A JP 20317897 A JP20317897 A JP 20317897A JP H1068692 A JPH1068692 A JP H1068692A
- Authority
- JP
- Japan
- Prior art keywords
- absorbance
- sample
- temperature
- measured
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
(57)【要約】
【課題】サンプルの温度の吸光度の変動要因に左右され
ずに精度よく定量分析する必要がある。
【解決手段】サンプルに対して近赤外線を照射して吸光
度を測定する吸光度測定手段と、既知のサンプルについ
て、検量線作成用の基準吸光度および所定のサンプル温
度のときの吸光度を、前記吸光度測定手段によりあらか
じめ測定し、両者の吸光度のずれ量を求めるずれ量算出
手段と、算出したずれ量を記憶する記憶手段と、未知の
サンプルの温度を測定する温度変動特性値測定手段と、
未知のサンプルについて、前記吸光度測定手段により吸
光度を測定したときに、温度変動特性値測定手段に応じ
て、その測定吸光度を前記記憶手段に記憶するずれ量に
より前記基準吸光度に補正する測定吸光度補正手段と、
補正した吸光度に基づき、前記検量線によりサンプル成
分を分析する分析手段とを備えてなる近赤外分析装置。
(57) [Summary] [PROBLEMS] It is necessary to perform quantitative analysis with high accuracy without being influenced by the fluctuation factor of the absorbance of the temperature of a sample. An absorbance measuring means for irradiating a sample with near-infrared rays to measure absorbance, and for a known sample, a reference absorbance for preparing a calibration curve and an absorbance at a predetermined sample temperature, the absorbance measurement means By measuring in advance, a shift amount calculating means for obtaining the shift amount of the absorbance of both, storage means for storing the calculated shift amount, a temperature fluctuation characteristic value measuring means for measuring the temperature of the unknown sample,
For an unknown sample, when the absorbance is measured by the absorbance measurement means, the measurement absorbance correction means corrects the measured absorbance to the reference absorbance by a shift amount stored in the storage means according to the temperature fluctuation characteristic value measurement means. When,
A near-infrared spectrometer comprising: analysis means for analyzing a sample component based on the corrected absorbance based on the calibration curve.
Description
【0001】[0001]
【産業上の利用分野】本発明は、近赤外線を利用して定
量分析を行う近赤外分析装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-infrared analyzer for performing quantitative analysis using near-infrared rays.
【0002】[0002]
【従来技術】従来、近赤外線を利用する手段として、特
開昭62−299743号公報、特開昭63−1757
47号公報、特開昭64−49937号公報等で開示さ
れた手段がある。2. Description of the Related Art Conventionally, as means utilizing near infrared rays, Japanese Patent Application Laid-Open Nos. 62-299743 and 63-1775
No. 47, Japanese Patent Application Laid-Open No. 64-49937 and the like.
【0003】[0003]
【発明が解決しようとする課題】前記特開昭62−29
9743号公報、特開昭63−175747号公報によ
る手段、例えば特開昭62−299743号公報の第7
図にあるように温度検出値に対し測定対象値の補正値は
一義的に決定されるものであり、その代表的事例として
次式のものがある。Problems to be Solved by the Invention
No. 9743, the means disclosed in JP-A-63-175747, for example, the seventh means of JP-A-62-299743.
As shown in the figure, the correction value of the measurement target value is uniquely determined with respect to the detected temperature value, and a typical example thereof is as follows.
【0004】分析値=K0+K1*△OD1+K2*△
OD2+K3*T ただし、K :係数 △OD:(2項しか記載していないが実際は多数個であ
る) T :検出温度 この場合、分析値が高・低のサンプルであっても検出温
度値が一定であれば、その補正量も一定であるが、近赤
外分析においては、検量線に用いる説明変数は複数個で
あり、その選択波長により各々温度特性が異なる。その
ため、検出温度が通常より高・低の場合、実際の分析値
が高いサンプルや低いサンプルにおいて、実際の分析値
と勾配が大きく変わるものもある。特に、水分を含む農
産物、食品においては、水分子の水素結合が温度により
大きく変わるので顕著であり、水の光吸収帯と非吸収帯
とでは温度特性が相違し、水の吸収帯を選択波長にした
場合、その傾向は顕著である。Analysis value = K0 + K1 * {OD1 + K2 *}
OD2 + K3 * T, where K: coefficient ΔOD: (only two items are described, but there are actually many) T: detected temperature In this case, the detected temperature value is constant even if the analysis value is a high or low sample , The correction amount is also constant, but in the near-infrared analysis, there are a plurality of explanatory variables used for the calibration curve, and the temperature characteristics differ depending on the selected wavelength. For this reason, when the detected temperature is higher or lower than usual, there is a case where the gradient of the actual analysis value is significantly different from that of the sample whose actual analysis value is high or low. In particular, in agricultural products and foods containing water, the hydrogen bond of water molecules greatly changes depending on the temperature, which is remarkable. The temperature characteristics of the light absorption band and the non-absorption band of water are different. The tendency is remarkable.
【0005】また、特開昭64−49937号公報は、
光学としての発光ダイオ−ドの発光量とピ−ク波長なら
びに受光素子の受光出力の温度特性に関する情報をあら
かじめ測定して記憶手段に記憶しておき、実際の光量測
定値をハ−ドの測定温度をもとに記憶された情報から校
正し濃度測定値を得るので、ハ−ドに関する温度変化に
起因する誤差のない測定を目的とした光学濃度計ハ−ド
の温度補正に関するものみであって、サンプルの水分、
温度、粒度等による変動を考慮して補正することはでき
ない。Further, Japanese Patent Application Laid-Open No. Sho 64-49937 discloses that
Information about the light emission amount and peak wavelength of the light emitting diode as an optical element and the temperature characteristics of the light receiving output of the light receiving element are measured in advance and stored in the storage means, and the actual light amount measured value is measured for the hardware. Since the density measurement value is obtained by calibrating from the information stored based on the temperature, it is only related to the temperature correction of the optical densitometer hard for the purpose of measuring without error caused by the temperature change of the hard. The sample moisture,
It cannot be corrected in consideration of fluctuations due to temperature, particle size, and the like.
【0006】そこで、本発明は、近赤外線を利用して定
量分析を行う場合に、サンプルの温度による吸光度の変
動要因に左右されずに精度よく行うことができる装置を
提供することを目的とする。Accordingly, an object of the present invention is to provide an apparatus which can accurately perform quantitative analysis using near-infrared rays without being affected by a change in absorbance due to the temperature of a sample. .
【0007】[0007]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、次のような技術的手段を講じた。即
ち、サンプルに対して近赤外線を照射して吸光度を測定
する吸光度測定手段と、既知のサンプルについて、検量
線作成用の基準吸光度および所定のサンプル温度のとき
の吸光度を、前記吸光度測定手段によりあらかじめ測定
し、両者の吸光度のずれ量を求めるずれ量算出手段と、
算出したずれ量を記憶する記憶手段と、未知のサンプル
の温度を測定する温度変動特性値測定手段と、未知のサ
ンプルについて、前記吸光度測定手段により吸光度を測
定したときに、温度変動特性値測定手段に応じて、その
測定吸光度を前記記憶手段に記憶するずれ量により前記
基準吸光度に補正する測定吸光度補正手段と、補正した
吸光度に基づき、前記検量線によりサンプル成分を分析
する分析手段とを備えてなる近赤外分析装置としIn order to achieve the above object, the present invention takes the following technical measures. That is, the absorbance measuring means for measuring the absorbance by irradiating the sample with near-infrared rays, and, for a known sample, the reference absorbance for preparing a calibration curve and the absorbance at a predetermined sample temperature are previously determined by the absorbance measuring means. Measured, a shift amount calculating means for obtaining the shift amount of the absorbance of both,
Storage means for storing the calculated shift amount; temperature fluctuation characteristic value measuring means for measuring the temperature of the unknown sample; and temperature fluctuation characteristic value measuring means for the unknown sample when the absorbance is measured by the absorbance measurement means. According to the measurement absorbance correction means for correcting the measured absorbance to the reference absorbance by the amount of shift stored in the storage means, and an analysis means for analyzing a sample component by the calibration curve based on the corrected absorbance A near-infrared analyzer
【0008】た。[0008]
【作用】吸光度測定手段により、既知のサンプルについ
て、予め検量線作成用の基準吸光度及び所定のサンプル
温度の温度変動特性値のときの吸光度を測定する。ずれ
量算出手段はその両者の吸光度のずれ量を算出し、そし
て記憶手段はその算出したずれ量を記憶しておく。The absorbance measurement means measures the absorbance of a known sample in advance as a reference absorbance for preparing a calibration curve and an absorbance at a temperature fluctuation characteristic value of a predetermined sample temperature. The shift amount calculating means calculates the shift amount between the two absorbances, and the storage means stores the calculated shift amount.
【0009】次に、未知のサンプルについて成分測定を
行うときには、温度変動特性値測定手段によりサンプル
の外的変動特性値である温度を測定する。測定吸光度補
正手段は測定した外的変動特性に応じて、その測定吸光
度を記憶手段に記憶するずれ量により基準吸光度に補正
する。分析手段は、補正した吸光度に基づき、基準吸光
度から求めてある検量線によりサンプル成分を分析す
る。Next, when the component measurement is performed on the unknown sample, the temperature, which is the external fluctuation characteristic value of the sample, is measured by the temperature fluctuation characteristic value measuring means. The measured absorbance correction means corrects the measured absorbance to the reference absorbance according to the measured external fluctuation characteristic by the amount of shift stored in the storage means. The analysis means analyzes the sample components based on the corrected absorbance using a calibration curve obtained from the reference absorbance.
【0010】[0010]
【発明の効果】外的変動特性値に応じたサンプルの吸光
度のずれ量により、測定吸光度を検量線作成用の基準吸
光度に補正して検量線にかけるようしたので、測定時に
おいて、サンプルの温度の吸光度の変動要因に左右され
ずに精度よく定量分析することができる。According to the present invention, the measured absorbance is corrected to the reference absorbance for preparing the calibration curve and applied to the calibration curve based on the deviation amount of the absorbance of the sample according to the external fluctuation characteristic value. Quantitative analysis can be performed accurately without being influenced by the fluctuation factor of the absorbance of the sample.
【0011】[0011]
【実施例】以下、本発明の実施例について、以下に図面
を参照して説明する。この実施例は、図1に示すように
近赤外線分光装置1と、該近赤外線分光装置1の各部を
制御するとともに、その装置1から得られるデ−タの処
理を行う制御処理装置2と、から構成する。Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, as shown in FIG. 1, a near-infrared spectroscopy device 1 and a control processing device 2 for controlling each part of the near-infrared spectroscopy device 1 and processing data obtained from the near-infrared spectroscopy device 1 It consists of.
【0012】近赤外線分光装置1は、農産物などの試料
(サンプル)に波長を連続的に変化させて近赤外線を照
射し、その試料の透過光または反射光を検出するもので
ある。 すなわち、近赤外線分光装置1は、光源3と、
反射鏡4と、回折格子駆動モ−タ5により駆動する回折
格子6と、試料を充填した試料セルを装着する試料セル
ホルダ7と、試料の透過光を検出する透過光検出器8
と、試料からの反射光を検出する反射光検出器9とを図
示のように配置する。The near-infrared spectrometer 1 irradiates near-infrared rays to a sample (sample) such as an agricultural product while continuously changing the wavelength, and detects transmitted light or reflected light of the sample. That is, the near-infrared spectrometer 1 includes the light source 3 and
A reflecting mirror 4, a diffraction grating 6 driven by a diffraction grating driving motor 5, a sample cell holder 7 for mounting a sample cell filled with a sample, and a transmitted light detector 8 for detecting transmitted light of the sample.
And a reflected light detector 9 for detecting reflected light from the sample are arranged as shown in the figure.
【0013】試料ホルダ7は、測定時に試料セルを所定
位置にセットすると、試料セル移送モ−タ(図1には示
さない)により測定位置まで移送され、測定終了後には
試料セルが所定位置まで戻るように構成する。次に、こ
のような構成の実施例の制御処理系のブロック図を図2
に示し、これについて説明すると、20はワンチップ形
態のCPU(中央処理装置)だり、後述のような制御処
理を行う。該CPU20には、入出力インタ−フェ−ス
21を介して光源3、回折格子駆動モ−タ5、試料セル
移送モ−タ22、透過光検出器8及び反射光検出器9を
接続する。また、CPU20には、入力インタ−フェ−
ス23を介して入力キ−24を接続するとともに、出力
インタ−フェ−ス25を介して表示装置26を接続す
る。さらに、CPU20には、後述のような処理手順を
記憶するROM及びデ−タを一時的に記憶するRAMか
らなる記憶装置27を接続する。When the sample cell is set at a predetermined position at the time of measurement, the sample holder 7 is transferred to the measurement position by a sample cell transfer motor (not shown in FIG. 1). Configure to go back. Next, a block diagram of the control processing system of the embodiment having such a configuration is shown in FIG.
This will be described below. Reference numeral 20 denotes a one-chip type CPU (central processing unit), which performs control processing as described later. The light source 3, the diffraction grating driving motor 5, the sample cell transport motor 22, the transmitted light detector 8, and the reflected light detector 9 are connected to the CPU 20 via an input / output interface 21. The CPU 20 has an input interface.
The input key 24 is connected via the interface 23 and the display device 26 is connected via the output interface 25. Further, the CPU 20 is connected to a storage device 27 including a ROM for storing a processing procedure described later and a RAM for temporarily storing data.
【0014】次に、このように構成する実施例の動作の
一例(以下この実施例では温度について説明する)につ
いて説明する。この実施例では、試料が基準温度To
(摂氏20度近傍)における検量線を、以下のようにし
て求める。まず、基準板を近赤外線分光装置1の測定位
置にセットし、近赤外線分光装置1を動作させると、光
源3から発射する近赤外線は、反射鏡4を経由して回折
格子6に到達し、ここで分光されたのち基準板で反射
し、その反射光は反射光検出器9で検出される。回折格
子6の回転に伴って反射光の波長が変わるので、反射光
検出器9では波長に応じた信号が連続的に検出される。
そこで、その検出信号を読み込む動作(対照スペクトル
の測定)を、所定回数行ったのち、そのスペクトルの平
均を求める。Next, an example of the operation of the embodiment configured as described above (hereinafter, the temperature will be described in this embodiment) will be described. In this embodiment, the sample has a reference temperature To.
A calibration curve at (around 20 degrees Celsius) is obtained as follows. First, when the reference plate is set at the measurement position of the near-infrared spectrometer 1 and the near-infrared spectrometer 1 is operated, near-infrared rays emitted from the light source 3 reach the diffraction grating 6 via the reflecting mirror 4, After being split here, the light is reflected by the reference plate, and the reflected light is detected by the reflected light detector 9. Since the wavelength of the reflected light changes as the diffraction grating 6 rotates, the reflected light detector 9 continuously detects a signal corresponding to the wavelength.
Then, after performing the operation of reading the detection signal (measurement of the reference spectrum) a predetermined number of times, the average of the spectrum is obtained.
【0015】次に、測定成分の濃度がわかっている標準
試料(温度は摂氏20度近傍とする)の入った試料セル
を、試料セル移送モ−タ22の駆動により測定位置にセ
ットする。そして、近赤外線分光装置1が再び動作する
と、反射光検出器9は標準試料からの反射光を検出す
る。そこで、標準試料のスペクトルの測定を所定回数行
ったのち、その測定スペクトルの平均値を求め、対照ス
ペクトルと測定スペクトルから吸光度を算出する。Next, a sample cell containing a standard sample having a known concentration of the measurement component (the temperature is set to around 20 degrees Celsius) is set at the measurement position by driving the sample cell transfer motor 22. Then, when the near-infrared spectrometer 1 operates again, the reflected light detector 9 detects the reflected light from the standard sample. Therefore, after measuring the spectrum of the standard sample a predetermined number of times, the average value of the measured spectrum is obtained, and the absorbance is calculated from the control spectrum and the measured spectrum.
【0016】そして、濃度の異なる複数の標準試料につ
いて上述のように吸光度を求め、その測定吸光度と既知
の濃度に基づき、基準温度To(摂氏20度近傍)にお
ける検量線をあらかじめ求めておく。さらに、測定成分
がわかっている標準試料について、例えば温度が摂氏3
度近傍、摂氏20度近傍及び摂氏34度近傍における各
吸光度スペクトルを求め、引き続き、温度が摂氏20度
のときの吸光度スペクトルを基準とし、それと温度が摂
氏3度のときの吸光度スペクトルとのずれ量を算出する
とともに、温度が摂氏34度のときの吸光度スペクトル
と上記の基準スペクトルとのずれ量をあらかじめ算出し
ておく。そして、これら算出したずれ量を、記憶装置2
7にあらかじめ記憶しておく。Then, the absorbance is determined for a plurality of standard samples having different concentrations as described above, and a calibration curve at a reference temperature To (around 20 degrees Celsius) is determined in advance based on the measured absorbance and the known concentration. Further, for a standard sample whose measurement component is known, for example, the temperature is 3 degrees Celsius.
Calculate the absorbance spectra in the vicinity of 20 degrees Celsius, 20 degrees Celsius, and 34 degrees Celsius. Then, based on the absorbance spectrum when the temperature is 20 degrees Celsius, the deviation from the absorbance spectrum when the temperature is 3 degrees Celsius Is calculated, and the amount of deviation between the absorbance spectrum when the temperature is 34 degrees Celsius and the above reference spectrum is calculated in advance. Then, the calculated shift amounts are stored in the storage device 2.
7 is stored in advance.
【0017】次に、未知の試料について上記のようにし
て求めた検量線及びずれ量により成分測定を行う場合の
一例について、図3のフロ−チャ−トを参照して説明す
る。まず、基準板を測定位置にセットし、近赤外線分光
装置1を動作させて、対照スペクトルRoの測定を所定
回数行ったのち、その対照スペクトルRoの平均を求め
る(S1〜S2)。Next, an example in which a component is measured by using the calibration curve and the shift amount obtained as described above for an unknown sample will be described with reference to the flowchart of FIG. First, the reference plate is set at the measurement position, the near-infrared spectroscopy device 1 is operated, the reference spectrum Ro is measured a predetermined number of times, and the average of the reference spectrum Ro is obtained (S1 to S2).
【0018】次に、測定試料の入った試料セルが測定位
置にセットされると、近赤外線分光装置1が再び動作
し、試料のスペクトルRの測定を所定回数行ったのち、
その測定スペクトルRの平均を求める(S5〜S8)。
引き続き、上記のように求めた対照スペクトルRoと測
定スペクトルRとから吸光度ODを、次の(1)式によ
り算出する(S9)。Next, when the sample cell containing the measurement sample is set at the measurement position, the near-infrared spectrometer 1 operates again, and after measuring the spectrum R of the sample a predetermined number of times,
The average of the measured spectrum R is obtained (S5 to S8).
Subsequently, the absorbance OD is calculated from the control spectrum Ro and the measured spectrum R obtained as described above according to the following equation (1) (S9).
【0019】 OD=logRo/R (1) 次に,その求めた吸光度の微分処理を行ったのち(S1
0)、測定スペクトルデ−タに基づいて試料の温度Ts
を演算する(S11)。この演算は、試料の温度変化に
対して近赤外線の吸光度のずれがあり、両者には相関が
あることを利用して試料の温度Tsを推定するものであ
る。なお、この試料温度Tsの測定は、センサにより測
定してもよい。OD = logRo / R (1) Next, after the obtained absorbance is differentiated (S1
0), the temperature Ts of the sample based on the measured spectrum data
Is calculated (S11). In this calculation, the temperature Ts of the sample is estimated by utilizing the fact that there is a shift in the absorbance of near infrared rays with respect to a change in the temperature of the sample, and there is a correlation between the two. The measurement of the sample temperature Ts may be performed by a sensor.
【0020】引き続いて、その推定した試料温度Tsと
検量線作成時の基準温度Toとの温度差△Tを、次の
(2)式により算出する(S12)。 △T=Ts−To (2) そして、その求めた温度差△Tにより、測定スペクトル
と検量線作成時の基準温度To下におけるスペクトル
と、外的変動特性を考慮した所定温度下のスペクトルと
のずれ量が、上記のように記憶装置27に記憶してあ
る。従って、上記のずれ量△ODtは、その記憶してあ
るずれ量により、内挿近似として温度差△Tから算出す
る。次に、その求めたずれ量△ODtを用いて基準温度
To下におけるスペクトルに補正するための演算を、次
の(3)式により行う(S14)。Subsequently, a temperature difference ΔT between the estimated sample temperature Ts and the reference temperature To at the time of preparing the calibration curve is calculated by the following equation (2) (S12). ΔT = Ts−To (2) Then, based on the obtained temperature difference ΔT, the measured spectrum and the spectrum at the reference temperature To when the calibration curve is prepared and the spectrum at the predetermined temperature in consideration of the external fluctuation characteristics are obtained. The shift amount is stored in the storage device 27 as described above. Therefore, the above-mentioned deviation amount △ ODt is calculated from the temperature difference ΔT as an interpolation approximation using the stored deviation amount. Next, an operation for correcting the spectrum under the reference temperature To using the obtained shift amount △ ODt is performed by the following equation (3) (S14).
【0021】 OD´=OD−△ODt (3) (3)式において、OD´は補正された吸光度、ODは
ステップS9で求めた吸光度である。引き続き、補正さ
れた吸光度OD´を2次微分したのち(S15)、その
2次微分吸光度により検量線を用いて試料の所定水分の
濃度を推定する計算を行う(S16)。そして、その結
果を表示装置26に表示する(S17)。OD ′ = OD−ΔODt (3) In equation (3), OD ′ is the corrected absorbance, and OD is the absorbance obtained in step S9. Subsequently, after the corrected absorbance OD 'is secondarily differentiated (S15), a calculation for estimating a predetermined moisture concentration of the sample from the second derivative absorbance using a calibration curve is performed (S16). Then, the result is displayed on the display device 26 (S17).
【0022】次に、本発明実施例による近赤外分析の精
度を確認するために、以下のような実験を行った。この
試験では、試料としては非粉砕の玄米とし、この玄米の
蛋白質含有量を測定するための検量線を、その試料温度
が摂氏20度近傍であらかじめ作成しておいた。Next, in order to confirm the accuracy of the near-infrared analysis according to the embodiment of the present invention, the following experiment was conducted. In this test, unmilled brown rice was used as a sample, and a calibration curve for measuring the protein content of the brown rice was prepared beforehand at a sample temperature of around 20 degrees Celsius.
【0023】次に、温度が摂氏34度近傍の試料につい
て、上記の検量線を用いて試料の蛋白質含有量を推定す
ると、図4で示す結果が得られた。さらに、温度が摂氏
3度近傍の試料について、上記の検量線を用いて試料の
蛋白質含有量を推定すると、図5で示す結果が得られ
た。一方、温度が未知な試料について、本発明実施例に
より蛋白質含有量を推定すると、図6で示すような結果
が得られた。Next, when the protein content of the sample at a temperature of around 34 degrees Celsius was estimated using the above calibration curve, the result shown in FIG. 4 was obtained. Further, when the protein content of the sample whose temperature was around 3 degrees Celsius was estimated using the above calibration curve, the result shown in FIG. 5 was obtained. On the other hand, when the protein content of the sample whose temperature was unknown was estimated according to the example of the present invention, the result shown in FIG. 6 was obtained.
【0024】そこで、これらの実験結果を比較すると、
本発明実施例により試料の成分濃度を推定すれば、精度
は実用上十分であることがわかる。次に、以上のように
して求めた試料の成分濃度を表示装置26に表示し、そ
の試料の品質を評価する品質評価装置の一例について、
以下に説明する。この装置では、試料は非粉砕の玄米と
し、上述の手順で玄米成分中の蛋白質含有量及び脂肪酸
度を測定する。そして、その測定結果を表示装置26の
表示画面のXY座標上の対応位置に、図7または図8で
示すようにドットで表示するように構成する。これによ
り、XY座標上に蛋白質と脂肪酸とを関連して表示する
ことができるので、米の品質を把握するのに非常に分か
りやすい表示となり、もって米の品質の直観的な判断が
容易となる。Therefore, comparing these experimental results,
If the component concentration of the sample is estimated according to the embodiment of the present invention, it is understood that the accuracy is practically sufficient. Next, an example of a quality evaluation device that displays the component concentrations of the sample obtained as described above on the display device 26 and evaluates the quality of the sample will be described.
This will be described below. In this apparatus, the sample is unmilled brown rice, and the protein content and fatty acid content in the brown rice component are measured by the above-described procedure. Then, the measurement result is displayed as dots at corresponding positions on the XY coordinates on the display screen of the display device 26 as shown in FIG. 7 or FIG. Thereby, the protein and the fatty acid can be displayed in relation to each other on the XY coordinates, so that the display becomes very easy to understand the quality of the rice, thereby making it easy to intuitively judge the quality of the rice. .
【0025】さらに、この表示装置26の表示画面の座
標上には、入力キ−24の操作により図7または図8の
斜線部で示すように任意に領域を設定できるようにし、
その設定領域内に測定値が入った場合には、警告音、警
告表示または制御出力を発するように構成する。これに
より、任意に設定する領域ごとに独立して品質管理が可
能となる。また、警告音、警告表示によって設定領域の
サンプルの見落としなどを防止できる。さらに、制御出
力が発せられることにより、所望のサンプルの選別、品
質表示または2次加工などが可能となる。Further, an area can be arbitrarily set on the coordinates of the display screen of the display device 26 by operating the input key 24 as shown by the hatched portion in FIG. 7 or FIG.
When a measured value enters the set area, a warning sound, a warning display, or a control output is issued. As a result, quality control can be performed independently for each area set arbitrarily. Further, the warning sound and the warning display can prevent the sample in the setting area from being overlooked. Further, by issuing the control output, it becomes possible to select a desired sample, display quality, or perform secondary processing.
【0026】次に、品質評価装置の他の実施例について
説明すると、この装置では、試料は非粉砕の玄米とし、
上述の手順で玄米成分中の蛋白質含量、脂肪酸度などの
5種類の評価指標を測定する。そして、その測定結果の
うち2つの評価指標にかかるデ−タを、図7で示すよう
に表示装置26の表示画面に2次元表示するが、評価指
標が5種類のためにその表示すべき組み合わせは10通
りになる。そこで、図9で示すように、表示装置の表示
画面上に5種類の指標「A」〜「E」を表示し、操作者
がこれらの中から2つの指標を選択すると、その選択し
た指標からなるXY座標(マップ)上にデ−タが表示さ
れるとともに、その表示が拡大縮小できるように構成す
る。さらに、複数のマップを選択して同一画面に表示で
きるように構成する。このような構成により、評価指標
を組み合わせて表示する際の操作性が向上する。Next, another embodiment of the quality evaluation apparatus will be described. In this apparatus, the sample is unmilled brown rice,
Five kinds of evaluation indices such as the protein content in the brown rice component and the fatty acid content are measured by the above-described procedure. Then, as shown in FIG. 7, data relating to two evaluation indices out of the measurement results is two-dimensionally displayed on the display screen of the display device 26. Since there are five types of evaluation indices, the combinations to be displayed are shown. Is 10 ways. Therefore, as shown in FIG. 9, five types of indices “A” to “E” are displayed on the display screen of the display device, and when the operator selects two indices from these, the selected indices are displayed. The data is displayed on the XY coordinates (map), and the display can be enlarged or reduced. Further, a configuration is made such that a plurality of maps can be selected and displayed on the same screen. With such a configuration, the operability when displaying the evaluation indices in combination is improved.
【0027】このように、所定の指標を選択した表示例
を図10に示すが、図示のように脂肪酸度などは、例え
ば0〜50mgの絶対軸上で当分割するよりも、0〜1
5mg、15〜25mgなどのように不等分割したり、
5〜25mgの区間において等分割するなど、その表示
区間は操作者の設定により任意に設定できるようにする
のが、機能性、操作性のうえで好ましい。そこで、例え
ば図10の斜線部に示すように表示区間を設定すると、
図11で示すような表示に変換されるように構成する。FIG. 10 shows a display example in which the predetermined index is selected. As shown in FIG. 10, the fatty acid content and the like are, for example, 0 to 1 mg rather than being divided on an absolute axis of 0 to 50 mg.
Unequal divisions such as 5mg, 15-25mg,
It is preferable in terms of functionality and operability that the display section can be arbitrarily set by the operator, such as by equally dividing a section of 5 to 25 mg. Therefore, for example, when a display section is set as shown by a hatched portion in FIG.
It is configured to be converted into a display as shown in FIG.
【図1】本発明実施例の全体の構成を示す図。FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention.
【図2】その制御処理系のブロック図。FIG. 2 is a block diagram of the control processing system.
【図3】本発明実施例の動作例を示す全体の構成を示す
ブロック図。FIG. 3 is a block diagram showing an overall configuration showing an operation example of the embodiment of the present invention.
【図4】従来の方法による玄米の蛋白質含有量の実測値
とその推定値との関係の一例を示す図。FIG. 4 is a diagram showing an example of a relationship between an actually measured value and an estimated value of the protein content of brown rice according to a conventional method.
【図5】従来の方法による玄米の蛋白質含有量の実測値
とその推定値との関係の他の一例を示す図。FIG. 5 is a view showing another example of the relationship between the actually measured value and the estimated value of the protein content of brown rice according to the conventional method.
【図6】本発明実施例による玄米の蛋白質含有量の実測
値とその推定値との関係の一例を示す図。FIG. 6 is a diagram showing an example of a relationship between an actually measured value and an estimated value of the protein content of brown rice according to the embodiment of the present invention.
【図7】試料の成分測定の結果を2次元表示した一例を
示す図。FIG. 7 is a diagram showing an example of a two-dimensional display of a result of measurement of components of a sample.
【図8】試料の成分測定の結果を2次元表示した一例を
示す図。FIG. 8 is a diagram showing an example of a two-dimensional display of the results of sample component measurement.
【図9】試料の評価指数が複数の場合に、そのうちの2
つの指標から2次元表示を選択するための説明図。FIG. 9 shows a case where a sample has a plurality of evaluation indices;
FIG. 4 is an explanatory diagram for selecting two-dimensional display from one index.
【図10】所望の評価指数を選択したのちの表示例を示
す図。FIG. 10 is a view showing a display example after a desired evaluation index is selected.
【図11】表示区間変換後の表示例を示す図。FIG. 11 is a diagram showing a display example after display section conversion.
1 近赤外線分光装置 2 制御処理装置 20 CPU 27 記憶装置 DESCRIPTION OF SYMBOLS 1 Near-infrared spectroscopy device 2 Control processing device 20 CPU 27 Storage device
Claims (1)
光度を測定する吸光度測定手段と、既知のサンプルにつ
いて、検量線作成用の基準吸光度および所定のサンプル
温度のときの吸光度を、前記吸光度測定手段によりあら
かじめ測定し、両者の吸光度のずれ量を求めるずれ量算
出手段と、算出したずれ量を記憶する記憶手段と、未知
のサンプルの温度を測定する温度変動特性値測定手段
と、未知のサンプルについて、前記吸光度測定手段によ
り吸光度を測定したときに、温度変動特性値測定手段に
応じて、その測定吸光度を前記記憶手段に記憶するずれ
量により前記基準吸光度に補正する測定吸光度補正手段
と、補正した吸光度に基づき、前記検量線によりサンプ
ル成分を分析する分析手段とを備えてなる近赤外分析装
置。An absorbance measuring means for irradiating a sample with near-infrared rays to measure the absorbance, and for a known sample, a reference absorbance for preparing a calibration curve and an absorbance at a predetermined sample temperature are measured by the absorbance measurement. Means for measuring in advance the amount of deviation between the two absorbances, a storage means for storing the calculated amount of deviation, a temperature fluctuation characteristic value measuring means for measuring the temperature of the unknown sample, and an unknown sample. About, when the absorbance is measured by the absorbance measurement means, according to the temperature fluctuation characteristic value measurement means, the measurement absorbance correction means for correcting the measured absorbance to the reference absorbance by the amount of shift stored in the storage means, correction A near-infrared spectrometer comprising: analysis means for analyzing a sample component based on the measured absorbance based on the calibration curve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9203178A JPH1068692A (en) | 1997-07-29 | 1997-07-29 | Near-infrared analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9203178A JPH1068692A (en) | 1997-07-29 | 1997-07-29 | Near-infrared analyzer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21872092A Division JP2987014B2 (en) | 1992-07-27 | 1992-07-27 | Near-infrared analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1068692A true JPH1068692A (en) | 1998-03-10 |
Family
ID=16469758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9203178A Pending JPH1068692A (en) | 1997-07-29 | 1997-07-29 | Near-infrared analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1068692A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074217A1 (en) * | 2009-12-18 | 2011-06-23 | パナソニック株式会社 | Component concentration meter, component concentration measurement method, shipping inspection system, and health management system |
CN109425583A (en) * | 2017-08-31 | 2019-03-05 | 株式会社堀场制作所 | Spectral analysis device, spectroscopic analysis methods and storage medium |
CN112378873A (en) * | 2020-10-29 | 2021-02-19 | 湖北锐意自控系统有限公司 | Ultraviolet gas analysis method and ultraviolet gas analyzer |
-
1997
- 1997-07-29 JP JP9203178A patent/JPH1068692A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011074217A1 (en) * | 2009-12-18 | 2011-06-23 | パナソニック株式会社 | Component concentration meter, component concentration measurement method, shipping inspection system, and health management system |
US8592769B2 (en) | 2009-12-18 | 2013-11-26 | Panasonic Corporation | Component concentration meter, component concentration measurement method, shipping inspection system, and health management system |
CN109425583A (en) * | 2017-08-31 | 2019-03-05 | 株式会社堀场制作所 | Spectral analysis device, spectroscopic analysis methods and storage medium |
CN109425583B (en) * | 2017-08-31 | 2023-06-16 | 株式会社堀场制作所 | Spectral analysis device, spectral analysis method, and storage medium |
CN112378873A (en) * | 2020-10-29 | 2021-02-19 | 湖北锐意自控系统有限公司 | Ultraviolet gas analysis method and ultraviolet gas analyzer |
CN112378873B (en) * | 2020-10-29 | 2021-11-16 | 湖北锐意自控系统有限公司 | Ultraviolet gas analysis method and ultraviolet gas analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4627008A (en) | Optical quantitative analysis using curvilinear interpolation | |
US5077469A (en) | Calibrating a nondispersive infrared gas analyzer | |
EP0743513B1 (en) | Spectrometry and Optical Measuring Method and Apparatus | |
JP2002122538A (en) | Liquid sample analysis method and analyzer using near-infrared spectroscopy | |
CN113899716A (en) | Gas detection device and method | |
WO2007030325A2 (en) | Method of hemoglobin correction due to temperature variation | |
US7288767B2 (en) | Method and a spectrometer for quantitative determination of a constituent in a sample | |
JP3762729B2 (en) | Multi-component analyzer | |
WO2014045509A1 (en) | Analysis apparatus | |
CN106018331A (en) | Stability evaluation method of multi-channel spectrum system and pretreatment optimization method | |
JP2987014B2 (en) | Near-infrared analyzer | |
US6218666B1 (en) | Method of determining the concentration of a gas in a gas mixture and analyzer for implementing such a method | |
JPH1068692A (en) | Near-infrared analyzer | |
JPH07151677A (en) | Densitometer | |
WO2001036943A1 (en) | Method for estimating measurement of absorbance and apparatus for estimating measurement of absorbance | |
JP4506554B2 (en) | Emission spectroscopy analysis method and emission spectroscopy analyzer | |
JPH08338804A (en) | Rice quality indicator | |
JPH0572039A (en) | Spectral fluorimeter with spectral correction method and spectral fluorimeter with spectral correction function | |
US20230102813A1 (en) | Open-loop/closed-loop process control on the basis of a spectroscopic determination of undetermined substance concentrations | |
JP4626572B2 (en) | Optical emission spectrometer | |
JPH10104215A (en) | Absorbance detector, chromatographic device, absorbance detection method, and chromatographic analysis method | |
US6671629B2 (en) | Method and device for measuring characteristics of a sample | |
RU2453826C2 (en) | Method of comparing abundance of 12co2 and 13co2 isotopomers in samples of gas mixtures and apparatus for comparing abundance of 12co2 and 13co2 isotopomers in samples of gas mixtures | |
JP2967888B2 (en) | Temperature estimation method by near infrared spectroscopy | |
JP3128163U (en) | Spectrophotometer |