[go: up one dir, main page]

JPH1067592A - Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method - Google Patents

Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method

Info

Publication number
JPH1067592A
JPH1067592A JP22209696A JP22209696A JPH1067592A JP H1067592 A JPH1067592 A JP H1067592A JP 22209696 A JP22209696 A JP 22209696A JP 22209696 A JP22209696 A JP 22209696A JP H1067592 A JPH1067592 A JP H1067592A
Authority
JP
Japan
Prior art keywords
raw material
boat
melt
tube
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22209696A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
貴志 鈴木
Toshihiro Kusuki
敏弘 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22209696A priority Critical patent/JPH1067592A/en
Publication of JPH1067592A publication Critical patent/JPH1067592A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】 【課題】 結晶成長中のボート内に粒状原料を補給し,
組成分布の小さい長尺の結晶を製造する。 【解決手段】 水平な炉心管1の上面に,粒状原料5の
補給孔6をボート2の原料受容部2aの長さよりも短間
隔で列設する。ボート2が移動しても常に一つの補給孔
6が原料受容部2a上に位置するから何時でも粒状原料
5を補給できる。また,列設した補給孔6に代えて,斜
めに保持され,球状原料5を一列に収容し,ボートに追
従する円管とする。円管の上下にそれぞれ突起と段差が
設けられ,段差で止めた際前端の球状原料を,円管の半
回転により円管先端に送出し開口から投下すると同時
に,次の球状原料を突起により止めることで,2回の半
回転毎に一個の粒状原料を投下する。更に,ボートに貫
通孔を有する隔壁を設ける。
(57) [Summary] [PROBLEMS] To supply granular raw materials into a boat during crystal growth,
A long crystal having a small composition distribution is produced. SOLUTION: On a top surface of a horizontal furnace tube 1, supply holes 6 for granular raw materials 5 are arranged in rows at intervals shorter than the length of a raw material receiving portion 2 a of a boat 2. Even if the boat 2 moves, one supply hole 6 is always located on the raw material receiving portion 2a, so that the granular raw material 5 can be supplied at any time. Further, instead of the supply holes 6 arranged in a line, a circular tube which is held obliquely, accommodates the spherical raw materials 5 in a line, and follows the boat. Projections and steps are provided on the top and bottom of the circular tube, respectively. When stopped at the step, the spherical raw material at the front end is sent out to the end of the circular tube by half rotation of the circular tube and dropped from the opening, and at the same time the next spherical raw material is stopped by the protrusion Thus, one granular raw material is dropped every two half rotations. Further, a partition having a through hole is provided in the boat.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,結晶製造中に原料
を補給することができる水平ブリッジマン結晶成長炉,
及び水平ブリッジマン結晶成長法により製造される半導
体の製造方法に関する。
[0001] The present invention relates to a horizontal Bridgman crystal growth furnace capable of replenishing raw materials during crystal production,
And a method for manufacturing a semiconductor manufactured by a horizontal Bridgman crystal growth method.

【0002】半導体の電気的特性,例えばバンドギャッ
プ又は易動度は半導体の格子定数と密接に関係してい
る。このため,半導体装置の特性に適合した電気的特性
を有する半導体をエピタキシャル成長法により製造する
には,基板結晶の格子定数を任意に選定できることが必
要である。このような基板結晶は,混晶系化合物半導体
又はSiGeのような多元系混晶により実現されてい
る。しかし,多元系混晶の単結晶を格子定数を一定にし
て製造することは難しい。
[0002] The electrical properties of a semiconductor, such as band gap or mobility, are closely related to the lattice constant of the semiconductor. For this reason, in order to manufacture a semiconductor having electrical characteristics suitable for the characteristics of a semiconductor device by an epitaxial growth method, it is necessary that the lattice constant of a substrate crystal can be arbitrarily selected. Such a substrate crystal is realized by a mixed crystal compound semiconductor or a multi-element mixed crystal such as SiGe. However, it is difficult to manufacture a multi-element single crystal with a constant lattice constant.

【0003】即ち,分配係数が異なる成分を含む多元系
混晶単結晶を融液凝固法,例えば水平ブリッジマン法に
より製造すると,結晶成長とともに分配係数の小さな成
分が溶液中に濃縮されるため,製造された結晶は成長方
向に組成分布を有するものとなる。このように.組成分
布を有する単結晶から製造された基板結晶の格子定数
は,組成分布に基づき変化するため,この基板結晶上に
堆積されたエピタキシャル半導体の特性を一定に制御す
ることができないのである。
That is, when a multi-component mixed crystal single crystal containing components having different distribution coefficients is produced by a melt coagulation method, for example, a horizontal Bridgman method, components having a small distribution coefficient are concentrated in a solution as the crystal grows. The manufactured crystal has a composition distribution in the growth direction. in this way. Since the lattice constant of a substrate crystal manufactured from a single crystal having a composition distribution changes based on the composition distribution, the characteristics of an epitaxial semiconductor deposited on the substrate crystal cannot be controlled to a constant value.

【0004】他方,かかる多元系混晶単結晶の組成分布
は,融液中に原料組成の一部を補給しながら結晶成長を
続けることにより一定にできることが知られている。こ
のため,結晶成長中に原料を補給して融液組成の変化を
回避する水平ブリッジマン結晶成長炉,及び半導体の製
造方法が求められている。
[0004] On the other hand, it is known that the composition distribution of such a multi-element mixed crystal single crystal can be made constant by continuing crystal growth while replenishing a part of the raw material composition in the melt. Therefore, there is a need for a horizontal Bridgman crystal growth furnace and a semiconductor manufacturing method that replenish the raw materials during crystal growth to avoid a change in melt composition.

【0005】[0005]

【従来の技術】分配係数が異なる元素を含む融液を凝固
して多元系混晶単結晶を製造する融液凝固法では,結晶
成長に伴い融液中に枯渇する原料成分を補給することで
融液組成の変化を防止し,一定組成の多元系混晶単結晶
を製造することができる。
2. Description of the Related Art In a melt solidification method for producing a multi-element mixed crystal single crystal by solidifying a melt containing elements having different distribution coefficients, a raw material component depleted in the melt as the crystal grows is supplied. A change in the composition of the melt can be prevented, and a multicomponent mixed crystal single crystal having a constant composition can be produced.

【0006】例えば,チョクラルスキー法では,結晶成
長中に粒状原料を投入する方法,連通管により融液を補
給する方法,さらには細孔で連結する二重ルツボの外側
のルツボ中に補給融液を保持する方法が考案されてい
る。また,フローテングゾーン法又はゾーンメルテング
法では,多元系混晶と同一成分の原料棒の先端を溶融
し,この溶融帯を後端に移動することで均一組成の多元
系混晶を製造することができる。
[0006] For example, in the Czochralski method, a method of feeding a granular material during crystal growth, a method of replenishing a melt with a communicating pipe, and a method of replenishing a melt in a crucible outside a double crucible connected by pores. A method for holding the liquid has been devised. In the floating zone method or zone melting method, the front end of a raw material rod having the same composition as that of a multicomponent mixed crystal is melted, and the molten zone is moved to the rear end to produce a multicomponent mixed crystal having a uniform composition. be able to.

【0007】しかし,チョクラルスキー法,フローテン
グゾーン法又はゾーンメルテング法では,融液の温度勾
配が大きいため融液の温度変動が激しく,製造された多
元結晶の組成分布を小さくすることが難しい。また,装
置が複雑で高価になるという難点がある。
However, in the Czochralski method, the floating zone method or the zone melting method, the temperature gradient of the melt is large because the temperature gradient of the melt is large, so that the composition distribution of the produced multi-crystal may be reduced. difficult. Further, there is a disadvantage that the device is complicated and expensive.

【0008】管状の炉心管内を移動するボートに融液を
保持し,ボートの移動とともにその一端から融液を固化
して結晶を製造するブリッジマン法は,融液温度の変動
が少ないため,単純な装置により組成変動の少ない多元
系結晶を製造できるという利点があり,混晶系結晶,例
えば化合物半導体結晶の製造に多用されている。
The Bridgman method of manufacturing a crystal by holding a melt in a boat moving in a tubular furnace tube and solidifying the melt from one end thereof with the movement of the boat to produce crystals is simple because the fluctuation of the melt temperature is small. There is an advantage that a multi-component crystal having a small composition variation can be manufactured by a simple apparatus, and is often used for manufacturing a mixed crystal system crystal, for example, a compound semiconductor crystal.

【0009】かかるブリッジマン法のうち,炉心管を垂
直に設置する垂直ブリッジマン結晶成長炉では,原料を
炉心管の上部から比較的容易に補給することができる。
例えば,炉の上方から挿入された固体原料棒を溶融して
ボート中に融液を補給する装置が公開特許公報,平1─
242480号に開示されている。
[0009] In the Bridgman method, in a vertical Bridgman crystal growth furnace in which a furnace tube is installed vertically, raw materials can be relatively easily supplied from the upper part of the furnace tube.
For example, a device for melting a solid raw material rod inserted from above a furnace and replenishing the melt into a boat is disclosed in Japanese Patent Laid-Open Publication No. Hei 10 (1994).
No. 242480.

【0010】他方,炉心管を水平に設置する水平ブリッ
ジマン結晶成長炉では,ボートは炉心管内を水平に移動
するから,炉心管の管壁に原料を補給するための1個の
補給孔を設けたのでは,補給孔とボートの相対位置が変
化するためボート内に原料を投入することができない。
また,炉心管の後端から炉心管内に原料を挿入する機
構,又は炉心管内に予め原料の導入路を設けて原料を外
部から一個ずつ投入する機構では,挿入により又は原料
の投入による炉内の温度変動を避けることができない。
さらに,このように移動するボートを追従して原料を投
入する機構は複雑かつ大型になり高価なものになる。こ
のため,水平ブリッジマン結晶成長炉では,融液に原料
を補給しつつ結晶成長をすることができる装置は未だ実
用に給されていない。
On the other hand, in a horizontal Bridgman crystal growth furnace in which a furnace tube is installed horizontally, since a boat moves horizontally in the furnace tube, one supply hole for supplying raw materials is provided on the tube wall of the furnace tube. In this case, the relative position between the supply hole and the boat changes, so that the raw material cannot be charged into the boat.
In a mechanism that inserts raw materials into the furnace core tube from the rear end of the furnace tube, or that provides a raw material introduction path in the furnace core tube and feeds raw materials one by one from the outside, the inside of the furnace by insertion or by the input of raw materials is used. Temperature fluctuations cannot be avoided.
Further, a mechanism for feeding the raw material following the moving boat is complicated, large, and expensive. For this reason, in a horizontal Bridgman crystal growth furnace, a device capable of growing a crystal while supplying a raw material to a melt has not yet been practically used.

【0011】[0011]

【発明が解決しようとする課題】上述したように,水平
ブリッジマン結晶成長装置では,融液を保持するボート
が炉心管内を水平に移動しているため,結晶成長中にボ
ートに原料を補充することが困難である。また,外部か
ら原料を補充するときに生ずる温度変動により,結晶組
成が変動するという問題があった。
As described above, in the horizontal Bridgman crystal growing apparatus, since the boat holding the melt moves horizontally in the furnace tube, the boat is replenished with raw materials during the crystal growth. It is difficult. Further, there is a problem that the crystal composition fluctuates due to a temperature fluctuation occurring when the raw material is replenished from the outside.

【0012】本発明は,水平に設置された炉心管内を水
平方向に移動するボートに原料を補給する簡単な構造の
原料補給機構を有し,また,原料補給の際の熱変動を緩
和するボートを有する水平ブリッジマン結晶成長炉を提
供し,さらに,この水平ブリッジマン結晶成長炉により
成長された組成分布が小さな半導体を製造する方法を提
供することを目的とする。
[0012] The present invention has a raw material supply mechanism having a simple structure for supplying a raw material to a boat moving horizontally in a horizontally installed core tube, and a boat for mitigating heat fluctuation at the time of material supply. It is another object of the present invention to provide a horizontal Bridgman crystal growth furnace having: and a method of manufacturing a semiconductor having a small composition distribution grown by the horizontal Bridgman crystal growth furnace.

【0013】[0013]

【課題を解決するための手段】図1は本発明の第一実施
形態例説明図であり,図1(a)は炉心管内の長手方向
の温度分布を,図1(b)及び図1(c)はそれぞれ結
晶成長開始時及び結晶成長終了時における水平ブリッジ
マン結晶成長炉の断面を表している。
FIG. 1 is an explanatory view of a first embodiment of the present invention. FIG. 1 (a) shows a longitudinal temperature distribution in a furnace tube, and FIG. 1 (b) and FIG. c) shows the cross section of the horizontal Bridgman crystal growth furnace at the start of crystal growth and at the end of crystal growth, respectively.

【0014】図2は本発明の第二実施形態例断面図であ
り,水平ブリッジマン結晶成長炉の断面を表している。
図3は本発明の第二実施形態例円管断面図であり,球状
原料を補給するための円管の構造を表している。なお,
図3(a)は突起が上方に位置する回転位置にある円管
を,図3(b)は突起が下方に位置する回転位置にある
円管を表している。
FIG. 2 is a sectional view of a second embodiment of the present invention, showing a section of a horizontal Bridgman crystal growth furnace.
FIG. 3 is a sectional view of a circular tube according to the second embodiment of the present invention, showing a structure of a circular tube for replenishing a spherical raw material. In addition,
FIG. 3A shows a circular tube in a rotational position where the protrusion is located upward, and FIG. 3B shows a circular tube in a rotational position where the protrusion is located downward.

【0015】図4は本発明の第三実施形態例ボート断面
図であり,ボート内に設けられた隔壁を表している。な
お,図4(a)は縦断面,図4(b)は図4(a)に示
すAB断面を表している。
FIG. 4 is a sectional view of a boat according to a third embodiment of the present invention, showing a partition wall provided in the boat. 4A shows a longitudinal section, and FIG. 4B shows an AB section shown in FIG. 4A.

【0016】上記課題を解決するための本発明の第一の
構成の水平ブリッジマン結晶成長炉は,図1を参照し
て,水平に設けられた炉心管1内を該炉心管1の長手方
向に該炉心管1に対して相対的に移動するボート2を備
え,該ボート2内に保持された分配係数の異なる複数の
元素を含む融液3を該ボート2の前端部から固化させて
結晶を製造する水平ブリッジマン結晶成長炉において,
該ボート2の後端部に該融液3中に補給すべき粒状原料
5が投下される原料受容部2aが設けられ,該粒状原料
5を該炉心管1の外部から内部に導入し投下するための
複数の補給孔6が,該炉心管1の管壁上部に該炉心管1
の長手方向に沿い該原料受容部2aの長さより短間隔で
列設され,該原料受容部2a直上に位置する該補給孔6
から該粒状原料5を投下する手段を有することを特徴と
して構成し,及び,第二の構成の水平ブリッジマン結晶
成長炉は,図2及び図3を参照して,水平に設けられた
炉心管1内を該炉心管の長手方向に該炉心管1に対して
相対的に移動するボート2を備え,該ボート2内に保持
された分配係数の異なる複数の元素を含む融液3を該ボ
ート2の前端部から固化させて結晶を製造する水平ブリ
ッジマン結晶成長炉において,該ボート2の後端部に設
けられた,該融液3中に補給すべき球状原料5aが投下
される原料受容部2aと,前端及び後端が封止されかつ
前端周側面に該球状原料5aを投下する開口12が設け
られた円管11内に,該球状原料5aを一列に収容する
該円管11と,該開口12を該原料受容部2a直上に位
置させかつ該円管11の前端を下方に傾斜して保持する
該円管11の保持手段と,該円管11を該円管11軸廻
りに一方向又は双方向に回転させる回転機構と,該開口
12より該円管11の後端側の該円管11内壁面に設け
られ,該円管11の第一の回転位置で下方に位置し,該
第一の回転位置で最前端の該球状原料5a−1が当接し
て停止する段差14と,該第一の回転位置で停止してい
る該最前端の球状原料5a−1の中心とその次に位置す
る該球状原料5a−2の中心との間の該円管11内壁面
に設けられ,該円管11の第二の回転位置で下方に位置
し,該第二の回転位置で該次に位置する球状原料5a−
2が当接して停止する突起13とを備え,該円管11を
該第一の回転位置から該第二の回転位置まで回転して該
円管11内の最先端の球状原料5a−1を該円管11の
前端部に送出し,該第一の回転位置から該第二の回転位
置まで回転する毎に一個の該球状原料5を該開口12か
ら該原料受給部2aに投下することを特徴として構成
し,及び,第三の構成は,図1及び図2を参照して,第
一又は第二の構成の水平ブリッジマン結晶成長炉におい
て,該原料受容部2aは,該融液3表面より高所に設け
られ,該ボート2の前端に向けて下降する緩傾斜面から
なることを特徴として構成し,及び,第四の構成は,図
4を参照して,水平に設置された炉心管1内に置かれた
ボート2内に分配係数の異なる複数の元素を含む融液3
a,3bを保持し,該融液3a,3bを該ボート2の前
端部から固化させて結晶を製造する水平ブリッジマン結
晶成長炉において,該ボート2の後端部に設けられた,
該融液3a,3b中に補給すべき粒状原料が投下される
原料受容部2aと,該ボート2内部を該原料受給部2a
を含む後部と該原料受給部2aを含まない前部に仕切る
隔壁15と,該隔壁15に設けられ,該隔壁15により
仕切られた前後の該融液3a,3bを連結する貫通孔1
7と,該隔壁15を該融液3a,3b上から融液3a,
3b内に移動する又は該融液3a,3b中を前後に移動
する隔壁移動手段とを備えたことを特徴として構成し,
及び,第五の構成は,図1を参照して,分配係数の異な
る複数の元素を含む融液3を保持したボート2を,水平
に設けられた炉心管1内を該炉心管1の長手方向に該炉
心管1に対して相対的に移動させ,該ボート2の前端部
から固化して単結晶9とする半導体の製造方法におい
て,該単結晶9の製造中に該ボート2の後端部に設けら
れた原料受容部2aに,該炉心管1の管壁上部に該炉心
管1の長手方向に沿い該原料受容部2aの長さより短間
隔で列設された補給孔6のうち該原料受容部2a直上に
位置する補給孔6から粒状原料5を投下する工程を有す
ることを特徴として構成し,及び,第六の構成は,図2
及び図3を参照して,分配係数の異なる複数の元素を含
む融液3を保持したボート2を,水平に設けられた炉心
管1内を該炉心管1の長手方向に該炉心管1に対して相
対的に移動させ,該ボート2の前端部から固化して単結
晶9とする半導体の製造方法において,前端11a及び
後端11bが封止されかつ前端11a周側面に球状原料
5aを投下する開口12が設けられた円管11内に,該
球状原料5aを一列に収容する工程と,次いで,該前端
11aを下方に傾斜して保持した該円管1を,該開口1
2が該ボート2の後端部に設けられた該原料受容部2a
の直上に位置するように保持する工程と,次いで,該円
管11を,該開口12より該円管1の後端11b側の該
円管1内壁面に設けらた段差14が下方に位置し,最前
端の該球状原料5aが該段差14に当接して停止する第
一の回転位置まで該円管1軸廻りに回転する工程と,次
いで,該円管1を,該第一の回転位置で停止している該
最前端の球状原料5a−1の中心とその次に位置する該
球状原料5a−2の中心との間の該円管1内壁面に設け
られた突起13が下方に位置し,該次に位置する球状原
料5a−2が該突起13に当接して停止する第二の回転
位置まで該円管1軸廻りに回転する工程とを有し,該円
管1を該第一の回転位置から該第二の回転位置まで回転
して該円管1内の最先端の球状原料5a−1を該円管1
の前端部に送出し,該第一の回転位置から該第二の回転
位置まで回転する毎に一個の該球状原料5aを該開口1
2から該原料受給部2aに投下することを特徴として構
成し,及び,第七の構成は,図4を参照して,分配係数
の異なる複数の元素を含む融液3a,3bを保持するボ
ート2を水平に設置された炉心管内を該炉心管に対して
相対的に移動して,該融液3a,3bを該ボート2の前
端部から固化させて単結晶とする半導体の製造方法にお
いて,該ボート2内の初期原料が溶融して該融液3a,
3bが形成されたのち,該ボート2内の該融液3a,3
bを前後に2分しかつ2分された前後の該融液3a,3
bを連結する貫通孔17を有する隔壁15を,該融液3
a,3b上から該融液3a,3b内に移動し又は該融液
3a,3b中を前後に移動する工程と,次いで,該ボー
ト2内を原料受給部2aを含む後部と該原料受給部2a
を含まない前部に仕切る位置に該隔壁15を停止する工
程と,次いで,該ボート2を該炉心管1と相対的に移動
させつつ,該原料受給部2aに粒状原料5を補給する工
程とを有することを特徴として構成する。
Referring to FIG. 1, a horizontal Bridgman crystal growth furnace according to a first configuration of the present invention for solving the above-mentioned problem is arranged such that a horizontally provided furnace tube 1 extends in a longitudinal direction of the furnace tube 1. A melt 2 containing a plurality of elements having different distribution coefficients held in the boat 2 and solidified from the front end of the boat 2 to form a crystal. In a horizontal Bridgman crystal growth furnace that produces
At the rear end of the boat 2, there is provided a raw material receiving portion 2 a into which the granular raw material 5 to be replenished into the melt 3 is dropped, and the granular raw material 5 is introduced into the furnace tube 1 from the outside and dropped therein. A plurality of supply holes 6 are provided in the upper part of the core wall of the core tube 1.
The supply holes 6 are arranged along the longitudinal direction at a shorter interval than the length of the raw material receiving portion 2a, and are located immediately above the raw material receiving portion 2a.
The horizontal Bridgman crystal growth furnace of the second configuration is characterized in that it has a means for dropping the granular raw material 5 from above. 1 is provided with a boat 2 which moves in the longitudinal direction of the furnace tube relative to the furnace tube 1, and a melt 3 containing a plurality of elements having different distribution coefficients held in the boat 2 is supplied to the boat. In a horizontal Bridgman crystal growth furnace for producing crystals by solidifying from the front end of the vessel 2, a raw material receiving, provided at the rear end of the boat 2, into which the spherical raw material 5 a to be replenished into the melt 3 is dropped A part 2a, a circular pipe 11 for accommodating the spherical raw materials 5a in a line in a circular pipe 11 having a front end and a rear end sealed, and an opening 12 for dropping the spherical raw material 5a provided on a peripheral surface of the front end; The opening 12 is located immediately above the raw material receiving portion 2a and the circular pipe Holding means for holding the front end of the circular pipe 11 inclined downward, a rotation mechanism for rotating the circular pipe 11 in one direction or two directions around the axis of the circular pipe 11, and the opening 12 The spherical raw material 5 a-1 is provided on the inner wall surface of the circular tube 11 on the rear end side of the tube 11, is located downward at a first rotational position of the circular tube 11, and has the foremost spherical raw material 5 a-1 at the first rotational position. A step 14 contacting and stopping, and a step between the center of the foremost spherical raw material 5a-1 stopped at the first rotation position and the center of the next spherical raw material 5a-2. The spherical raw material 5a- is provided on the inner wall surface of the circular tube 11 and is located below at the second rotational position of the circular tube 11 and is located next at the second rotational position.
2 is provided with a projection 13 which comes into contact with and stops, and rotates the circular tube 11 from the first rotational position to the second rotational position to remove the most advanced spherical raw material 5a-1 in the circular tube 11. It is sent out to the front end of the circular tube 11, and every time it rotates from the first rotation position to the second rotation position, one spherical raw material 5 is dropped from the opening 12 to the raw material receiving portion 2 a. As a feature, and a third configuration, referring to FIG. 1 and FIG. 2, in the horizontal Bridgman crystal growth furnace of the first or second configuration, the raw material receiving portion 2a is provided with the melt 3 It is characterized by comprising a gentle slope provided at a height above the surface and descending toward the front end of the boat 2, and the fourth configuration is horizontally installed with reference to FIG. A melt 3 containing a plurality of elements having different distribution coefficients in a boat 2 placed in a furnace tube 1
a, 3b is provided at the rear end of the boat 2 in a horizontal Bridgman crystal growth furnace for producing crystals by solidifying the melts 3a, 3b from the front end of the boat 2;
A raw material receiving portion 2a into which granular raw materials to be supplied into the melts 3a and 3b are dropped;
And a through hole 1 provided in the partition wall 15 and connecting the melts 3a and 3b before and after the partition wall 15 with the partition wall 15.
7 and the partition wall 15 from above the melts 3a and 3b.
3b, or partition moving means for moving back and forth in the melts 3a and 3b.
Referring to FIG. 1, a fifth configuration is such that a boat 2 holding a melt 3 containing a plurality of elements having different distribution coefficients is placed inside a horizontally provided core tube 1 so as to extend along the length of the core tube 1. In the direction relative to the furnace tube 1 and solidify from the front end of the boat 2 into a single crystal 9, the rear end of the boat 2 during the production of the single crystal 9. The supply holes 6 arranged in the upper part of the wall of the furnace tube 1 along the longitudinal direction of the furnace tube 1 at shorter intervals than the length of the material receiver 2a are provided in the material receiving portion 2a provided in the portion. It is characterized in that it has a step of dropping the granular raw material 5 from the supply hole 6 located just above the raw material receiving portion 2a, and the sixth configuration is shown in FIG.
Referring to FIG. 3 and FIG. 3, a boat 2 holding a melt 3 containing a plurality of elements having different distribution coefficients is placed inside a horizontally provided core tube 1 in the longitudinal direction of the core tube 1. In the semiconductor manufacturing method, the front end 11a and the rear end 11b are sealed and the spherical raw material 5a is dropped on the peripheral side surface of the front end 11a. The spherical raw material 5a is accommodated in a line in the circular tube 11 provided with the opening 12 to be opened, and then the circular tube 1 holding the front end 11a inclined downward is placed in the circular tube 11 by the opening 1
2 is the raw material receiving portion 2a provided at the rear end of the boat 2.
And a step 14 provided on the inner wall surface of the circular tube 1 on the rear end 11b side of the circular tube 1 from the opening 12 to position the circular tube 11 below. Rotating the spherical raw material 5a around one axis of the circular tube to a first rotational position at which the spherical raw material 5a at the forefront comes into contact with the step 14 and stops; The projection 13 provided on the inner wall surface of the circular pipe 1 between the center of the foremost spherical raw material 5a-1 stopped at the position and the center of the spherical raw material 5a-2 located next thereto is lowered. And rotating around the axis of the circular tube 1 to a second rotational position where the next located spherical raw material 5a-2 abuts on the projection 13 and stops. By rotating from the first rotation position to the second rotation position, the state-of-the-art spherical raw material 5a-1 in the circular tube 1 is removed from the circular tube 1
And the spherical raw material 5a is supplied to the opening 1 each time it rotates from the first rotational position to the second rotational position.
7, and a seventh configuration refers to a boat for holding melts 3a, 3b containing a plurality of elements having different distribution coefficients with reference to FIG. In a method of manufacturing a semiconductor, the melts 3a and 3b are solidified from the front end of the boat 2 to form a single crystal by moving the melts 3a and 3b relative to the furnace core tube placed horizontally. The initial raw material in the boat 2 is melted and the melt 3a,
After the formation of the melts 3a, 3b in the boat 2,
b and the melts 3a, 3a before and after being divided into two.
b, having a through hole 17 connecting the
a) moving into the melts 3a, 3b from above a, 3b or moving back and forth in the melts 3a, 3b, and then moving the inside of the boat 2 including the raw material receiving portion 2a and the raw material receiving portion. 2a
Stopping the partition wall 15 at a position where the partition wall 15 is not divided into front portions, and then supplying the raw material receiving portion 2a with the granular raw material 5 while moving the boat 2 relative to the furnace tube 1. It is characterized by having.

【0017】本発明の第一の構成では,図1(b)を参
照して,炉心管1の上部管壁に炉心管1の長手方向に沿
って一列又は複数列の補給孔6が設けられる。この補給
孔6には炉心管1外部から必要な時に粒状原料が供給さ
れ,補給孔6を通して粒状原料を炉心管1内に投下する
ことができる。他方,ボート2の後部には,投下された
粒状原料5を受ける原料受給部2aが設けられ,原料受
給部2aに投下された粒状原料5は融液3中に溶解し,
融液3に必要な融液組成成分を補給する。なお,原料受
給部2aは,図に示すように融液3外に設けても,又は
融液3中に設けて直接原料を投下するものであってもよ
い。
In the first configuration of the present invention, referring to FIG. 1B, one or more rows of supply holes 6 are provided in the upper tube wall of the furnace tube 1 along the longitudinal direction of the furnace tube 1. . Granular raw material is supplied to the supply hole 6 from the outside of the furnace tube 1 when necessary, and the granular material can be dropped into the furnace tube 1 through the supply hole 6. On the other hand, at the rear of the boat 2, a raw material receiving portion 2a for receiving the dropped granular raw material 5 is provided, and the granular raw material 5 dropped to the raw material receiving portion 2a is dissolved in the melt 3,
The necessary melt composition components are supplied to the melt 3. The raw material receiving section 2a may be provided outside the melt 3 as shown in the figure, or may be provided in the melt 3 and directly drop the raw material.

【0018】本第一の構成では,補給孔6の間隔は原料
受給部2aの長さより短い。従って,ボートが移動して
も,少なくとも一つの補給孔6は常に原料受給部2aの
直上に位置する。このため,結晶成長中の如何なる時期
であっても,この原料受給部2aの直上に位置する補給
孔6を選んで原料受給部2aに粒状原料を投入すること
ができる。即ち,結晶成長の任意の時にボート2内の融
液3中に原料を補給することができる。このため,結晶
成長中の融液組成の変動を抑制することができるので,
分配係数が異なる元素を含む融液からでも組成分布が小
さな結晶を製造することができる。
In the first configuration, the interval between the supply holes 6 is shorter than the length of the raw material receiving section 2a. Therefore, even if the boat moves, at least one supply hole 6 is always located immediately above the raw material receiving portion 2a. Therefore, at any time during the crystal growth, it is possible to select the replenishing hole 6 located immediately above the raw material receiving portion 2a and to supply the granular raw material to the raw material receiving portion 2a. That is, the raw material can be supplied to the melt 3 in the boat 2 at any time during the crystal growth. As a result, fluctuations in the melt composition during crystal growth can be suppressed.
Crystals having a small composition distribution can be produced even from a melt containing elements having different distribution coefficients.

【0019】上記の第一の構成は,炉心管1に複数の補
給孔6を設け,かつ粒状原料5を投下する補給孔6を選
択する機構を設けることで足り,とくに複雑な機構を必
要とすることなく水平ブリッジマン結晶成長炉において
移動するボート内に原料を補給することができる。
The first configuration described above is sufficient by providing a plurality of supply holes 6 in the furnace tube 1 and providing a mechanism for selecting the supply holes 6 into which the granular raw material 5 is dropped, and requires a particularly complicated mechanism. The raw material can be replenished into the boat moving in the horizontal Bridgman crystal growth furnace without performing the above operation.

【0020】本発明の第二の構成では,図2及び図3を
参照して,補給すべき原料を球形の球状原料5aとし,
この球状原料5aを両端が閉じた円管11の中空部に一
列に並べて収容する。この円管11の前端11aの周側
面に,球状原料5aが通過する大きさの開口12が設け
られる。また,円管11は,その前端11aを下方に後
端11bを上方に緩く傾斜させて斜めに保持される。従
って,円管11内に収容された球状原料5aは,円管1
1内壁面に設けられた突起13又は段差14に当接して
停止する場合を除き,円管11の前端11aに向かって
転がり,円管11を開口12が下方に位置する回転位置
としたとき開口12から円管11外に投下される。
In the second configuration of the present invention, referring to FIGS. 2 and 3, the raw material to be replenished is a spherical raw material 5a,
The spherical raw materials 5a are housed in a row in a hollow portion of a circular tube 11 having both ends closed. An opening 12 having a size through which the spherical raw material 5a passes is provided on the circumferential side surface of the front end 11a of the circular tube 11. Further, the circular tube 11 is held obliquely with its front end 11a gently inclined downward and its rear end 11b upward. Therefore, the spherical raw material 5a accommodated in the circular tube 11 is
1 Rolling toward the front end 11a of the circular tube 11 except when stopping by contacting the protrusion 13 or the step 14 provided on the inner wall surface, and opening the circular tube 11 to the rotational position where the opening 12 is located below. It is dropped from 12 to the outside of the circular tube 11.

【0021】本構成では,円管11の内壁面に,円管1
1を第一の回転位置に置いたとき下方に位置する段差1
4と,円管11を第二の回転位置に置いたとき下方に位
置する突起13とが設けられる。これらの段差14及び
突起13は,それらが下方に位置する回転位置におい
て,円管11内を前端方向に転がる球状原料に当接して
その球状原料の転動を停止させる。即ち,図3(a)を
参照して,段差14が下方にあり球状原料5が段差14
に当接して停止する第一の回転位置では,突起13は下
方になく(例えば上方に位置し)球状原料5の転動を妨
げない。他方,図3(b)を参照して,突起13が下方
に在り球状原料5が突起13に当接して停止する第二の
回転位置では,段差14は下方になく球状原料5の転動
を妨げない。
In the present configuration, the circular pipe 11 is provided on the inner wall surface of the circular pipe 11.
Step 1 located below when 1 is placed in the first rotation position
4 and a projection 13 located below when the circular tube 11 is placed in the second rotation position. The step 14 and the projection 13 contact the spherical raw material rolling in the front end direction in the circular tube 11 at the rotational position where they are located below, and stop the rolling of the spherical raw material. That is, referring to FIG. 3 (a), the step 14 is below and the spherical raw material 5 is
In the first rotation position where the spherical raw material 5 stops in contact with the spherical raw material 5, the protrusion 13 is not located below (for example, located above) and does not hinder the rolling of the spherical raw material 5. On the other hand, referring to FIG. 3B, in the second rotation position where the projection 13 is below and the spherical raw material 5 abuts on the projection 13 and stops, the step 14 is not below and the spherical raw material 5 rolls. Do not hinder.

【0022】上記の突起13は,図3(a)を参照し
て,円管11の第一の回転位置で段差14に当接して停
止している最前端の球状原料5a−1の中心と,この第
一の回転位置で最前端から2番目に位置して停止してい
る球状原料5a−2の中心との間に設けられる。従っ
て,円管11を第一の回転位置から第二の回転位置まで
回転すると,第一の回転位置で最前端から2番目に位置
して停止している球状原料5a−2は,第二の回転位置
で突起13に当接して停止し,それより後端に並ぶ球状
原料5aもそれにより停止する。しかし,第一の回転位
置で段差14に当接して停止していた最前端の球状原料
5a−1は,突起13より円管前端に位置するため突起
13に当接せず,第二の回転位置で円管の最前端まで転
動する。その後,円管11を第一の回転位置に戻すと,
当初は最前端から2番目に位置していた球状原料5a−
2が,最前端に位置することとなる。従って,かかる第
一及び第二の回転位置を一回転するごとに,一列に並べ
られた球状原料5aのうち最前端に位置するものが一個
づつ円管の前端に送出される。
Referring to FIG. 3 (a), the projection 13 is in contact with the center of the frontmost spherical raw material 5a-1 which stops at the first rotational position of the circular tube 11 by contacting the step 14. , At the first rotational position, between the center of the spherical raw material 5a-2 which is positioned second from the foremost end and stopped. Therefore, when the circular pipe 11 is rotated from the first rotation position to the second rotation position, the spherical raw material 5a-2 which is located at the second position from the foremost end and stopped at the first rotation position becomes the second rotation position. At the rotation position, the projections 13 come into contact with the projections 13 and stop, and the spherical raw materials 5a arranged at the rear end therefrom also stop. However, the spherical raw material 5a-1 at the forefront end, which has stopped in contact with the step 14 at the first rotation position, does not contact the projection 13 because it is located at the front end of the circular tube with respect to the projection 13. Roll to the foremost end of the pipe at the position. After that, when the pipe 11 is returned to the first rotation position,
Initially, the spherical raw material 5a-
2 will be located at the forefront end. Therefore, each time the first and second rotational positions are rotated once, the one located at the forefront end among the spherical raw materials 5a arranged in a line is sent out one by one to the front end of the circular tube.

【0023】上記のようにして円管11前端に送出され
た球状原料5aは,円管11前端の周側面に設けられた
開口12が下方になる円管11の回転位置で,開口12
を通り円管11の外に排出され炉心管1内部に落下す
る。なお,開口12は第一又は第二の回転位置で下方に
向く必要はない。本構成では,円管11の開口12は常
にボート2の原料受容部2a上に位置するように円管1
1が保持されるから,開口12を通して円管11外に排
出された球状原料5a−1は,原料受容部2aに落下
し,融液3中に溶解する。
The spherical raw material 5a delivered to the front end of the circular tube 11 as described above is placed at the rotational position of the circular tube 11 where the opening 12 provided on the peripheral side surface of the circular tube 11 is located downward.
, And is discharged out of the circular tube 11 and falls into the core tube 1. The opening 12 does not need to face downward at the first or second rotation position. In this configuration, the opening 12 of the circular tube 11 is always positioned on the raw material receiving portion 2a of the boat 2 so that the circular tube 1
1 is held, the spherical raw material 5 a-1 discharged out of the circular tube 11 through the opening 12 falls into the raw material receiving portion 2 a and is dissolved in the melt 3.

【0024】本第二の構成では,円管の中心軸(円管軸
をいう。)廻りの回転により原料を一個づつボート内の
融液中に投入できる。このため,炉心管はボート上に円
管を挿入できる太さがあれば足り,他に特別な機構を収
容し又は運動をするための空間を必要としない。従っ
て,炉心管は細くてよく,炉心管を太くすることで生ず
る炉内熱分布の悪化を回避することができる。また,回
転機構は外部から原料を挿入又は流入する機構より格段
に簡単であり,また確実に動作するから,信頼性の高い
装置を安価に製作することができる。
In the second configuration, the raw materials can be introduced one by one into the melt in the boat by rotating around the central axis of the circular pipe (referred to as the circular pipe axis). For this reason, the core tube need only be thick enough to allow a circular tube to be inserted on the boat, and does not require any space for accommodating or moving a special mechanism. Therefore, the furnace tube may be thin, and deterioration of the heat distribution in the furnace caused by making the furnace tube thick can be avoided. Further, the rotating mechanism is much simpler than the mechanism for inserting or flowing the raw material from outside, and operates reliably, so that a highly reliable apparatus can be manufactured at low cost.

【0025】本構成では,球状原料は円管内に一列に収
容され,その多くが炉心管内の高温の部分に置かれ加熱
されている。従って,この球状原料を融液中に補給して
も急激な温度変動を生じない。また,本構成の円管は両
端が封止されている。このため,球状原料が蒸気圧の高
い元素を含む場合には,円管内の雰囲気はその蒸気圧の
高い元素の分圧が高くなり,高温で保持することによる
球状原料の組成変化が抑制される。このため,温度変動
及び原料の組成変化に起因する結晶の劣化は少なく,良
質の結晶が製造される。
In this configuration, the spherical raw materials are accommodated in a line in a circular tube, and most of them are placed in a high-temperature portion in the furnace tube and heated. Therefore, even if this spherical raw material is replenished into the melt, no rapid temperature fluctuation occurs. Further, both ends of the circular tube having this configuration are sealed. For this reason, when the spherical raw material contains an element with a high vapor pressure, the atmosphere in the pipe has a high partial pressure of the element with a high vapor pressure, and the composition change of the spherical raw material due to holding at a high temperature is suppressed. . Therefore, the deterioration of the crystal due to the temperature fluctuation and the change in the composition of the raw material is small, and a good quality crystal is produced.

【0026】なお,第一及び第二の構成において,補充
すべき原料の融点は,一般に融液温度よりも高温である
ため,融液に投入されるまでは溶融しない。本発明の第
三の構成では,図1及び図2を参照して,融液3を保持
するボート2の後端に,融液3面より高所に原料受容部
2aを設ける。従って,球状原料5a等の粒状原料5は
直接融液中には投下されず,先ず融液3のない原料受容
部2aに投下された後,原料受容部2aの緩傾斜面を転
がり融液中に落下する。このため,粒状原料5の補給時
に融液面の波立ちが少なく結晶品質を良好に維持するこ
とができる。
In the first and second constructions, since the melting point of the raw material to be replenished is generally higher than the temperature of the melt, it does not melt until it is put into the melt. In the third configuration of the present invention, referring to FIGS. 1 and 2, a raw material receiving portion 2a is provided at a rear end of a boat 2 holding a melt 3 at a position higher than the surface of the melt 3. Therefore, the granular raw material 5 such as the spherical raw material 5a is not dropped directly into the melt, but is first dropped into the raw material receiving portion 2a where there is no melt 3, and then rolls on the gentle slope of the raw material receiving portion 2a. To fall. For this reason, when the granular raw material 5 is replenished, the surface of the melt is less ruffled and the crystal quality can be maintained well.

【0027】本発明の第四の構成では,図4を参照し
て,ボート2内の融液3を前後に仕切る隔壁15を備え
る。この隔壁3で仕切られた前後の融液3a,3bは,
隔壁3に設けられた貫通孔17を通して連結する。粒状
原料5は,後方の融液3b中に又はボート2の後方に設
けられた第三の構成の原料受容部2aに投下され,後方
の融液3bの組成が調整される。
Referring to FIG. 4, the fourth configuration of the present invention includes a partition wall 15 for partitioning the melt 3 in the boat 2 back and forth. The melts 3a and 3b before and after being partitioned by the partition 3 are
The connection is made through a through hole 17 provided in the partition wall 3. The granular raw material 5 is dropped into the melt 3b at the rear or to the raw material receiving portion 2a of the third configuration provided at the rear of the boat 2, and the composition of the melt 3b at the rear is adjusted.

【0028】本構成では,前方の融液3aは,原料が投
入される後方の融液3bと隔壁15で分離されている。
このため,原料投入により生ずる後方融液3b表面の波
は隔壁で遮られ,結晶の成長界面と接する前方の融液3
aに伝播しない。また,原料投入に伴う後方の融液3b
の温度変動も,同様に前方の融液3aに伝播しない。従
って,原料補給時の融液の温度変動及び波立ちによる結
晶品質の劣化が少ない。さらに,後方の融液3bの組成
は粒状原料5の投入と同時に急速に変化するが,成長界
面に接する前方の融液3aは貫通孔17を通して徐々に
後方の融液と混合するため,融液組成の変動が少ない。
従って,製造された結晶の組成変動も小さい。なお,貫
通孔17は,粒状原料5の補給の周期内で前後の融液3
a,3bが十分に混合する程度の大きさであることが望
ましい。他方,この貫通孔17は,粒状原料が後方の融
液中に溶解し十分に混合する間,前方の融液中の組成が
大きく変動するほど前後の融液が急速に混同しないよう
に小さいことが好ましい。
In this configuration, the front melt 3a is separated from the rear melt 3b into which the raw material is charged by the partition wall 15.
For this reason, the waves on the surface of the rear melt 3b generated by the input of the raw material are blocked by the partition walls, and the front melt 3b in contact with the crystal growth interface.
does not propagate to a. In addition, the melt 3b on the rear
Similarly does not propagate to the melt 3a ahead. Therefore, there is little deterioration in crystal quality due to temperature fluctuations and undulations of the melt at the time of material replenishment. Further, the composition of the rear melt 3b changes rapidly at the same time as the introduction of the granular raw material 5, but the front melt 3a in contact with the growth interface gradually mixes with the rear melt through the through-hole 17, so that Little variation in composition.
Therefore, the composition fluctuation of the manufactured crystal is small. In addition, the through holes 17 are used for the melt 3 before and after the supply cycle of the granular material 5.
It is desirable that a and 3b are large enough to be sufficiently mixed. On the other hand, this through hole 17 is so small that the front and back melts do not rapidly become confused as the composition in the front melt fluctuates greatly while the granular raw material is dissolved and sufficiently mixed in the rear melt. Is preferred.

【0029】ボート2内の原料が溶融した後,結晶成長
開始前に,ボート2内の融液3全体の組成を均一にする
必要がある。上述した隔壁15は,隔壁移動手段,例え
ば操作棒16を用いて,融液3上から融液3内に挿入で
き,又は融液3内をボート2の前後に揺動できる。この
ため,原料が溶融するまで隔壁15を融液3上に移動し
ておき,溶融後に隔壁15を融液3中に挿入して融液3
を仕切ることで,仕切られた前後の融液3a,3bの組
成を均一にすることができる。また,当初からボート2
内を隔壁15で仕切っていても,原料の溶融後に隔壁1
5を前後に移動することで,貫通孔17を通して前後の
融液3a,3bを混同し融液組成を均一にすることがで
きる。
After the raw materials in the boat 2 are melted and before crystal growth starts, it is necessary to make the composition of the entire melt 3 in the boat 2 uniform. The partition 15 described above can be inserted into the melt 3 from above the melt 3 by using partition moving means, for example, the operation rod 16, or can swing back and forth in the melt 3 before and after the boat 2. For this reason, the partition 15 is moved onto the melt 3 until the raw material is melted, and after melting, the partition 15 is inserted into the melt 3 and
By partitioning, the compositions of the melts 3a and 3b before and after the partition can be made uniform. In addition, boat 2 from the beginning
Even if the inside is partitioned by the partition wall 15, after the raw material is melted, the partition wall 1
By moving 5 forward and backward, the front and rear melts 3 a and 3 b can be confused through the through-hole 17 and the melt composition can be made uniform.

【0030】本第四の構成に係るボートは,既述した第
一及び第二の構成の水平ブリッジマン結晶成長炉に適用
することができる。さらに,炉心管内にボートが静置さ
れる水平ブリッジマン結晶成長炉に適用することもでき
る。このボートを静置する場合は,粒状原料の補給機構
をボートの移動に追従する必要がなく,装置が簡単にな
る。
The boat according to the fourth configuration can be applied to the horizontal Bridgman crystal growth furnace having the first and second configurations described above. Further, the present invention can be applied to a horizontal Bridgman crystal growth furnace in which a boat is left standing in a furnace tube. When the boat is allowed to stand still, there is no need to follow the movement of the boat with the supply mechanism of the granular material, and the apparatus is simplified.

【0031】本発明の第五の構成では,第一の構成に係
る水平ブリッジマン結晶成長装置と同様の装置を用いて
製造する半導体の成長方法に関する。本構成では,第一
の構成と同様に,炉心管内を炉心管と相対移動するボー
トの原料受給部に間断なく粒状原料を補給することがで
きるから,偏析が大きな融液からでも均一な長尺の単結
晶を製造することができる。
The fifth configuration of the present invention relates to a method for growing a semiconductor manufactured using an apparatus similar to the horizontal Bridgman crystal growth apparatus according to the first configuration. In this configuration, as in the first configuration, the granular raw material can be replenished without interruption to the raw material receiving section of the boat that moves relative to the furnace core tube inside the furnace tube, so that even long melts with uniform segregation can be used. Can be produced.

【0032】本発明の第六の構成では,第二の構成にか
かる水平ブリッジマン結晶成長装置と同様の装置を用い
て製造する半導体の成長方法に関する。本構成では,第
二の構成と同様に,ボートの原料受給部に円管の開口を
追従させ,円管を回転するだけで一個の球状原料を任意
の時期に補給することができる。従って,簡便な手段に
より均一な長尺の単結晶を製造することができる。
The sixth configuration of the present invention relates to a method for growing a semiconductor manufactured using an apparatus similar to the horizontal Bridgman crystal growth apparatus according to the second configuration. In this configuration, similarly to the second configuration, one spherical raw material can be replenished at any time simply by rotating the circular tube so that the opening of the circular tube follows the raw material receiving portion of the boat. Therefore, a uniform and long single crystal can be manufactured by simple means.

【0033】本発明の第七の構成では,第四の構成に係
る水平ブリッジマン結晶成長装置と同様の装置を用いて
製造する半導体の成長方法に関する。本構成では,第四
の構成と同様に,原料受給部から供給される粒状原料が
直接投入されるボート後端側の融液と結晶が成長するボ
ート前端側の融液とは,貫通孔を介して連結するから,
原料投入時の熱変動,溶液組成変動及び溶液液面の波立
ちが緩和され,結晶性の優れた単結晶が製造される。
The seventh configuration of the present invention relates to a method for growing a semiconductor manufactured using an apparatus similar to the horizontal Bridgman crystal growth apparatus according to the fourth configuration. In this configuration, as in the fourth configuration, the through hole is formed between the melt at the rear end of the boat into which the granular raw material supplied from the raw material receiving section is directly injected and the melt at the front end of the boat where crystals grow. Are connected via
The fluctuation of heat, the fluctuation of solution composition, and the waving of the solution surface at the time of charging the raw material are alleviated, and a single crystal having excellent crystallinity is manufactured.

【0034】[0034]

【発明の実施の形態】本発明の第一実施形態例は,第一
の構成及び第三の構成の水平ブリッジマン結晶成長炉,
並びに第五の構成に係る半導体の製造方法に関する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is directed to a horizontal Bridgman crystal growth reactor having a first configuration and a third configuration,
And a method for manufacturing a semiconductor according to a fifth configuration.

【0035】図1(b)を参照して,ボート2は,融液
と反応しない材料,例えばpBN(高温で堆積して製造
される層構造を有する窒化硼素。),炭素又は石英で作
成され,融液3を保持する半円筒状の部分と,その後端
の上端部に後方が上に緩く傾斜した原料受容部2aとを
有する。この半円筒状の部分の寸法は,例えば,内径2
0mm,長さ100mmとし,原料受容部2aの長さは,例
えば20mmとする。
Referring to FIG. 1B, the boat 2 is made of a material that does not react with the melt, for example, pBN (boron nitride having a layer structure manufactured by deposition at a high temperature), carbon or quartz. And a semi-cylindrical portion for holding the melt 3, and a raw material receiving portion 2a whose rear end is slightly inclined upward at the upper end of its rear end. The dimensions of this semi-cylindrical part are, for example,
The length is 0 mm, the length is 100 mm, and the length of the raw material receiving portion 2a is, for example, 20 mm.

【0036】ボート2は図示しない炭素製サセプタに搭
載される。このサセプタには移動手段8,例えば牽引す
るための棒又はワイヤが接続され,ボート2を搭載する
サセプタは炉心管1内を炉心管1の中心軸にそって水平
方向に移動する。なお,ボート2を床面に対して停止さ
せ,炉心管1を移動してもよい。
The boat 2 is mounted on a carbon susceptor (not shown). The susceptor is connected with a moving means 8, for example, a rod or a wire for towing, and the susceptor on which the boat 2 is mounted moves in the furnace tube 1 in the horizontal direction along the central axis of the furnace tube 1. Note that the boat 2 may be stopped with respect to the floor surface and the core tube 1 may be moved.

【0037】炉心管1は内径50mmの両端が開放された
円管からなり,その外周に設けらたヒータ10aにより
加熱される。ヒータ10aは,例えば,抵抗加熱又は誘
導加熱される螺旋状又は円筒状の抵抗体からなる。ま
た,ヒータ1の外側には断熱材10bが設けられる。
The furnace tube 1 is a circular tube having an inner diameter of 50 mm and having both ends opened, and is heated by a heater 10a provided on the outer periphery thereof. The heater 10a is made of, for example, a spiral or cylindrical resistor that is heated by resistance or induction. A heat insulating material 10b is provided outside the heater 1.

【0038】炉心管1bの上部に,炉心管1bの中心軸
に沿って一列に等間隔で補給孔6が設けられる。この補
給孔6の設置間隔は,原料受容部2aより短く,例えば
15mmとする。なお,この間隔を螺旋状ヒータ10aの
ピッチの整数倍として螺旋上抵抗体の間に配置すること
が,ヒータ10a幅の減少を回避するために好ましい。
また,補給孔6の数は,例えば10個とすることで,ボ
ートの移動距離が150mmまでの場合に適用できる。な
お,補給孔6は一列に限られず,複数列とすることもで
きる。かかる補給孔6は,粒状原料5aが通過できる内
径を有する円管,例えば内径3mm,外径4mmのpBN製
円管とすることができる。この程度の太さの補給孔6を
炉心管1に開設しても,炉心管1内の温度分布の変化は
結晶成長への影響を無視できる程度に過ぎない。
At the upper part of the furnace tube 1b, supply holes 6 are provided at equal intervals in a line along the central axis of the furnace tube 1b. The interval between the supply holes 6 is shorter than the material receiving portion 2a, and is, for example, 15 mm. In addition, it is preferable to arrange the interval between the spiral resistors as an integral multiple of the pitch of the spiral heater 10a in order to avoid a decrease in the width of the heater 10a.
The number of the supply holes 6 is, for example, 10, so that the present invention can be applied when the moving distance of the boat is up to 150 mm. Note that the supply holes 6 are not limited to one line, but may be a plurality of lines. The supply hole 6 may be a circular pipe having an inner diameter through which the granular material 5a can pass, for example, a pBN circular pipe having an inner diameter of 3 mm and an outer diameter of 4 mm. Even if the replenishing hole 6 having such a thickness is opened in the furnace tube 1, the change in the temperature distribution in the furnace tube 1 can only be ignored to the extent that the influence on the crystal growth can be ignored.

【0039】補給孔6のそれぞれにの入口には,粒状原
料5を収容するバケット7から供給される粒状原料5を
通過又は遮断するシャッタ7aが設けられ,シャッタ7
aの開閉により粒状原料5を任意の時に任意の補給孔6
へ供給することができる。
At the entrance of each of the supply holes 6, a shutter 7a for passing or blocking the granular raw material 5 supplied from the bucket 7 for accommodating the granular raw material 5 is provided.
a replenishing hole 6 at any time by opening and closing a
Can be supplied to

【0040】なお,雰囲気を高圧にする必要がある場合
は,上述した炉心管1,ヒータ10a及び断熱材10b
を含む炉本体,バケット7,補給孔6,シャッタ7a並
びに移動手段8eを,図示しない高圧タンク内に保持す
ることができる。このとき,シャッタ7a,移動手段等
の可動部分は,高圧タンクの外部からマニュプュレータ
で操作することもできる。
When the atmosphere needs to be set at a high pressure, the above-mentioned furnace tube 1, heater 10a and heat insulating material 10b are used.
, The bucket 7, the supply hole 6, the shutter 7a and the moving means 8e can be held in a high-pressure tank (not shown). At this time, movable parts such as the shutter 7a and the moving means can be operated by a manipulator from outside the high-pressure tank.

【0041】結晶成長は以下の手順でなされる。先ずボ
ート2の前端に種結晶を固定する。種結晶として,In
GaAs結晶の製造にはGaAs単結晶を,SiGe結
晶の製造にはSi単結晶を用いることができる。次に,
初期の融液原料をボート2内に充填する。この初期の融
液原料は,予めボート2と同一形状の容器に入れて溶融
後,急冷して固化した多結晶材料を用いることが,組成
を均一にするために好ましい。融液原料は,InGaA
s結晶の製造には58.0gの多結晶InAsと40.
0gの多結晶GaAsを,SiGe結晶の製造には3
3.3gのSi多結晶と28.7gのGe多結晶を,そ
れぞれ溶融混合した後急冷固化したものを用いた。さら
にInGaAs結晶の製造の場合には,融液原料の他に
20gのB 2 3 を加えた。このB2 3 , 溶融して
融液の表面を覆う液相封止層(図示されていない)を形
成し,高圧の雰囲気の中で,例えば8気圧のAr雰囲気
の中で蒸気圧の高いAsの蒸発を阻止する。
The crystal growth is performed according to the following procedure. First,
A seed crystal is fixed to the front end of the sheet 2. As a seed crystal, In
For the production of GaAs crystals, a GaAs single crystal is
Crystals can be produced using Si single crystals. next,
The initial melt raw material is filled in the boat 2. This early fusion
Liquid material is put in a vessel of the same shape as boat 2 before melting
After that, the use of polycrystalline material solidified by rapid cooling
Is preferred to make the uniformity. The melt material is InGaAs
58.0 g of polycrystalline InAs and 40.
0 g of polycrystalline GaAs is used for producing SiGe crystal.
3.3 g of Si polycrystal and 28.7 g of Ge polycrystal were
What was melt-mixed and then quenched and solidified was used. Further
In the case of manufacturing InGaAs crystals, besides the melt raw material,
20 g of B TwoOThreeWas added. This BTwoOThreeIs,Melting
Form a liquid sealing layer (not shown) that covers the surface of the melt
Ar atmosphere of, for example, 8 atm in a high-pressure atmosphere
In this, evaporation of As having a high vapor pressure is prevented.

【0042】次いで,種結晶4及び融液原料を入れたボ
ート2を炉心管1内に置き,昇温して融液原料を溶融
し,融液3とする。炉心管内の中心軸に沿った温度分布
を表す図1(a)を参照して,炉心管1内の温度は,ボ
ート2先端で結晶成長温度Tcよりも低く,後端方向に
向けて高くなる温度傾斜を有する。また,結晶成長温度
Tcを超える位置(図中に「固液界面位置」として示
す。)より後端では,種結晶以外の位置から融液の凝固
が始まることを避けるためボート全体にわたりTcより
高温に保持される。ボート2内の融液3は結晶成長温度
Tcで種結晶4と熱平衡し,種結晶と熱平衡にある固液
界面を形成する。結晶成長温度Tcは融液の固相─液相
図から決定され,In0.08Ga0.92As結晶を製造する
場合は1134℃,Si0.9 Ge0.1 結晶を製造する場
合は1350℃である。勿論,結晶組成以外の元素を溶
媒として加えた融液では同一組成の結晶を製造するため
の結晶成長温度Tcはこれと異なる。
Next, the boat 2 containing the seed crystal 4 and the melt raw material is placed in the furnace tube 1 and heated to melt the melt raw material to obtain a melt 3. Referring to FIG. 1A showing the temperature distribution along the central axis in the furnace tube, the temperature in the furnace tube 1 is lower than the crystal growth temperature Tc at the tip of the boat 2 and increases toward the rear end. It has a temperature gradient. In addition, at the rear end of the position exceeding the crystal growth temperature Tc (indicated as “solid-liquid interface position” in the figure), the temperature is higher than Tc throughout the boat in order to prevent the solidification of the melt from starting from a position other than the seed crystal. Is held. The melt 3 in the boat 2 thermally equilibrates with the seed crystal 4 at the crystal growth temperature Tc to form a solid-liquid interface in thermal equilibrium with the seed crystal. The crystal growth temperature Tc is determined from the solid-phase diagram of the melt, and is 1134 ° C. for producing In 0.08 Ga 0.92 As crystal and 1350 ° C. for producing Si 0.9 Ge 0.1 crystal. Of course, in a melt in which an element other than the crystal composition is added as a solvent, the crystal growth temperature Tc for producing a crystal having the same composition is different from this.

【0043】昇温後12時間放置して融液3内の組成を
均一化した後,移動手段8を用いてボート2を先端方向
に移動することで,結晶成長を開始する。移動速度は,
例えばInGaAs結晶の製造では1.00mm/時,S
iGe結晶の製造では0.6mm/時とすることができ
る。
After allowing the composition in the melt 3 to homogenize by standing for 12 hours after the temperature rise, the crystal growth is started by moving the boat 2 in the tip direction using the moving means 8. The moving speed is
For example, in the production of InGaAs crystal, 1.00 mm / hour, S
In the production of iGe crystals, it can be 0.6 mm / hour.

【0044】融液3の組成は,結晶の成長とともに分配
係数が大きな元素又は成分が減少する。例えばInGa
As系ではGaAs成分が減少し,SiGe系ではSi
が減少する。本実施形態例では,結晶成長中に一定の時
間間隔で,分配係数が大きな元素又は成分を融液中より
多く含有する粒状原料5を融液3中に補給する。従っ
て,結晶成長の進行に伴う融液組成変化が抑制され,製
造された結晶の成長方向の組成変動は小さくなる。
In the composition of the melt 3, elements or components having a large distribution coefficient decrease as the crystal grows. For example, InGa
The GaAs component decreases in the As system, and the Si component in the SiGe system.
Decrease. In the present embodiment, the granular material 5 containing more elements or components having a large distribution coefficient than the melt is replenished into the melt 3 at a certain time interval during the crystal growth. Therefore, a change in the composition of the melt accompanying the progress of the crystal growth is suppressed, and the composition fluctuation in the growth direction of the manufactured crystal is reduced.

【0045】分配系数が大きな元素又は成分は,一般に
分配係数が小さな元素又は成分よりも融点が高いから,
補給孔6が結晶成長温度Tcより高温であっても粒状原
料5は粒状のまま通過し,補給孔6内で溶融して補給孔
6に留まるということはない。従って,補給孔6が細く
ても確実に粒状原料5をボート2の原料受給部2a上に
落下させることができる。
An element or component having a large distribution coefficient generally has a higher melting point than an element or component having a small distribution coefficient.
Even if the supply hole 6 is higher than the crystal growth temperature Tc, the granular raw material 5 passes as it is in a granular state, and does not melt in the supply hole 6 and stay in the supply hole 6. Therefore, even if the supply hole 6 is thin, the granular raw material 5 can be surely dropped onto the raw material receiving portion 2a of the boat 2.

【0046】融液3中に粒状原料5を補給する間隔は,
以下のようにして定められる。なお,簡潔に説明するた
め2成分系について説明するが,3成分以上の系につい
ても同様に定められる。
The interval at which the granular material 5 is supplied to the melt 3 is as follows.
It is determined as follows. Although a two-component system will be described for simplicity, the same applies to a system with three or more components.

【0047】融液3,その融液3から成長した結晶9及
び粒状原料5の組成を,それぞれAxm 1-m ,Ax
s 1-s ,Axh 1-h とする。ここでA及びBは
それぞれ一つの元素又は混晶系の一つの成分を表す(以
下単に「成分A」,「成分B」という。)。また,
m ,xs 及びxh は,それぞれ融液3,結晶及び粒状
原料5のAの組成比(モル比)を表す。このとき,重さ
m の融液3中に含まれる成分Aの重量Wm A は, Wm A =Wm (wA m /Mm ) (1) 重さWs の結晶9中に含まれる成分Aの重量Ws A は, Ws A =Ws (wA s /Ms ) (2) 重さWh の粒状結晶5中に含まれる成分Aの重量Wh A
は, Wh A =Wh (wA h /Mh ) (3) である。ここで,wA は成分Aのモル当たりの重量を表
す。また,Mm ,Ms ,Mh は,融液3,結晶9及び粒
状原料5のそれぞれの化学当量あたりの重量を表し,成
分Bのモル当たりの重量をwB とすると, Mm =wA m +wb (1−xm ) (4) Ms =wA s +wb (1−xs ) (5) Mh =wA h +wb (1−xh ) (6) である。
The compositions of the melt 3, the crystal 9 grown from the melt 3 and the granular raw material 5 were Ax m B 1 -x m and Ax
s B 1- x s, and Ax h B 1- x h. Here, A and B each represent one element or one component of a mixed crystal system (hereinafter, simply referred to as “component A” and “component B”). Also,
x m , x s and x h represent the composition ratio (molar ratio) of A of the melt 3, the crystal and the granular raw material 5, respectively. At this time, the weight W m A component A contained in the melt 3 in the weight W m is, W m A = W m ( w A x m / M m) (1) weight W s of the crystal 9 weight W s of the component a contained in a is, W s a = W s ( w a x s / M s) (2) the weight W by weight of components a contained in the granular crystals 5 of h W h a
Is a W h A = W h (w A x h / M h) (3). Here, w A represents the weight per mole of component A. Further, M m , M s , and M h represent the weight of each of the melt 3, the crystal 9 and the granular raw material 5 per chemical equivalent, and when the weight per mole of the component B is w B , M m = w A x m + w b (1 -x m) (4) M s = w A x s + w b (1-x s) (5) M h = w A x h + w b (1-x h) (6) It is.

【0048】次に,時間tで組成Aを重量Ws A (t)
含む重さWm (t)の融液から,Δt時間後に重量CΔ
tの結晶9が成長し,その間にZΔtの粒状原料が補給
され場合を考える。この場合,Δt時間後の融液の重量
m (t+Δt)は,結晶化して減少する重量CΔt及
び補給されて増加する重量ZΔtを考慮し, Wm (t+Δt)=Wm (t)−CΔt+ZΔt (7) と表される。一方,Δt時間後の融液中の成分Aの重量
m A (t+Δt)は,時間tにおける融液中の成分A
の重量Wm A (t)に,重量Ws =CΔtの結晶成長に
より融液中から減少する成分Aの重量Ws A 及び重量W
h =ZΔtの粒状原料の補給により増加する成分Aの重
量Wh A を考量して, Wm A (t+Δt)=Wm A (t)−Ws A +Wh A (8) と表される。ここで,Wm A (t),Ws A ,Wh A
それぞれ式1〜式3において,Wm =Wm (t),Ws
=CΔt,Wh =ZΔtとおいたものである。
Next, at time t, the composition A is weighed W s A (t).
From the melt with the weight W m (t) containing
Consider a case where a crystal 9 of t grows and a granular raw material of ZΔt is supplied during the growth. In this case, the weight W m (t + Δt) of the melt after the time Δt is determined in consideration of the weight CΔt that decreases due to crystallization and the weight ZΔt that increases when replenished, and W m (t + Δt) = W m (t) −CΔt + ZΔt (7) On the other hand, the weight W m A (t + Δt) of component A in the melt after Delta] t time, the components in the melt at time t A
Weight W s A and weight W of component A, which are reduced from the melt by the crystal growth of weight W s = CΔt to weight W m A (t) of
and Koryo weight W h A of component A to increase the supply of the granular raw material for h = ZΔt, represented as W m A (t + Δt) = W m A (t) -W s A + W h A (8) . Here, W m A (t), W s A , and W h A are represented by W m = W m (t) and W s in Equations 1 to 3, respectively.
= CΔt, W h = ZΔt.

【0049】式1を変形して,成分Aの組成比xm は,
時間tでの組成比xm (t), xm (t)=(Wm A (t)Mm (t))/(Wm (t)wA ) (9) から,Δt時間後における組成比xm (t+Δt), xm (t+Δt)=(Wm A (t+Δt)Mm (t+Δt))/(Wm (t+ Δt)wA ) (10) まで変化する。ここで変数(t)及び(t+Δt)を付
した量は,それぞれ時間t及びt+Δtにおける値を表
している。
By modifying the equation 1, the composition ratio x m of the component A becomes
The composition ratio at time t, x m (t), x m (t) = (W m A (t) M m (t)) / (W m (t) w A ) (9) The composition ratio x m (t + Δt), x m (t + Δt) = (W m A (t + Δt) M m (t + Δt)) is changed to / (W m (t + Δt ) w A) (10). Here, the quantities with the variables (t) and (t + Δt) represent values at times t and t + Δt, respectively.

【0050】本実施形態例では融液の組成比が変動しな
いように粒状原料の補充速度Zを定める。従って,式9
及び式10において,融液中の成分Aの組成比xm 及び
融液の化学当量当たりの重量Mm は変化しないから,x
m (t)=xm (t+Δt)及びMm (t)=Mm (t
+Δt)とおける。その結果,式9と式10から, Wm A (t)/Wm (t)=Wm A (t+Δt)/Wm (t+Δt) (11) と表される。
In this embodiment, the replenishment rate Z of the granular raw material is determined so that the composition ratio of the melt does not change. Therefore, Equation 9
In equation (10), the composition ratio x m of the component A in the melt and the weight M m per chemical equivalent of the melt do not change.
m (t) = x m (t + Δt) and M m (t) = M m (t
+ Δt). As a result, from Equations 9 and 10, represented as W m A (t) / W m (t) = W m A (t + Δt) / W m (t + Δt) (11).

【0051】式11に式7及び式8を代入し,式1〜式
6及びWs =CΔt,Wh =ZΔtを考慮してZについ
て解くと, Z=C(Mh /Ms )(xm −xs )/(xm −xh ) (12) となる。ここで,結晶の成長速度Cは,固液界面の移動
速度v,固液界面の面積S及び結晶の密度ρを用いて,
C=Svρとして計算される。
By substituting Equations 7 and 8 into Equation 11 and solving for Z in consideration of Equations 1 to 6 and W s = CΔt and W h = ZΔt, Z = C (M h / M s ) ( x m −x s ) / (x m −x h ) (12) Here, the crystal growth rate C is obtained by using the moving speed v of the solid-liquid interface, the area S of the solid-liquid interface, and the density ρ of the crystal.
Calculated as C = Svρ.

【0052】上述した第一実施形態例で例示した条件で
は,In0.08Ga0.92As結晶を製造する場合,1gの
球形のGaAsからなる粒状原料5を42分45秒ごと
に一個づつ補給する。また,Si0.9 Ge0.1 結晶を製
造する場合,粒状原料の補給速度Zは0.13216g
/時であり,例えば直径2mmのSi球からなる粒状原料
5を4分30秒ごとに一個補給する。
Under the conditions exemplified in the first embodiment described above, when producing In 0.08 Ga 0.92 As crystals, 1 g of spherical raw material 5 composed of spherical GaAs is supplied one by one every 42 minutes and 45 seconds. When producing Si 0.9 Ge 0.1 crystals, the replenishment rate Z of the granular material is 0.13216 g.
/ Hour, for example, one granular material 5 composed of Si spheres having a diameter of 2 mm is replenished every 4 minutes and 30 seconds.

【0053】上記の第一実施形態例で例示したSi0.9
Ge0.1 結晶の製造において,Siからなる粒状原料と
Geからなる粒状原料とを相互に独立した時間間隔で補
給することもできる。上述の例示の条件下で,式12か
ら,Siを0.5778g/時,Geを0.27928
g/時で補給することで融液の組成は一定に保持され
る。かかる補給速度は,直径2mmのSi球からなる粒状
原料5を1分ごとに一個補給し,直径2mmのGe球から
なる粒状原料5を4分48秒ごとに一個補給することで
実現することができる。
The Si 0.9 exemplified in the first embodiment described above.
In the production of the Ge 0.1 crystal, the granular raw material composed of Si and the granular raw material composed of Ge can be supplied at mutually independent time intervals. Under the exemplary conditions described above, from Equation 12, 0.5778 g / h of Si and 0.27928 of Ge
By replenishing at g / hr, the composition of the melt is kept constant. Such a replenishing speed can be realized by replenishing one granular raw material 5 composed of Si spheres having a diameter of 2 mm every one minute and replenishing one granular raw material 5 composed of Ge spheres having a diameter of 2 mm every 4 minutes and 48 seconds. it can.

【0054】本発明の第二実施形態例は,本発明の第二
の構成及び第三の構成,並びに第六の構成に関する。本
第二実施形態例では,炉心管,ボート,融液の組成及び
量,成長条件及び結晶組成は第一実施形態例と同様であ
り,粒状原料の補給手段が異なる。
The second embodiment of the present invention relates to the second, third, and sixth configurations of the present invention. In the second embodiment, the composition and amount, growth conditions, and crystal composition of the furnace tube, boat, and melt are the same as those in the first embodiment, and the means for replenishing the granular material is different.

【0055】本第二実施形態例では,図2及び図3を参
照して,前端を封じた例えば内径3.5mmのpBN製円
管11の先端部周側面に,例えば直径2mmの球状原料5
aが通過できる大きさの開口12を設ける。さらに開口
11の後端11b側の円管11側面に,内壁面から例え
ば1mm突出する突起13を設ける。かかる突起13は,
例えばピンを円管11外壁から貫挿して形成される。他
の突起13の形状は,円管11内に螺旋状の突出物,例
えば螺旋状に形成されたpBNを挿入して形成すること
ができる。
In the second embodiment, referring to FIG. 2 and FIG. 3, a spherical raw material 5 having a diameter of, for example, 2 mm is provided on a peripheral side surface of a front end portion of a pBN circular pipe 11 having an inner diameter of, for example, 3.5 mm.
An opening 12 having a size through which a can pass is provided. Further, a projection 13 projecting, for example, 1 mm from the inner wall surface is provided on the side surface of the circular tube 11 on the rear end 11b side of the opening 11. Such protrusions 13
For example, it is formed by inserting a pin from the outer wall of the circular tube 11. The shape of the other protrusions 13 can be formed by inserting a spiral protrusion, for example, a spirally formed pBN into the circular tube 11.

【0056】次いで,球状原料5aを円管11後端11
bから挿入し,円管11の後端11bを栓又は蓋により
封止する。次いで,図2及び図3(a)を参照して,開
口12を上にし,後端11bが上向くように円管11を
図外の保持機構により保持する。このとき,球状原料5
aは,最前端の球状原料5a−1が封止された円管11
の前端からなる段差14に当接して停止し,残りの球状
原料5a−2,5aは互いに当接して一列に連なり停止
する。なお,段差14を開口12より後端側に設けるこ
とも,また螺旋状の突出物を段差14と突起13との結
合したものとして用いることもできる。
Next, the spherical raw material 5a is transferred to the circular tube 11 at the rear end 11 thereof.
b, and the rear end 11b of the circular tube 11 is sealed with a stopper or a lid. Next, referring to FIGS. 2 and 3 (a), the circular tube 11 is held by a holding mechanism (not shown) so that the opening 12 faces upward and the rear end 11b faces upward. At this time, the spherical raw material 5
a is a circular tube 11 in which the foremost spherical raw material 5a-1 is sealed.
Then, the spherical raw materials 5a-2 and 5a come into contact with each other and stop in contact with the step 14 formed from the front end. The step 14 may be provided on the rear end side of the opening 12, or a spiral projection may be used as a combination of the step 14 and the projection 13.

【0057】この円管11は,図2を参照して,炉心管
1内に置かれたボート2の原料受容部2a直上に開口1
2が位置するように,ボート2の移動とともに移動す
る。なお,床面に対してボート2を停止し炉心管1を移
動する場合は,円管11も床面に対して停止する。この
円管11の移動は保持機構によりなされる。この保持機
構は,炉心管11の後端側に突出する円管11の後端部
を保持し,円管11を炉心管の中心軸に平行に移動する
とともに円管11を中心軸廻りに回転する。
Referring to FIG. 2, the circular tube 11 has an opening 1 just above the raw material receiving portion 2a of the boat 2 placed in the core tube 1.
The boat 2 moves together with the boat 2 so that the boat 2 is located. When the boat 2 is stopped relative to the floor and the core tube 1 is moved, the circular tube 11 also stops relative to the floor. The movement of the circular tube 11 is performed by a holding mechanism. This holding mechanism holds the rear end of the circular tube 11 protruding to the rear end side of the core tube 11, moves the circular tube 11 parallel to the central axis of the core tube, and rotates the circular tube 11 around the central axis. I do.

【0058】球状原料5aを原料受容部2aに投下する
には,図3(b)を参照して,円管11を半回転して開
口12を下方に向ける。これにより,最前端の球状原料
5a−1は開口12を通過して落下し,直下の原料受容
部2a内に投下される。最前端から2番目の球状原料5
a−2は,突起13に当接して停止し,その後の最前端
の球状原料となる。従って,再び円管11を開口12が
上方に向く回転位置に戻すと,図3(a)を参照して,
最初の状態から球状原料5aが一個減少した状態に戻
る。このようにして,円管11の半回転を2回行うこと
により,1個の球状原料5aをボート2内に投入され
る。
To drop the spherical raw material 5a into the raw material receiving portion 2a, referring to FIG. 3 (b), the circular pipe 11 is rotated half a turn so that the opening 12 is directed downward. As a result, the foremost spherical raw material 5a-1 drops through the opening 12, and is dropped into the raw material receiving portion 2a immediately below. The second spherical raw material 5 from the front end
a-2 comes into contact with the projection 13 and stops, and becomes the foremost spherical material thereafter. Therefore, when the circular tube 11 is returned to the rotational position where the opening 12 faces upward again, referring to FIG.
The state returns to the state where the spherical raw material 5a is reduced by one from the initial state. In this manner, by performing the half rotation of the circular tube 11 twice, one spherical raw material 5a is put into the boat 2.

【0059】本発明の第三実施形態例は,隔壁を有する
ボート2を備えた水平ブリッジマン結晶成長炉,及び第
七の構成に係る半導体の製造方法に関する。本実施形態
例のボートは,図4を参照して,ボート2内の融液3を
前後に分割する板状の隔壁15を有する。結晶成長時に
おいて,結晶は隔壁15により分割された前方の融液3
aから成長する。他方,後方の融液3bには直接に又は
原料受給部2aを介して粒状原料5が補給される。
The third embodiment of the present invention relates to a horizontal Bridgman crystal growth furnace provided with a boat 2 having partition walls, and a method of manufacturing a semiconductor according to a seventh configuration. Referring to FIG. 4, the boat of this embodiment has a plate-shaped partition wall 15 for dividing the melt 3 in the boat 2 back and forth. At the time of crystal growth, the crystal is separated from the melt 3 by the partition wall 15.
Grow from a. On the other hand, the granular material 5 is supplied to the rear melt 3b directly or via the material receiving part 2a.

【0060】隔壁15は,図4(b)を参照して,ボー
ト2の内面に密接する半円板からなり,その半円板の下
方先端5mmを水平に切断した形に形成される。この切断
部分は,前後の融液3a,3bをつなぐ貫通孔17を形
成する。
Referring to FIG. 4 (b), the partition 15 is formed of a semi-circular plate which is in close contact with the inner surface of the boat 2, and is formed by horizontally cutting the lower end 5mm of the semi-circular plate. This cut portion forms a through hole 17 connecting the front and rear melts 3a and 3b.

【0061】半円板状の隔壁15の円板中心位置には,
炉心管の中心線に略平行に保持された操作棒16が固定
される。隔壁15は,この操作棒を前後に動かすことに
より前後に移動でき,又は操作棒の回転により融液3上
に移動できる。即ち,操作棒16を僅か傾けて隔壁15
をボート2壁面から離し,ついで前後に移動する。又
は,操作棒16を僅か傾けて隔壁15をボート2壁面か
ら離したのち,操作棒16を回転して,半円板状の隔壁
15を円板中心軸廻りに180度回転させ,隔壁15を
融液3より上方に回転移動する。かかる隔壁15の操作
により,ボート内の融液3a,3bを十分に攪拌又は混
合することができる。隔壁15のかかる操作は,原料が
溶融した直後の混合が不完全な融液3を混合するために
結晶成長の開始前に行われる。この場合,隔壁15を予
め融液3上に移動した状態で原料を溶融し,溶融後に混
合に十分な時間,例えば12時間放置したのち融液3中
に移動して結晶成長を開始することもできる,なお隔壁
15の融液3中への移動後,例えば1時間程度放置する
ことが温度安定のために好ましい。勿論,隔壁15の前
後の移動と融液上への移動とをくみわあせることもでき
る。なお,この操作棒は細いから,炉心管内の温度分布
に問題となる影響を及ぼさない。また,操作棒は成長炉
全体を気密に収容する高圧タンクの外部から操作され
る。この隔壁15は,融液3と反応しない材料,例えば
pBN,炭素又は石英等を用いて製造することができ
る。
At the center of the disk of the semi-disk-shaped partition 15,
An operation rod 16 held substantially parallel to the center line of the furnace tube is fixed. The partition wall 15 can be moved back and forth by moving the operation rod back and forth, or can be moved onto the melt 3 by rotating the operation rod. That is, the operation rod 16 is slightly tilted to
Is moved away from the boat 2 wall, and then moved back and forth. Alternatively, the operating rod 16 is slightly tilted to separate the partition 15 from the wall surface of the boat 2, and then the operating rod 16 is rotated to rotate the semi-disk-shaped partition 15 by 180 degrees about the center axis of the disk. It rotates above the melt 3. By operating the partition 15, the melts 3a and 3b in the boat can be sufficiently stirred or mixed. This operation of the partition wall 15 is performed before the start of crystal growth in order to mix the incompletely mixed melt 3 immediately after the raw material is melted. In this case, the raw material may be melted in a state where the partition walls 15 have been moved onto the melt 3 in advance, and after melting, the melt may be left for a sufficient time for mixing, for example, 12 hours, and then moved into the melt 3 to start crystal growth. After the partition 15 is moved into the melt 3, it is preferable to leave the partition 15 for about one hour, for example, to stabilize the temperature. Of course, the movement of the partition wall 15 back and forth and the movement on the melt can also be mixed. Since the operating rod is thin, it does not have a problematic effect on the temperature distribution in the core tube. The operating rod is operated from the outside of a high-pressure tank that hermetically accommodates the entire growth furnace. The partition wall 15 can be manufactured using a material that does not react with the melt 3, for example, pBN, carbon, quartz, or the like.

【0062】図5は,本発明の効果説明図であり,第一
〜第三実施形態例により製造されたIn0.08Ga0.92
s結晶の組成分布を表している。なお,結晶中のIn量
はエレクトロンマイクロプローブ分析装置(EPMA)
により測定した。
FIG. 5 is a view for explaining the effect of the present invention, and shows In 0.08 Ga 0.92 A manufactured according to the first to third embodiments.
3 shows a composition distribution of an s crystal. The amount of In in the crystal was measured using an electron microprobe analyzer (EPMA).
Was measured by

【0063】図5中のイは,従来の粒状原料を補給する
ことなく融液をボート先端から固化して製造されたIn
0.08Ga0.92As結晶の組成分布を示す。成長初期は目
標とするIn組成比0.08であるが,結晶成長ととも
にIn組成比が増加し,結晶長が3mmを超えるとIn組
成比は0.09を超えてしまう。このため均一な組成の
結晶は短いものしか製造することができない。
A in FIG. 5 shows In which the melt is solidified from the tip of the boat without replenishing the conventional granular raw material.
4 shows the composition distribution of a 0.08 Ga 0.92 As crystal. Although the target In composition ratio is 0.08 in the initial stage of growth, the In composition ratio increases with crystal growth, and when the crystal length exceeds 3 mm, the In composition ratio exceeds 0.09. Therefore, only short crystals having a uniform composition can be produced.

【0064】図5中のロは,実施形態例1及び2により
製造されたIn0.08Ga0.92As結晶の組成分布を示
す。これらの実施形態例では,結晶成長の間に粒状原料
が隔壁を有しないボート中に補給される。本実施形態例
では,結晶長が3mmにおいてIn組成比が0.09に達
した後,粒状原料の補給により融液中のIn濃度が低下
するため,急速に結晶中のIn組成比が低下している。
その後再びIn組成比が上昇し,以下同様の過程が繰替
えされるので,5cmの長尺のInGaAs結晶であって
もIn組成比を0.08±0.01以内に抑えることが
できた。
FIG. 5B shows the composition distribution of the In 0.08 Ga 0.92 As crystal produced according to the first and second embodiments. In these example embodiments, the granular raw material is replenished during crystal growth into a boat without barriers. In the present embodiment, after the In composition ratio reaches 0.09 when the crystal length is 3 mm, the In concentration in the melt decreases due to the replenishment of the granular material, so that the In composition ratio in the crystal rapidly decreases. ing.
Thereafter, the In composition ratio increases again, and the same process is repeated thereafter. Therefore, even with a long InGaAs crystal of 5 cm, the In composition ratio could be suppressed to within 0.08 ± 0.01.

【0065】図5中のハは,第一及び第二実施形態例に
おいて,第三実施形態例の隔壁を有するボートを使用し
て製造したIn0.08Ga0.92As結晶の組成分布を示
す。本実施形態例のボートを使用した場合,In組成比
の変動は5cmの全結晶長に渡り0.08±0.003以
内に抑制されている。このように第三実施形態例におい
ては,第一及び第二実施形態例よりも結晶組成の変動幅
が小さい。これは,第三実施形態例では粒状原料の補給
により組成が急変する隔壁後方の融液が,結晶成長界面
に直接触れる隔壁前方の融液と貫通孔を通してゆっくり
と混合する溜めと推測している。また,この第三実施形
態例により製造された結晶は,成長縞が殆ど観測され
ず,粒状原料の供給によっても急激な温度変動の影響が
小さいことを明らかにしている。
FIG. 5C shows the composition distribution of the In 0.08 Ga 0.92 As crystal manufactured using the boat having the partition walls of the third embodiment in the first and second embodiments. When the boat of this embodiment is used, the variation of the In composition ratio is suppressed to within 0.08 ± 0.003 over the entire crystal length of 5 cm. Thus, in the third embodiment, the fluctuation range of the crystal composition is smaller than in the first and second embodiments. This is presumed to be a reservoir in which the melt at the rear of the partition, whose composition changes rapidly due to the replenishment of the granular material, slowly mixes with the melt at the front of the partition through the through hole, which directly contacts the crystal growth interface in the third embodiment. . Further, in the crystal manufactured according to the third embodiment, growth fringes are hardly observed, and it is clear that the influence of the rapid temperature fluctuation is small even when the granular raw material is supplied.

【0066】本発明の第四実施形態例は,ボートを炉心
管内に静止して結晶を成長する水平ブリッジマン結晶成
長炉に関する。本実施形態例に用いたボートは,隔壁を
有する第三実施形態例のボートと同一である。融液及び
結晶組成は,第一実施形態例で述べたSi0,9 Ge0.1
結晶の製造例と同じである。この実施形態例の水平ブリ
ッジマン結晶成長炉は, 図1を参照して,第一実施例と
同様の構造を有する補給孔6を一個備える。粒状原料5
は,補給孔6を通過して原料受給部2aに落下する。
The fourth embodiment of the present invention relates to a horizontal Bridgman crystal growth furnace for growing a crystal while resting a boat in a furnace tube. The boat used in this embodiment is the same as the boat of the third embodiment having a partition. The melt and the crystal composition are the same as those of Si 0,9 Ge 0.1 described in the first embodiment.
This is the same as the production example of the crystal. Referring to FIG. 1 , the horizontal Bridgman crystal growth furnace of this embodiment includes one supply hole 6 having the same structure as that of the first embodiment. Granular raw material 5
Passes through the supply hole 6 and falls into the raw material receiving section 2a.

【0067】本実施形態例では,固液界面の温度は13
50℃,固液界面の温度勾配は50℃とした。炉心管内
部温度を3℃/時の速さで降下し,直径2mmのSiから
なる球状原料を4分30秒毎に1個づつ投下した。その
結果,クラックのない長さ8cmの結晶が得られた。
In this embodiment, the temperature of the solid-liquid interface is 13
The temperature gradient at the solid-liquid interface was 50 ° C. The temperature inside the furnace tube was lowered at a rate of 3 ° C./hour, and spherical raw materials made of Si having a diameter of 2 mm were dropped one by one every 4 minutes and 30 seconds. As a result, a crystal having a length of 8 cm without cracks was obtained.

【0068】[0068]

【発明の効果】本発明によれば,簡単な機構を用いて炉
心管内の温度分布を乱すことなく,水平ブリッジマン結
晶成長炉の炉心管内を炉心管に相対的に移動するボート
内に粒状原料を補給することができる。また,粒状原料
の補給による融液の組成及び温度変動を融液を分離する
隔壁により緩和することができる。従って,組成変化の
小さい長尺の結晶を成長することができる水平ブリッジ
マン結晶成長炉,及び組成変動の小さな多元系半導体を
提供することができ,半導体装置及び結晶を使用する電
子機器の性能向上に寄与するところが大きい。
According to the present invention, the granular raw material is stored in a boat moving relatively in the core tube of the horizontal Bridgman crystal growth furnace relative to the core tube without disturbing the temperature distribution in the core tube using a simple mechanism. Can be replenished. In addition, fluctuations in the composition and temperature of the melt due to replenishment of the granular material can be mitigated by the partition for separating the melt. Therefore, it is possible to provide a horizontal Bridgman crystal growth furnace capable of growing a long crystal having a small composition change and a multi-element semiconductor having a small composition fluctuation, and to improve the performance of semiconductor devices and electronic equipment using the crystal. It greatly contributes to

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第一実施形態例断説明図FIG. 1 is a sectional explanatory view of a first embodiment of the present invention.

【図2】 本発明の第二実施形態例断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】 本発明の第二実施形態例円管断面図FIG. 3 is a sectional view of a circular tube according to a second embodiment of the present invention.

【図4】 本発明の第三実施形態例ボート断面図FIG. 4 is a sectional view of a boat according to a third embodiment of the present invention.

【図5】 本発明の効果説明図FIG. 5 is a diagram for explaining the effects of the present invention.

【符号の説明】[Explanation of symbols]

1 炉心管 1a 先端 1b 後端 2 ボート 2a 原料受給部 3 融液 4 種結晶 5 粒状原料 5a 球状原料 6 補給孔 7a シャッター 7 バケット 8 移動手段 9 結晶 10a ヒータ 10b 断熱材 11 円管 12 開口 13 突起 14 段差 15 隔壁 16 操作棒 17 貫通孔 DESCRIPTION OF SYMBOLS 1 Furnace tube 1a Front end 1b Rear end 2 Boat 2a Raw material receiving part 3 Melt 4 Seed crystal 5 Granular raw material 5a Spherical raw material 6 Supply hole 7a Shutter 7 Bucket 8 Moving means 9 Crystal 10a Heater 10b Heat insulating material 11 Circular tube 12 Opening 13 Projection 14 Step 15 Partition wall 16 Operation rod 17 Through hole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水平に設けられた炉心管内を該炉心管の
長手方向に該炉心管に対して相対的に移動するボートを
備え,該ボート内に保持された分配係数の異なる複数の
元素を含む融液を該ボートの前端部から固化させて結晶
を製造する水平ブリッジマン結晶成長炉において,該ボ
ートの後端部に該融液中に補給すべき粒状原料が投下さ
れる原料受容部が設けられ,該粒状原料を該炉心管の外
部から内部に導入し投下するための複数の補給孔が,該
炉心管の管壁上部に該炉心管の長手方向に沿い該原料受
容部の長さより短間隔で列設され,該原料受容部直上に
位置する該補給孔から該粒状原料を投下する手段を有す
ることを特徴とする水平ブリッジマン結晶成長炉。
A boat is provided which moves in a furnace tube provided horizontally with respect to the furnace tube in a longitudinal direction of the furnace tube, and a plurality of elements having different distribution coefficients retained in the boat are provided. In a horizontal Bridgman crystal growth furnace for producing crystals by solidifying the melt containing the melt from the front end of the boat, a raw material receiving portion into which the granular raw material to be supplied into the melt is dropped is provided at the rear end of the boat. A plurality of supply holes for introducing and dropping the granular raw material from the outside to the inside of the furnace tube are provided at the upper part of the tube wall of the furnace tube along the longitudinal direction of the furnace tube so as to extend from the length of the material receiving portion. A horizontal Bridgman crystal growth furnace comprising means arranged at short intervals and for dropping said granular raw material from said supply hole located immediately above said raw material receiving portion.
【請求項2】 水平に設けられた炉心管内を該炉心管の
長手方向に該炉心管に対して相対的に移動するボートを
備え,該ボート内に保持された分配係数の異なる複数の
元素を含む融液を該ボートの前端部から固化させて結晶
を製造する水平ブリッジマン結晶成長炉において,該ボ
ートの後端部に設けられた,該融液中に補給すべき球状
原料が投下される原料受容部と,前端及び後端が封止さ
れかつ前端周側面に該球状原料を投下する開口が設けら
れた円管内に,該球状原料を一列に収容する該円管と,
該開口を該原料受容部直上に位置させかつ該円管の前端
を下方に傾斜して保持する該円管の保持手段と,該円管
を該円管軸廻りに一方向又は双方向に回転させる回転機
構と,該開口より該円管の後端側の該円管内壁面に設け
られ,該円管の第一の回転位置で下方に位置し,該第一
の回転位置で最前端の該球状原料が当接して停止する段
差と,該第一の回転位置で停止している該最前端の球状
原料の中心とその次に位置する該球状原料の中心との間
の該円管内壁面に設けられ,該円管の第二の回転位置で
下方に位置し,該第二の回転位置で該次に位置する球状
原料が当接して停止する突起とを備え,該円管を該第一
の回転位置から該第二の回転位置まで回転して該円管内
の最先端の球状原料を該円管の前端部に送出し,該第一
の回転位置から該第二の回転位置まで回転する毎に一個
の該球状原料を該開口から該原料受給部に投下すること
を特徴とする水平ブリッジマン結晶成長炉。
2. A boat moving horizontally in a furnace tube provided in a horizontal direction relative to the furnace tube in a longitudinal direction of the furnace tube, wherein a plurality of elements having different distribution coefficients held in the boat are removed. In a horizontal Bridgman crystal growth furnace for producing crystals by solidifying the melt containing the melt from the front end of the boat, a spherical raw material provided at the rear end of the boat and to be supplied to the melt is dropped. A raw material receiving portion, and a circular pipe having a front end and a rear end sealed therein and having an opening for dropping the spherical raw material on a peripheral side surface of the front end, the circular pipe accommodating the spherical raw materials in a line,
Holding means for holding the circular pipe with the opening positioned immediately above the raw material receiving portion and holding the front end of the circular pipe at a downward inclination, and rotating the circular pipe in one direction or two directions around the circular pipe axis. A rotating mechanism to be provided on the inner wall surface of the circular tube at the rear end side of the circular tube with respect to the opening, and positioned at a first rotational position of the circular tube at a lower position, and at a first rotational position of the foremost end thereof. The step where the spherical raw material comes into contact and stops, and the inner wall surface of the circular pipe between the center of the frontmost spherical raw material stopped at the first rotation position and the center of the next spherical raw material A projection which is provided at a second rotation position of the circular tube at a lower position, and at which the spherical material located next at the second rotational position abuts and stops. From the first rotation position to the second rotation position to deliver the most advanced spherical raw material in the circular tube to the front end of the circular tube, and from the first rotation position to the second rotation position. Horizontal Bridgman crystal growth furnace, characterized by dropping the raw material receiving portion to one of the spherical material from the opening in each rotation to second rotary position.
【請求項3】 請求項1又は2記載の水平ブリッジマン
結晶成長炉において,該原料受容部は,該融液表面より
高所に設けられ,該ボートの前端に向けて下降する緩傾
斜面からなることを特徴とする水平ブリッジマン結晶成
長炉。
3. The horizontal Bridgman crystal growth furnace according to claim 1, wherein the raw material receiving portion is provided at a position higher than the surface of the melt, and has a gentle slope descending toward a front end of the boat. A horizontal Bridgman crystal growth furnace.
【請求項4】 水平に設置された炉心管内に置かれたボ
ート内に分配係数の異なる複数の元素を含む融液を保持
し,該融液を該ボートの前端部から固化させて結晶を製
造する水平ブリッジマン結晶成長炉において,該ボート
の後端部に設けられた,該融液中に補給すべき粒状原料
が投下される原料受容部と,該ボート内部を該原料受給
部を含む後部と該原料受給部を含まない前部に仕切る隔
壁と,該隔壁に設けられ,該隔壁により仕切られた前後
の該融液を連結する貫通孔と,該隔壁を該融液上から融
液内に移動する又は該融液中を前後に移動する隔壁移動
手段とを備えたことを特徴とする水平ブリッジマン結晶
成長炉。
4. A crystal is produced by holding a melt containing a plurality of elements having different distribution coefficients in a boat placed in a horizontally installed core tube and solidifying the melt from the front end of the boat. In a horizontal Bridgman crystal growth furnace, a raw material receiving portion provided at the rear end of the boat and into which the granular raw material to be supplied into the melt is dropped, and a rear portion including the raw material receiving portion inside the boat And a partition wall provided in the partition wall not including the raw material receiving portion, a through hole provided in the partition wall and connecting the melt before and after being partitioned by the partition wall, and a partition wall formed in the melt from above the melt. A horizontal Bridgman crystal growth furnace comprising:
【請求項5】 分配係数の異なる複数の元素を含む融液
を保持したボートを,水平に設けられた炉心管内を該炉
心管の長手方向に該炉心管に対して相対的に移動させ,
該ボートの前端部から固化して単結晶とする半導体の製
造方法において,該単結晶の製造中に該ボートの後端部
に設けられた原料受容部に,該炉心管の管壁上部に該炉
心管の長手方向に沿い該原料受容部の長さより短間隔で
列設された補給孔のうち該原料受容部直上に位置する補
給孔から粒状原料を投下する工程を有することを特徴と
する半導体の製造方法。
5. A boat holding a melt containing a plurality of elements having different distribution coefficients is moved in a horizontally provided core tube relative to the core tube in the longitudinal direction of the core tube,
In a method of manufacturing a semiconductor which is solidified from a front end of the boat to form a single crystal, a semiconductor device is provided at a raw material receiving portion provided at a rear end of the boat during production of the single crystal, at a top of a tube wall of the core tube. A semiconductor having a step of dropping a granular raw material from a supply hole located immediately above the raw material receiving portion among supply holes arranged in a line at a shorter interval than the length of the raw material receiving portion along the longitudinal direction of the furnace tube. Manufacturing method.
【請求項6】 分配係数の異なる複数の元素を含む融液
を保持したボートを,水平に設けられた炉心管内を該炉
心管の長手方向に該炉心管に対して相対的に移動させ,
該ボートの前端部から固化して単結晶とする半導体の製
造方法において,前端及び後端が封止されかつ前端周側
面に球状原料を投下する開口が設けられた円管内に,該
球状原料を一列に収容する工程と,次いで,該前端を下
方に傾斜して保持した該円管を,該開口が該ボートの後
端部に設けられた該原料受容部の直上に位置するように
保持する工程と,次いで,該円管を,該開口より該円管
の後端側の該円管内壁面に設けらた段差が下方に位置
し,最前端の該球状原料が該段差に当接して停止する第
一の回転位置まで該円管軸廻りに回転する工程と,次い
で,該円管を,該第一の回転位置で停止している該最前
端の球状原料の中心とその次に位置する該球状原料の中
心との間の該円管内壁面に設けられた突起が下方に位置
し,該次に位置する球状原料が該突起に当接して停止す
る第二の回転位置まで該円管軸廻りに回転する工程とを
有し,該円管を該第一の回転位置から該第二の回転位置
まで回転して該円管内の最先端の球状原料を該円管の前
端部に送出し,該第一の回転位置から該第二の回転位置
まで回転する毎に一個の該球状原料を該開口から該原料
受給部に投下することを特徴とする半導体の製造方法。
6. A boat holding a melt containing a plurality of elements having different distribution coefficients is moved in a horizontally provided core tube in a longitudinal direction of the core tube relative to the core tube,
In a method of manufacturing a semiconductor which is solidified from a front end of the boat to form a single crystal, the spherical raw material is placed in a circular pipe having a front end and a rear end sealed and an opening provided on a peripheral side surface of the front end for dropping the spherical raw material. Holding in a line, and then holding the circular tube, whose front end is inclined downward, so that the opening is located directly above the raw material receiving portion provided at the rear end of the boat. A step provided on the inner wall surface of the circular tube on the rear end side of the circular tube from the opening is located below, and the spherical raw material at the foremost end comes into contact with the step and stops. Rotating around the axis of the circular tube to a first rotational position, and then positioning the circular tube at the center of the frontmost spherical raw material stopped at the first rotational position and at the position next to the center. A projection provided on the inner wall surface of the circular tube between the center of the spherical raw material is located below, and is located next to the projection. Rotating the circular tube from the first rotational position to the second rotational position until the raw material comes into contact with the projections and stops around the circular tube axis to a second rotational position where the raw material stops. Then, the most advanced spherical raw material in the circular tube is sent to the front end of the circular tube, and each time the spherical raw material rotates from the first rotational position to the second rotational position, one spherical raw material is discharged from the opening through the opening. A method for manufacturing a semiconductor, comprising: dropping a material into a raw material receiving unit.
【請求項7】 分配係数の異なる複数の元素を含む融液
を保持するボートを水平に設置された炉心管内を該炉心
管に対して相対的に移動して,該融液を該ボートの前端
部から固化させて単結晶とする半導体の製造方法におい
て,該ボート内の初期原料が溶融して該融液が形成され
たのち,該ボート内の該融液を前後に2分しかつ2分さ
れた前後の該融液を連結する貫通孔を有する隔壁を,該
融液上から該融液内に移動し又は該融液中を前後に移動
する工程と,次いで,該ボート内を原料受給部を含む後
部と該原料受給部を含まない前部に仕切る位置に該隔壁
を停止する工程と,次いで,該ボートを該炉心管と相対
的に移動させつつ,該原料受給部に粒状原料を補給する
工程とを有することを特徴とする半導体の製造方法。
7. A boat holding a melt containing a plurality of elements having different distribution coefficients is moved in a horizontally installed core tube relative to the core tube, and the melt is moved to the front end of the boat. In the method for manufacturing a semiconductor which is solidified from a portion to form a single crystal, after the initial raw material in the boat is melted and the melt is formed, the melt in the boat is divided into two parts by forward and backward and two minutes Moving a partition having a through-hole connecting the melt before and after the melt from the melt into the melt or moving the melt back and forth, and then receiving the raw material in the boat. Stopping the partition wall at a position separating a rear portion including a portion and a front portion not including the raw material receiving portion, and then moving the boat relative to the furnace tube while adding the granular raw material to the raw material receiving portion. And a replenishing step.
JP22209696A 1996-08-23 1996-08-23 Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method Withdrawn JPH1067592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22209696A JPH1067592A (en) 1996-08-23 1996-08-23 Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22209696A JPH1067592A (en) 1996-08-23 1996-08-23 Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method

Publications (1)

Publication Number Publication Date
JPH1067592A true JPH1067592A (en) 1998-03-10

Family

ID=16777081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22209696A Withdrawn JPH1067592A (en) 1996-08-23 1996-08-23 Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPH1067592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250640B2 (en) 1999-06-09 2007-07-31 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
CN118064960A (en) * 2024-03-05 2024-05-24 安徽科瑞思创晶体材料有限责任公司 Continuous growth horizontal Bridgman furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250640B2 (en) 1999-06-09 2007-07-31 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
US7508003B2 (en) 1999-06-09 2009-03-24 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed thereon
US8591647B2 (en) 1999-06-09 2013-11-26 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed thereon
US9869033B2 (en) 1999-06-09 2018-01-16 Ricoh Company, Ltd. Production of a GaN bulk crystal substrate and a semiconductor device formed on a GaN bulk crystal substrate
CN118064960A (en) * 2024-03-05 2024-05-24 安徽科瑞思创晶体材料有限责任公司 Continuous growth horizontal Bridgman furnace

Similar Documents

Publication Publication Date Title
US8986446B2 (en) Si-doped GaAs single crystal ingot and process for producing the same, and Si-doped GaAs single crystal wafer produced from Si-doped GaAs single crystal ingot
US5454346A (en) Process for growing multielement compound single crystal
CN118854432B (en) Method for growing a single crystal silicon ingot by the continuous Czochralski method
KR880001425B1 (en) Method of manufacturing single crystals
TW201109483A (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US6179914B1 (en) Dopant delivery system and method
JP2012041200A (en) Crystal growth method
JPH1067592A (en) Horizontal Bridgman crystal growth furnace and semiconductor manufacturing method
JP3648703B2 (en) Method for producing compound semiconductor single crystal
WO2005121416A1 (en) Method and apparatus for preparing crystal
JP2009190914A (en) Semiconductor crystal manufacturing method
JP2690419B2 (en) Single crystal growing method and apparatus
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
WO2003068696A1 (en) Production method for compound semiconductor single crystal
JPH08151299A (en) Compound semiconductor synthesizing method and single crystal growing method, compound semiconductor synthesizing apparatus and single crystal growing apparatus
JP3885245B2 (en) Single crystal pulling method
JP3253005B2 (en) Method for producing solid solution single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP4576571B2 (en) Method for producing solid solution
JP4817670B2 (en) Crystal growth equipment
JPH0948697A (en) Production of lithium triborate single crystal
JP2001072488A (en) Method for producing solid solution single crystal
JP2006213554A (en) Crystal growth method and apparatus
JPH09208360A (en) Single crystal growth method
TWI513865B (en) Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104