JPH1062220A - Thermal air-flowemeter - Google Patents
Thermal air-flowemeterInfo
- Publication number
- JPH1062220A JPH1062220A JP8223489A JP22348996A JPH1062220A JP H1062220 A JPH1062220 A JP H1062220A JP 8223489 A JP8223489 A JP 8223489A JP 22348996 A JP22348996 A JP 22348996A JP H1062220 A JPH1062220 A JP H1062220A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- resistor
- temperature measuring
- heating
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
- Micromachines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、熱式空気流量計に
係り、特に内燃機関の吸入空気量を測定するのに好適な
熱式空気流量計に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal air flow meter, and more particularly to a thermal air flow meter suitable for measuring an intake air amount of an internal combustion engine.
【0002】[0002]
【従来の技術】従来より自動車などの内燃機関の電子制
御燃料噴射装置に設けられ吸入空気量を測定する空気流
量計として、熱式のものが質量空気量を直接検知できる
ことから主流となってきている。この中で特に、半導体
マイクロマシニング技術により製造された空気流量計
が、コストが低減でき且つ低電力で駆動することが出来
ることから注目されてきた。このような従来の半導体基
板を用いた熱式空気流量計としては、例えば、特開昭6
0−142268号公報および特開平7−174600
号公報等に記載の技術がある。上記公報に開示された技
術では、製造コストはある程度低減されている。2. Description of the Related Art Conventionally, as an air flow meter which is provided in an electronically controlled fuel injection device of an internal combustion engine of an automobile or the like and measures an intake air amount, a thermal air flow meter has become mainstream since it can directly detect a mass air amount. I have. Among them, an air flow meter manufactured by a semiconductor micromachining technology has attracted particular attention because it can reduce cost and can be driven with low power. Such a thermal air flow meter using a conventional semiconductor substrate is disclosed in, for example,
0-142268 and JP-A-7-174600
There is a technique described in Japanese Patent Publication No. According to the technology disclosed in the above publication, the manufacturing cost is reduced to some extent.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術には、流量測定に際しての、計測レンジが狭い、
ノイズが大きい、耐塵埃信頼性が十分でない等の課題が
あった。以下、これについて詳説する。However, the above-mentioned prior art has a narrow measurement range when measuring the flow rate.
There were problems such as high noise and insufficient dust resistance reliability. Hereinafter, this will be described in detail.
【0004】図11は従来の熱式空気流量計の測定素子
の平面図であり、上記特開昭60−142268号公報
に記載の第2図であり、この図11を参照し説明する。
図において、1が熱式空気流量計の測定素子で、シリコ
ン等の半導体基板を異方性エッチングにより形成した空
洞(23a,23b,23c)を架橋する電気絶縁膜から
なる2本の橋24aと24bを有し、空気の流れの上流
側が橋24a、下流側が橋24bとなっている。2本の
橋24aと24bとの間の開口した空洞23cを挟んで
発熱抵抗体4を配置し、これらの橋24a,24bには
発熱抵抗体4の側部に各々測温抵抗体5,7が配置さ
れ、更に、電気絶縁膜の空洞23aの上流側の一部に空
気温度を測定する空気温度測温抵抗体8を配設してい
る。また、空洞23a,23bおよび23cは、電気絶
縁膜の開口部を利用して半導体基板を異方性エッチング
することから、電気絶縁膜の橋24a,24b下で連続
した一体の空洞となっている。FIG. 11 is a plan view of a measuring element of a conventional thermal air flow meter, which is FIG. 2 described in JP-A-60-142268, which will be described with reference to FIG.
In the figure, reference numeral 1 denotes a measuring element of a thermal air flow meter, and two bridges 24a made of an electric insulating film bridging cavities (23a, 23b, 23c) formed by anisotropic etching of a semiconductor substrate such as silicon. 24b, the upstream side of the air flow is the bridge 24a, and the downstream side is the bridge 24b. The heating resistors 4 are arranged with an open cavity 23c between the two bridges 24a and 24b, and these bridges 24a and 24b are respectively connected to the temperature measuring resistors 5 and 7 on the sides of the heating resistor 4. And an air temperature measuring resistor 8 for measuring the air temperature is provided in a part of the electrical insulating film on the upstream side of the cavity 23a. Further, since the cavities 23a, 23b and 23c are anisotropically etched on the semiconductor substrate using the openings of the electric insulating film, they are continuous and integrated under the bridges 24a and 24b of the electric insulating film. .
【0005】このような空気流量計では、空気温度測温
抵抗体8により定められる空気温度よりも一定温度高い
温度となるように発熱抵抗体4が加熱駆動される。空気
流量は、空気の熱運搬効果を利用して、流路の上流側測
温抵抗体5と下流側測温抵抗体7との間に生じる温度差
から計測される。[0005] In such an air flow meter, the heating resistor 4 is driven to be heated to a temperature higher than the air temperature determined by the air temperature measuring resistor 8 by a certain temperature. The air flow rate is measured from the temperature difference generated between the upstream temperature measuring resistor 5 and the downstream temperature measuring resistor 7 of the flow channel by utilizing the heat transport effect of air.
【0006】図12は、従来の他の熱式空気流量計を説
明する図であり、特開平7−174600号公報の図1
に記載の測定素子の平面図である。測定素子1は、前記
の従来例と同じように半導体基板2上に電気絶縁膜11
を形成し、公知のホトリソグラフィ技術により電気絶縁
膜11の一部をエッチングし、更に、このエッチング部
の半導体基板2を異方性エッチングして空洞23d,2
3eを形成する。この空洞23dと23eは、前記の従
来例と同じように電気絶縁膜の橋24下で連続した一体
の空洞を形成している。この従来例では、橋24上に発
熱抵抗体4とこれに近接して測温抵抗体5が空気流の上
流側に配設され、さらに、空気温度測温抵抗体8が測定
素子1の最上流に配設される。FIG. 12 is a view for explaining another conventional thermal air flow meter, which is disclosed in Japanese Patent Application Laid-Open No. 7-174600.
It is a top view of the measuring element of 3. The measuring element 1 is provided on the semiconductor substrate 2 with the electric insulating film 11 in the same manner as in the conventional example.
Is formed, a part of the electrical insulating film 11 is etched by a known photolithography technique, and further, the semiconductor substrate 2 in the etched portion is anisotropically etched to form the cavities 23d and 2d.
3e is formed. The cavities 23d and 23e form a continuous integral cavity under the bridge 24 of the electric insulating film, as in the above-described conventional example. In this conventional example, the heating resistor 4 and the temperature measuring resistor 5 are disposed on the bridge 24 in the vicinity of the upstream side of the air flow, and the air temperature measuring resistor 8 is located at Installed upstream.
【0007】このような空気流量計では、空気温度測温
抵抗体8で検知される空気温度より測温抵抗体5が一定
温度高くなるように発熱抵抗体4を加熱(傍熱)駆動す
る。空気流量は、空気の流量が増加するに従い冷却され
る測温抵抗体5を傍熱する発熱抵抗体4に流す加熱電流
から計測する。In such an air flow meter, the heating resistor 4 is heated (indirectly heated) so that the temperature of the temperature measuring resistor 5 becomes higher than the air temperature detected by the air temperature measuring resistor 8 by a certain temperature. The air flow rate is measured from a heating current flowing through the heating resistor 4 that indirectly heats the temperature measuring resistor 5 that is cooled as the air flow rate increases.
【0008】そして、図11に示す測定素子では、前記
特開昭7−174600号公報の明細書の項目(001
2)に記載されているように、空気流量が大流速域で出
力変化が小さく、直線性が悪くなり、計測可能な流速レ
ンジが狭くなる問題がある。これを改善したのが図12
に示した測定素子だが、この従来例においては、空気の
流れの方向が検知出来ないという問題がある。更には、
図11,図12の両方の従来例に共通する問題として、
空気流量を計測する上で重要な空気流と接する検出有効
面積(この従来例では測温抵抗体5,7の空気流に接す
る面積)が小さいことにより出力ノイズが大きいこと、
また、空気流に接する測定素子の表面に空洞23a,2
3b,23c,23d,23eが開口しており、自動車
等の過酷な条件で使用される場合、上記開口部に塵埃等
が蓄積し長期間に渡って信頼性の高い計測が出来ない等
がある。In the measuring device shown in FIG. 11, the item (001) of the specification of Japanese Patent Application Laid-Open No. 7-174600 is referred to.
As described in 2), there is a problem in that the output change is small in a large air flow rate region, the linearity is deteriorated, and the measurable flow speed range is narrowed. FIG. 12 shows the improvement.
However, in this conventional example, there is a problem that the direction of air flow cannot be detected. Furthermore,
As a problem common to both the conventional examples of FIGS.
A large effective output noise due to a small detection effective area in contact with the airflow which is important in measuring the airflow (the area in contact with the airflow of the resistance temperature detectors 5 and 7 in this conventional example);
Further, the cavities 23a and 23a are provided on the surface of the measuring element in contact with the air flow.
3b, 23c, 23d, and 23e are open, and when used under severe conditions such as an automobile, dust and the like accumulate in the openings, and highly reliable measurement cannot be performed over a long period of time. .
【0009】従って、本発明の目的は、従来技術の上記
課題を解決し、流量計測の流速レンジが広く、出力ノイ
ズが小さく、耐塵埃信頼性の高い熱式空気流量計を提供
することにある。Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a thermal air flow meter having a wide flow velocity range for flow measurement, a small output noise, and a high dust-proof reliability. .
【0010】[0010]
【課題を解決するための手段】上記目的を達成する熱式
空気流量計は、被測定流体の上流側の測温抵抗体と下流
側の測温抵抗体との間に中央測温抵抗体を並設した測温
抵抗体群および該測温抵抗体群を近接包囲し配設した発
熱抵抗体を有する測定素子と、前記中央測温抵抗体の温
度が一定値になるように前記発熱抵抗体の加熱を制御す
る加熱制御手段と、前記上流側測温抵抗体と前記下流側
測温抵抗体との温度差に基づいて前記被測定流体の流れ
方向および流量を検知する流量計測手段とを備えたもの
である。In order to achieve the above object, a thermal air flow meter has a central temperature measuring resistor between a temperature measuring resistor upstream and a temperature measuring resistor downstream of a fluid to be measured. A measuring element having a side-by-side temperature measuring resistor group and a heat-generating resistor arranged in close proximity to and surrounding the temperature-measuring resistor group; and the heat-generating resistor so that the temperature of the central temperature measuring resistor becomes constant. Heating control means for controlling the heating of the fluid, and flow rate measuring means for detecting the flow direction and the flow rate of the fluid to be measured based on the temperature difference between the upstream temperature measuring resistor and the downstream temperature measuring resistor. It is a thing.
【0011】また、本発明による熱式空気流量計の他の
特徴は、上面を電気絶縁膜で被覆した半導体基板の該電
気絶縁膜上に、被測定流体の上流側測温抵抗体と下流側
測温抵抗体との間に中央測温抵抗体を並設した測温抵抗
体群と,該測温抵抗体群を近接包囲し配設した発熱抵抗
体と,前記測温抵抗体群及び前記発熱抵抗体から離間し
た位置に配設した空気温度測温抵抗体と,を形成してな
る測定素子と、前記中央測温抵抗体と前記空気温度測温
抵抗体の温度差を一定に保つように前記発熱抵抗体に流
す加熱電流を制御する加熱制御手段と、前記上流側測温
抵抗体と前記下流側測温抵抗体との温度差に基づいて前
記被測定流体の流れ方向および流量を検知する流量計測
手段とを備えるにある。Another feature of the thermal air flow meter according to the present invention is that a temperature measuring resistor upstream and downstream of a fluid to be measured is provided on the electric insulating film of a semiconductor substrate whose upper surface is covered with the electric insulating film. A temperature measuring resistor group in which a central temperature measuring resistor is juxtaposed between the temperature measuring resistor, a heating resistor surrounding and surrounding the temperature measuring resistor group, A measuring element formed with an air temperature measuring resistor disposed at a position separated from the heating resistor, and a temperature difference between the central temperature measuring resistor and the air temperature measuring resistor is kept constant. Heating control means for controlling a heating current flowing through the heating resistor, and detecting a flow direction and a flow rate of the fluid to be measured based on a temperature difference between the upstream temperature measuring resistor and the downstream temperature measuring resistor. And a flow rate measuring means.
【0012】本発明によれば、上下流側の測温抵抗体を
発熱抵抗体で近接包囲し両測温抵抗体が成す温度差を大
きく検出できるように配設したので、流量計測時のダイ
ナミックレンジ及び対ノイズ性の改善が図られる。According to the present invention, the temperature measuring resistors on the upstream and downstream sides are closely surrounded by the heating resistors and disposed so as to detect a large temperature difference between the two temperature measuring resistors. The range and noise immunity are improved.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照し説明する。図1は、本発明による第一
実施例の測定素子を示す平面図である。熱式空気流量計
用の第一実施例の測定素子1を示している。図2は、図
1のA−A’断面を示す図である。
図1,2において、測定素
子1は、シリコン等からなる半導体基板2と、該半導体
基板2の上面に被膜形成されて後述する空洞3の上面側
を塞いでいる電気絶縁膜11aと、該電気絶縁膜11a
上に形成された発熱抵抗体4a及び4b,測温抵抗体
5,6,7,空気温度を計測するための空気温度測温抵
抗体8,各抵抗体からの信号を外部回路に引き出すため
の複数個の端子電極9と、各抵抗体や端子電極9等を保
護するために被覆形成されている電気絶縁膜11bとか
ら構成される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing a measuring element according to a first embodiment of the present invention. 1 shows a measuring element 1 of a first embodiment for a thermal air flow meter. FIG. 2 is a diagram showing a cross section taken along line AA ′ of FIG.
1 and 2, a measuring element 1 includes a semiconductor substrate 2 made of silicon or the like, an electric insulating film 11a formed on the upper surface of the semiconductor substrate 2 to cover an upper surface of a cavity 3 described later, Insulating film 11a
The heating resistors 4a and 4b formed above, the temperature measuring resistors 5, 6, 7, an air temperature measuring resistor 8 for measuring the air temperature, and a signal for drawing out signals from each resistor to an external circuit. It is composed of a plurality of terminal electrodes 9 and an electric insulating film 11b formed so as to protect each resistor, the terminal electrodes 9, and the like.
【0014】そして、一対の測温抵抗体5および7は、
発熱抵抗体4(4a,4b)に囲まれており、且つ、空気
流10に対して上流側の測温抵抗体5は上流側の発熱抵
抗体4aに、下流側の測温抵抗体7は下流側の発熱抵抗
体4bに近接して各々配置されている。また、測温抵抗
体6は、測温抵抗体5および7に挟まれて配置されてい
る。従って、空気流10の上流側から、発熱抵抗体4
a,測温抵抗体5,測温抵抗体6,測温抵抗体7,発熱
抵抗体4bの順に隣接並置されている。The pair of resistance temperature detectors 5 and 7 are
The heating resistor 4 (4a, 4b) is surrounded by the heating resistor 4 on the upstream side with respect to the air flow 10; the heating resistor 4a on the upstream side; The heating resistors 4b are arranged in the vicinity of the downstream heating resistors 4b. The resistance temperature detector 6 is disposed between the resistance temperature detectors 5 and 7. Therefore, from the upstream side of the airflow 10, the heating resistor 4
a, the temperature measuring resistor 5, the temperature measuring resistor 6, the temperature measuring resistor 7, and the heating resistor 4b are arranged adjacently in this order.
【0015】換言すれば、測定素子1は、被測定流体と
しての空気流10に対して、上流側に位置する上流側測
温抵抗体としての測温抵抗体5と下流側に位置する下流
側測温抵抗体としての測温抵抗体7との間に、中央測温
抵抗体としての測温抵抗体6を並設した測温抵抗体群
(測温抵抗体5,測温抵抗体6,測温抵抗体7)、および
該測温抵抗体群を近接包囲し配設した発熱抵抗体4(発
熱抵抗体4a,4b)を有すると言える。尚、測温抵抗
体5,6,7および発熱抵抗体4a及び4bの個数は1
個ずつに限定されるものではない。In other words, the measuring element 1 is connected to the airflow 10 as the fluid to be measured by the temperature measuring resistor 5 as the upstream temperature measuring resistor and the downstream temperature measuring resistor 5 located on the downstream side. A resistance thermometer group in which a resistance thermometer 6 as a central resistance thermometer is juxtaposed with a resistance thermometer 7 as a resistance thermometer
It can be said that there are (resistance temperature element 5, temperature resistance resistor 6, temperature resistance resistor 7), and the heating resistor 4 (heating resistor 4a, 4b) in which the temperature sensing resistor group is arranged in close proximity. . The number of the temperature measuring resistors 5, 6, 7 and the number of the heating resistors 4a and 4b are one.
It is not limited to individual items.
【0016】また、測温抵抗体5,6,7と発熱抵抗体
4a及び4bとが形成される電気絶縁膜11aの該半導
体基板2の部位には、半導体基板2の下面側(開口部3
a)から異方性エッチングにより電気絶縁膜11aの境
界面まで穿孔されて、空洞3が設けられている。さら
に、上流側と下流側とに振り分けられて配置形成された
発熱抵抗体4a及び4bは直列に接続されおり、2つの
端子電極9(,)に接続されている。そして、中央に
配置された測温抵抗体6の温度が空気流10の流路先端
に配置された空気温度測温抵抗体8の温度より一定温度
高くなるように、発熱抵抗体4(4a,4b)には、端子
電極9(,)から加熱(傍熱)電流が流されている。In addition, a portion of the electric insulating film 11a on which the temperature measuring resistors 5, 6, 7 and the heating resistors 4a and 4b are formed on the semiconductor substrate 2 is provided on the lower surface side of the semiconductor substrate 2 (the opening 3).
A cavity 3 is provided by drilling a hole from a) to the boundary surface of the electric insulating film 11a by anisotropic etching. Further, the heat generating resistors 4a and 4b which are arranged separately on the upstream side and the downstream side are connected in series and connected to two terminal electrodes 9 (,). Then, the heating resistor 4 (4a, 4a, 4a, 4b) is arranged so that the temperature of the temperature measuring resistor 6 disposed at the center becomes higher than the temperature of the air temperature measuring resistor 8 disposed at the end of the flow path of the air flow 10 by a certain temperature. In 4b), a heating (indirect heat) current is flowing from the terminal electrodes 9 (,).
【0017】一方、空気流10の空気流量ならびに方向
は、発熱抵抗体4の上流側部分4aと下流側部分4bに
近接して配置された、上流側部分4aと下流側部分4b
の温度を計測するための一対の測温抵抗体5,7の各温
度(温度に対応した各抵抗値)によって検知される。即
ち、測温抵抗体5,7は、空気流が零のときは、測温抵
抗体6の温度とほぼ同じ温度となり、温度差は生じてい
ない。 しかし、 空気流10が図1に示す順流方向のと
きは、主に発熱抵抗体4の上流側部分4aの方が下流側
部分4bより空気流10による冷却効果が大きいことか
ら、発熱抵抗体4の上流側部分4aに近接した測温抵抗
体5の温度が、下流側部分4bに近接した測温抵抗体7
の温度より低い値となる。On the other hand, the air flow rate and the direction of the air flow 10 are determined by the upstream portion 4a and the downstream portion 4b arranged close to the upstream portion 4a and the downstream portion 4b of the heating resistor 4.
Is detected by each temperature (each resistance value corresponding to the temperature) of the pair of temperature measuring resistors 5 and 7 for measuring the temperature. That is, when the airflow is zero, the temperature of the resistance temperature detectors 5 and 7 is substantially the same as the temperature of the resistance temperature element 6, and no temperature difference occurs. However, when the air flow 10 is in the forward flow direction shown in FIG. 1, the cooling effect of the air flow 10 is mainly larger in the upstream portion 4a of the heating resistor 4 than in the downstream portion 4b. The temperature of the resistance bulb 5 close to the upstream part 4a of the sensor element is changed to the resistance of the resistance bulb 7 close to the downstream part 4b.
Is lower than the temperature of.
【0018】また、空気流10が図1と反対の逆流方向
のときは、逆に下流側部分4bの測温抵抗体7の温度が
上流側部分4aの測温抵抗体5の温度より低くなる。こ
のように、空気流量は、上記の測温抵抗体5及び7の温
度差(抵抗値差)が空気流量に比例することを利用して、
温度差の大小より計測できる。そして、空気流10の方
向は、測温抵抗体5,7の温度(抵抗値)の大小比較から
検出できる。On the other hand, when the air flow 10 is in the reverse flow direction opposite to that in FIG. 1, the temperature of the temperature measuring resistor 7 in the downstream portion 4b is lower than the temperature of the temperature measuring resistor 5 in the upstream portion 4a. . As described above, the air flow rate utilizes the fact that the temperature difference (resistance difference) between the above-mentioned resistance temperature detectors 5 and 7 is proportional to the air flow rate.
It can be measured from the magnitude of the temperature difference. Then, the direction of the air flow 10 can be detected from the magnitude comparison of the temperatures (resistance values) of the resistance temperature detectors 5 and 7.
【0019】ところで、空洞3上の電気絶縁膜11a上
にて、発熱抵抗体4a,4bは測温抵抗体5,6,7を
囲むように 配置形成されており、 本実施例の発熱抵抗
体4(4a,4b)の面積は、 従来例の1個の発熱抵抗
体の面積に比較して広い(検出有効面積が広い)構成にな
るので、 空気流量信号が大きく取り出せて、ダイナミ
ックレンジが広く取れる。かつ、空気流の局所的な乱れ
に対して平均的な出力になる、換言すれば出力に対する
ノイズ比(N/S)が小さくなることから、対ノイズに強
い構成となっている。On the electric insulating film 11a on the cavity 3, the heating resistors 4a and 4b are formed so as to surround the temperature measuring resistors 5, 6, and 7, respectively. The area of 4 (4a, 4b) is wider (effective detection area) than the area of one heating resistor in the conventional example, so that a large air flow signal can be taken out and the dynamic range is wide. I can take it. In addition, since the output becomes an average with respect to the local turbulence of the air flow, in other words, the noise ratio (N / S) to the output becomes small, so that the configuration is strong against noise.
【0020】さらに、図1に示すように、空気温度測温
抵抗体8は、半導体基板2の先端の測温抵抗体群(5,6,
7)及び発熱抵抗体4から離間した位置に、空気流10の
流路に突き出て配設されており、空気流10が順流また
は逆流のいずれの場合においても、発熱抵抗体4に加熱
された空気流の影響を受けない位置に配設されており精
度の高い空気流量の計測が可能となっている。Further, as shown in FIG. 1, the air temperature measuring resistor 8 includes a temperature measuring resistor group (5, 6,
7) and is disposed at a position separated from the heating resistor 4 so as to protrude into the flow path of the airflow 10 and is heated by the heating resistor 4 regardless of whether the airflow 10 is a forward flow or a reverse flow. It is arranged at a position that is not affected by the air flow, and enables highly accurate measurement of the air flow rate.
【0021】図3は、本発明による第二実施例の測定素
子を示す平面図である。熱式空気流量計用の第二実施例
の測定素子1を示している。図3に示す第二実施例の測
定素子1は、図1の第一実施例とほぼ同様の構成となっ
ている。第一実施例と異なるのは、発熱抵抗体4の一部
が、測温抵抗体5,6,7の各抵抗体の挟間に延展され
て構成されている点である。このように構成することに
より、発熱抵抗体4が、さらに緻密に配置されるので測
温抵抗体5,6,7の加熱がより効果的にできる利点が
生まれる。FIG. 3 is a plan view showing a measuring element according to a second embodiment of the present invention. 5 shows a measuring element 1 of a second embodiment for a thermal air flow meter. The measuring element 1 of the second embodiment shown in FIG. 3 has substantially the same configuration as the first embodiment of FIG. The difference from the first embodiment is that a part of the heat generating resistor 4 is configured to extend between the resistors of the temperature measuring resistors 5, 6, and 7. With such a configuration, the heating resistors 4 are more densely arranged, so that there is an advantage that the heating of the temperature measuring resistors 5, 6, and 7 can be more effectively performed.
【0022】図4は、図1または図3の測定素子を実装
した本発明による一実施例の熱式空気流量計の断面を示
す図である。例えば、自動車等の内燃機関の吸気通路に
実装した熱式空気流量計の実施例を示す断面図である。
熱式空気流量計は、図のように、測定素子1と支持体1
4と外部回路15とを含み構成される。そして吸気通路
12の内部にある副通路13に測定素子1が配置され
る。外部回路15は支持体14を介して測定素子1の端
子電極9に電気的に接続されている。ここで、通常では
被測定流体としての吸入空気は空気流10で示された方
向に流れており、内燃機関の条件によって空気流10と
は逆の方向(逆流)に吸入空気が流れる。FIG. 4 is a view showing a cross section of a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 or 3 is mounted. For example, it is a cross-sectional view showing an embodiment of a thermal air flow meter mounted in an intake passage of an internal combustion engine such as an automobile.
As shown in the figure, the thermal air flow meter has a measuring element 1 and a support 1.
4 and an external circuit 15. Then, the measuring element 1 is arranged in the sub-passage 13 inside the intake passage 12. The external circuit 15 is electrically connected to the terminal electrode 9 of the measuring element 1 via the support 14. Here, normally, the intake air as the fluid to be measured flows in the direction indicated by the airflow 10, and the intake air flows in the opposite direction (backflow) to the airflow 10 depending on the conditions of the internal combustion engine.
【0023】図5は、図4の測定素子部を示す拡大図で
ある。測定素子部は測定素子1および支持体14からな
っている。図6,図7は、図5のB−B’断面及びC−
C’断面を示す図である。図5〜図7に示すように、測
定素子1は、空気温度測温抵抗体8の表裏面が空気流1
0に直接晒されるように支持体14b上に固定され、更
に、端子電極16および信号処理回路を有し、アルミナ
等の電気絶縁基板上に形成された信号処理回路の一部と
しての外部回路15が、同じく支持体14b上に固定さ
れている。FIG. 5 is an enlarged view showing the measuring element section of FIG. The measuring element section includes the measuring element 1 and the support 14. 6 and 7 are sectional views taken along the line BB ′ of FIG.
It is a figure which shows C 'cross section. As shown in FIG. 5 to FIG. 7, the measuring element 1 has an air flow
The external circuit 15 is fixed on the supporting body 14b so as to be directly exposed to the external circuit 15 and has a terminal electrode 16 and a signal processing circuit, and is a part of a signal processing circuit formed on an electrically insulating substrate such as alumina. Are also fixed on the support 14b.
【0024】この測定素子1と外部回路15は、端子電
極9及び端子電極16間を金線17等でワイヤボンディ
ングにより電気的に接続された後、金線17、端子電極
9,16や外部回路15を保護するために支持体14a
により密封保護される。 このように実装された測定素
子1は、図6〜図7に示すように、空洞3の下面は支持
体14bにより、空洞3の上面は電気絶縁膜11により
塞がれて、空気流10に対してほぼ隔離されている。従
って、上記したような本実施例を採用すれば、従来例の
ように空洞3が空気流10に対して開口している部分が
なくなるので、自動車等の内燃機関の空気流量を計測す
る際に問題となる塵埃等が、空洞部あるいは開口部に蓄
積することがなく信頼性の高い計測が可能となる。The measuring element 1 and the external circuit 15 are electrically connected between the terminal electrode 9 and the terminal electrode 16 by wire bonding with a gold wire 17 or the like, and then the gold wire 17, the terminal electrodes 9, 16 and the external circuit 15 are connected. 15 to protect 15
Is sealed and protected. As shown in FIGS. 6 and 7, the measuring element 1 mounted as described above has the lower surface of the cavity 3 closed by the support 14 b and the upper surface of the cavity 3 closed by the electric insulating film 11, and Almost isolated. Therefore, if the present embodiment as described above is employed, there is no portion where the cavity 3 is open to the airflow 10 as in the conventional example, so that when measuring the airflow rate of the internal combustion engine of an automobile or the like, Dust and the like that cause a problem do not accumulate in the cavity or the opening, and highly reliable measurement can be performed.
【0025】また、自動車等の内燃機関では、内燃機関
の熱により図4に示す吸気通路12および支持体14の
温度が上昇し、さらに、この熱が測定素子1に伝わり、
空気流量の計測に誤差を生じさせ温度特性を悪くするこ
とがある。これに対して、本実施例では、図5に示すよ
うに、空気温度測温抵抗体8は、支持体14より最も遠
い場所に配置され、更に、支持体14から突き出して配
置したことにより、空気流10に表裏面ともに晒され、
放熱が十分になされることから、上記吸気通路12およ
び支持体14の温度上昇による影響を殆ど受けない温度
特性の優れた構成となっている。更には、図6のB−
B’断面に示したように、空気流10に対して支持体1
4bの先端形状を流線型にしたことにより、空気流10
が測定素子1に至る位置においても空気流の乱れがなく
一様に流れることから、更にノイズの少ない計測が可能
となる。In an internal combustion engine of an automobile or the like, the temperature of the intake passage 12 and the support 14 shown in FIG. 4 rises due to the heat of the internal combustion engine.
An error may occur in the measurement of the air flow rate and the temperature characteristics may be deteriorated. On the other hand, in the present embodiment, as shown in FIG. 5, the air temperature measuring resistor 8 is disposed at a position farthest from the support 14 and further protrudes from the support 14. Both sides are exposed to the airflow 10,
Since the heat is sufficiently dissipated, the configuration is excellent in the temperature characteristic which is hardly affected by the temperature rise of the intake passage 12 and the support 14. Further, FIG.
As shown in the section B ′, the support 1
4b has a streamlined tip shape, so that the airflow 10
Can flow even at a position reaching the measuring element 1 without turbulence in the air flow, so that measurement with less noise can be performed.
【0026】次に、図8,図9および図10を参照し、
本実施例の測定素子1を用いて被測定流体の流れ方向お
よび流量を検知する構成と動作について説明する。図8
は、本発明による熱式空気流量計の一実施例の加熱回路
を示す図である。図1または図3に示した測定素子1の
抵抗体4(4a,4b),6,8と信号処理のための外部
回路15とからなって、発熱抵抗体4の加熱を制御する
加熱制御手段としての加熱回路が示されている。図9
は、本発明による熱式空気流量計の一実施例の計測回路
を示す図である。図1または図3に示した測定素子1の
抵抗体4(4a,4b),5,7と外部回路15とからな
って、被測定流体の流れ方向および 流量を検知する流
量計測手段としての計測回路が示されている。 図中
の、18a,18bは差動増幅噐、19は発熱抵抗体4
に加熱(傍熱)電流を流すためのトランジスタ、20は電
源、21a,21b,21c,21d,21eは抵抗で
ある。Next, referring to FIG. 8, FIG. 9 and FIG.
A configuration and operation for detecting the flow direction and the flow rate of the fluid to be measured using the measuring element 1 of the present embodiment will be described. FIG.
FIG. 1 is a diagram showing a heating circuit of one embodiment of a thermal air flow meter according to the present invention. Heating control means for controlling the heating of the heating resistor 4, comprising resistors 4 (4 a, 4 b), 6, 8 of the measuring element 1 shown in FIG. 1 or 3 and an external circuit 15 for signal processing. As a heating circuit. FIG.
FIG. 1 is a diagram showing a measurement circuit of one embodiment of a thermal air flow meter according to the present invention. Measurement as flow rate measuring means for detecting the flow direction and flow rate of the fluid to be measured, comprising the resistors 4 (4a, 4b), 5, 7 of the measuring element 1 shown in FIG. The circuit is shown. In the figure, 18a and 18b are differential amplifiers, and 19 is a heating resistor 4
, A transistor for passing a heating (indirectly heated) current, a power supply 20, and resistors 21a, 21b, 21c, 21d, and 21e.
【0027】図8において、測温抵抗体6、空気温度測
温抵抗体8、抵抗21b,21cよりなるブリッジ回路
は、 測定素子1の中心部に位置する測温抵抗体6の温
度(抵抗値)が空気温度に対応する空気温度測温抵抗体8
の温度(抵抗値)より ある一定値(例えば150℃)高く
なるよう各抵抗値が設定される。換言すれば、測温抵抗
体6の温度が、設定値より低い場合にはブリッジ回路の
中点の電位AとB間に差が生じ、差動増幅噐18aの出
力Cによりトランジスタ19がオンし、発熱抵抗体4に
加熱電流が流れる。発熱抵抗体4により傍熱された測温
抵抗体6の温度が設定値に達すると差動増幅噐18aの
出力Cによりトランジスタ19がオフし、加熱電流が遮
断される。このように、測温抵抗体6の温度が設定値
(一定)になるようにフィードバック加熱制御されてい
る。In FIG. 8, a bridge circuit composed of the resistance temperature detector 6, the air temperature resistance resistance 8, and the resistances 21b and 21c is connected to the temperature (resistance value) of the resistance temperature detector 6 located at the center of the measurement element 1. ) Is the air temperature measuring resistor 8 corresponding to the air temperature
Each resistance value is set so as to be higher by a certain value (for example, 150 ° C.) than the temperature (resistance value). In other words, when the temperature of the resistance bulb 6 is lower than the set value, a difference occurs between the potentials A and B at the middle point of the bridge circuit, and the transistor 19 is turned on by the output C of the differential amplifier 18a. Then, a heating current flows through the heating resistor 4. When the temperature of the resistance bulb 6 heated by the heating resistor 4 reaches the set value, the transistor 19 is turned off by the output C of the differential amplifier 18a, and the heating current is cut off. Thus, the temperature of the resistance bulb 6 is set to the set value.
Feedback heating control is performed so as to be (constant).
【0028】次に、空気流量と方向は、発熱抵抗体4の
上流側部分4aおよび下流側部分4bに近接包囲(配設)
された測温抵抗体5および7の温度(抵抗値)より検出す
る。図9において、計測回路は、測温抵抗体5,7およ
び抵抗21d,21eによりブリッジ回路を構成してい
て、測温抵抗体5,7の抵抗値差(ΔR)を取り出す出力
回路の一例である。測温抵抗体5は、発熱抵抗体4の上
流側部分4aに対応した温度(抵抗値)に、測温抵抗体7
は、下流側部分4bに対応した温度(抵抗値)となってい
る。ここで、差動増幅噐18bには、上流側部分4aと
測温抵抗体5の温度に対応する電位Dと、下流側部分4
bと測温抵抗体7の温度に対応する電位Eとが入力さ
れ、その電位差としてFが出力される。そして電位差F
の絶対値から空気流量が計測され、かつ電位差Fの正負
から空気流の方向が検出される。Next, the air flow rate and the direction are closely surrounded (arranged) by the upstream portion 4a and the downstream portion 4b of the heating resistor 4.
It is detected from the temperature (resistance value) of the measured resistance elements 5 and 7. In FIG. 9, the measuring circuit is an example of an output circuit that forms a bridge circuit with the resistance temperature detectors 5 and 7 and the resistances 21 d and 21 e and extracts a resistance value difference (ΔR) between the resistance temperature detectors 5 and 7. is there. The temperature measuring resistor 5 is set at a temperature (resistance value) corresponding to the upstream portion 4 a of the heating resistor 4.
Is a temperature (resistance value) corresponding to the downstream portion 4b. Here, the differential amplifier 18b has a potential D corresponding to the temperature of the upstream portion 4a and the temperature measuring resistor 5 and a potential D corresponding to the temperature of the downstream portion 4a.
b and a potential E corresponding to the temperature of the resistance bulb 7 are input, and F is output as the potential difference. And the potential difference F
Is measured from the absolute value of, and the direction of the air flow is detected from the positive or negative of the potential difference F.
【0029】さらに、被測定流体の流れ方向および流量
を検知する動作について詳説する。図10は、図1の測
定素子のA−A’断面および動作原理を示す図である。
図は、発熱抵抗体4(4a,4b)と測温抵抗体5,6,
7との温度分布を、空気流が順流および逆流の場合につ
いて摸式的に示したものである。図において、前述した
ように図8の加熱回路により、測温抵抗体6はある一定
の基準温度に設定されている。空気流が順流の場合に
は、上流側部分4aがより空気流により熱を奪われるこ
とから近接配置された測温抵抗体5の温度が低くなる。
一方、空気流が逆流の場合には、今度は逆に測温抵抗体
7の温度が低くなる。Further, the operation for detecting the flow direction and the flow rate of the fluid to be measured will be described in detail. FIG. 10 is a diagram showing a cross section AA ′ of the measuring element of FIG. 1 and an operation principle.
The figure shows the heating resistor 4 (4a, 4b) and the temperature measuring resistors 5, 6,
7 schematically shows the temperature distribution of No. 7 when the air flow is a forward flow and a reverse flow. In the figure, as described above, the resistance bulb 6 is set to a certain reference temperature by the heating circuit of FIG. When the air flow is a forward flow, the temperature of the temperature measuring resistor 5 disposed close to the upstream portion 4a is lowered since the upstream portion 4a receives more heat by the air flow.
On the other hand, when the air flow is the reverse flow, the temperature of the resistance temperature detector 7 is lowered.
【0030】即ち、図10に示したように発熱抵抗体4
a,4bに近接配置された測温抵抗体5,7の温度(抵
抗値)を比較することにより、例えば、「測温抵抗体7の
抵抗値−測温抵抗体5の抵抗値=正のΔT=順流」とな
り、「測温抵抗体7の抵抗値−測温抵抗体5の抵抗値=
負のΔT=逆流」となる。そして、その正負により空気
流の方向を検知することができる。また、空気流量は、
測温抵抗体5,7の温度差の絶対値より計測することが
できる。従って、計測回路は、測温抵抗体5,7の温度
差(ΔT)が抵抗値差(ΔR)と同等なので、この抵抗値差
(ΔR)を出力する構成になっている。That is, as shown in FIG.
By comparing the temperatures (resistance values) of the resistance temperature detectors 5 and 7 disposed in close proximity to a and 4b, for example, “resistance value of resistance temperature sensor 7−resistance value of resistance temperature sensor 5 = positive value” ΔT = forward flow ”and“ resistance value of resistance temperature detector 7−resistance value of resistance temperature detector 5 =
Negative ΔT = backflow ”. The direction of the air flow can be detected based on the sign. The air flow rate is
It can be measured from the absolute value of the temperature difference between the resistance temperature detectors 5 and 7. Therefore, the measurement circuit determines that the temperature difference (ΔT) between the resistance temperature detectors 5 and 7 is equal to the resistance value difference (ΔR),
(ΔR) is output.
【0031】ところで、図10に示したように、上流側
と下流側の測温抵抗体5,7を、上流側と下流側に振り
分けた発熱抵抗体4a,4bで挟むようにし、さらに測
温抵抗体6の温度を基準温度に設定する本発明の構成に
したことにより、測温抵抗体5,7が成す温度差((Δ
T))を十分に大きくして検出できる。これに対して、図
11に示した従来例では、中央の発熱抵抗体を左右の測
温抵抗体で挟んでおり、中央の発熱抵抗体が基準温度に
設定される構成であることから、図10に示す従来例の
温度分布のように、左右の測温抵抗体の両温度が中央の
基準温度より共に低く、本発明に比べて温度差を大きく
検出することはできない。換言すれば、本発明の構成に
より、従来例に比較して温度差を大きく検出できること
が、信号レベルが大きくなり、広いダイナミックレンジ
が得られ、かつ、対ノイズ特性に関して有利になると言
える。By the way, as shown in FIG. 10, the upstream and downstream temperature measuring resistors 5 and 7 are sandwiched between the heating resistors 4a and 4b distributed to the upstream and downstream, respectively. With the configuration of the present invention in which the temperature of the resistor 6 is set to the reference temperature, the temperature difference ((Δ
T)) can be detected with a sufficiently large value. On the other hand, in the conventional example shown in FIG. 11, the central heating resistor is sandwiched between the left and right temperature measuring resistors, and the central heating resistor is set to the reference temperature. As in the temperature distribution of the conventional example shown in FIG. 10, both the temperatures of the right and left temperature measuring resistors are both lower than the central reference temperature, and a large temperature difference cannot be detected as compared with the present invention. In other words, it can be said that the configuration of the present invention can detect a large temperature difference as compared with the conventional example, so that the signal level becomes large, a wide dynamic range can be obtained, and the noise immunity is advantageous.
【0032】次に、本発明による熱式空気流量計の測定
素子の具体例について、図1,2を参照して説明する。
まず、シリコンからなる半導体基板2上に電気絶縁膜1
1aとして、熱酸化あるいはCVD等の方法で、約0.
5ミクロンの厚さの二酸化ケイ素、窒化ケイ素等の膜を
形成する。更に、抵抗体4,5,6,7,8として、ス
パッタ等の方法で、約0.2ミクロンの厚さの白金を形
成する。そして、公知のホトリソグラフィ技術により、
所定の形状にレジストを形成した後、イオンミリング等
の方法により白金をパターニングする。Next, a specific example of the measuring element of the thermal air flow meter according to the present invention will be described with reference to FIGS.
First, an electric insulating film 1 is formed on a semiconductor substrate 2 made of silicon.
As 1a, about 0.
A film of silicon dioxide, silicon nitride or the like having a thickness of 5 microns is formed. Further, as the resistors 4, 5, 6, 7, and 8, platinum having a thickness of about 0.2 micron is formed by a method such as sputtering. And by the known photolithography technology,
After a resist is formed in a predetermined shape, platinum is patterned by a method such as ion milling.
【0033】次に、端子電極9を金メッキ等で形成した
後、端子電極9以外の部分を保護膜として、先と同様に
約0.5ミクロンの厚さの電気絶縁体11bを形成す
る。最後に、半導体基板2の裏面より二酸化ケイ素等を
マスク材として、異方性エッチングすることにより空洞
3を形成し、チップに切断することにより、測定素子1
が得られる。Next, after the terminal electrode 9 is formed by gold plating or the like, an electric insulator 11b having a thickness of about 0.5 μm is formed in the same manner as described above, using a portion other than the terminal electrode 9 as a protective film. Finally, the cavity 3 is formed by anisotropic etching from the back surface of the semiconductor substrate 2 using silicon dioxide or the like as a mask material, and cut into chips to obtain the measuring element 1.
Is obtained.
【0034】ここで、空洞3上の電気絶縁膜11は、図
12示した従来例の検出有効面積(約0.2mm×1m
m:特開平7−174600号公報の明細書(0028)
項に記載)に対して、図1示した本実施例では1.5m
m×1.5mmの検出有効面積とし、従来例の約10倍
の大きさにした。また、測温抵抗体5,6,7を囲む様
にして発熱抵抗体4を形成したことから、発熱抵抗体の
占有面積が大きくとれる。このことにより、空洞3上の
測温抵抗体5,7の空気流量信号のダイナミックレンジ
および対ノイズ性が、従来例に比較して大幅に改善され
た。Here, the electric insulating film 11 on the cavity 3 has a detection effective area (about 0.2 mm × 1 m) of the conventional example shown in FIG.
m: specification (0028) of JP-A-7-174600
In the present embodiment shown in FIG.
The detection effective area was mx 1.5 mm, which was about 10 times the size of the conventional example. Further, since the heating resistor 4 is formed so as to surround the temperature measuring resistors 5, 6, and 7, the occupied area of the heating resistor can be increased. As a result, the dynamic range and the noise resistance of the air flow rate signals of the resistance temperature detectors 5 and 7 on the cavity 3 are greatly improved as compared with the conventional example.
【0035】このように空洞3を大きくした場合でも、
本実施例の測定素子1の大きさは約2.5mm×5mm
で、従来例(約3mm×3mm:特開平7−17460
0号公報の明細書(0028)項に記載)の約1.4倍に
過ぎなく、また、従来例のように空気流10に晒される
開口部がないことにより耐塵埃信頼性が向上した。Even when the cavity 3 is enlarged as described above,
The size of the measuring element 1 of this embodiment is about 2.5 mm × 5 mm
Then, a conventional example (about 3 mm × 3 mm: JP-A-7-17460)
This is only about 1.4 times that described in the specification (0028) of Japanese Patent Publication No. 0 (1999), and the reliability of dust resistance is improved because there is no opening exposed to the air flow 10 as in the conventional example.
【0036】[0036]
【発明の効果】本発明によれば、測温抵抗体5と測温抵
抗体7との間に測温抵抗体6を並設した測温抵抗体群お
よび該測温抵抗体群を近接包囲し配設した発熱抵抗体4
の両測温抵抗体5,7の温度差から空気流の方向と流量
を計測する構成としたことにより、空気流量の計測時の
ダイナミックレンジおよび対ノイズ性の改善を図った熱
式空気流量計が提供できる。According to the present invention, a temperature measuring resistor group in which the temperature measuring resistor 6 is juxtaposed between the temperature measuring resistor 5 and the temperature measuring resistor 7 and the temperature measuring resistor group is closely surrounded. Heating resistor 4
A thermal air flow meter that measures the direction and flow rate of air flow from the temperature difference between the two resistance temperature detectors 5 and 7 to improve the dynamic range and noise immunity when measuring the air flow rate Can be provided.
【0037】また、空気流10に対して開口している所
がない構成にすることから、耐塵埃信頼性が向上し、更
に、空気温度測温抵抗体8を空気流に突き出す構成とす
ることにより、温度特性の改善を図った熱式空気流量計
が提供できる効果がある。Also, since there is no opening to the air flow 10, the reliability of dust resistance is improved, and the air temperature measuring resistor 8 is projected into the air flow. Accordingly, there is an effect that a thermal air flowmeter with improved temperature characteristics can be provided.
【図1】本発明による第一実施例の測定素子を示す平面
図である。FIG. 1 is a plan view showing a measuring element of a first embodiment according to the present invention.
【図2】図1のA−A’断面を示す図である。FIG. 2 is a diagram showing a cross section taken along line A-A 'of FIG.
【図3】本発明による第二実施例の測定素子を示す平面
図である。FIG. 3 is a plan view showing a measuring element according to a second embodiment of the present invention.
【図4】図1または図3の測定素子を実装した本発明に
よる一実施例の熱式空気流量計の断面を示す図である。FIG. 4 is a diagram showing a cross section of a thermal air flow meter according to an embodiment of the present invention, on which the measuring element of FIG. 1 or 3 is mounted.
【図5】図4の測定素子部を拡大した図である。FIG. 5 is an enlarged view of a measuring element unit in FIG. 4;
【図6】図5のB−B’断面を示す図である。6 is a diagram showing a cross section taken along line B-B 'of FIG.
【図7】図5のC−C’断面を示す図である。FIG. 7 is a view showing a cross section taken along line C-C ′ of FIG. 5;
【図8】本発明による一実施例の熱式空気流量計の加熱
回路を示す図である。FIG. 8 is a diagram showing a heating circuit of a thermal air flow meter according to an embodiment of the present invention.
【図9】本発明による一実施例の熱式空気流量計の計測
回路を示す図である。FIG. 9 is a diagram showing a measurement circuit of the thermal air flow meter of one embodiment according to the present invention.
【図10】図1の測定素子のA−A’断面および動作原
理を示す図である。FIG. 10 is a diagram showing an AA ′ cross section and an operation principle of the measuring element of FIG. 1;
【図11】従来の熱式空気流量計の測定素子を説明する
平面図である。FIG. 11 is a plan view illustrating a measuring element of a conventional thermal air flow meter.
【図12】従来の他の熱式空気流量計の測定素子を説明
する平面図である。FIG. 12 is a plan view illustrating a measuring element of another conventional thermal air flow meter.
1…測定素子、2…半導体基板、3…空洞、4,4a,
4b…発熱抵抗体、5,6,7…測温抵抗体、8…空気
温度測温抵抗体、9,16…端子電極、10…空気流、
11,11a,11b…電気絶縁膜、12…吸気主通
路、13…副通路、14,14a,14b…支持体、1
5…外部回路、17…金線、18a,18b…差動増幅
器、19…トランジスタ、20…電源、21a,21
b,21c,21d,21e…抵抗、23a,23b,
23c,23d,23e…空洞、24,24a,24b
…橋DESCRIPTION OF SYMBOLS 1 ... Measurement element, 2 ... Semiconductor substrate, 3 ... Cavity, 4,4a,
4b: heating resistor, 5, 6, 7 ... temperature measuring resistor, 8: air temperature measuring resistor, 9, 16 ... terminal electrode, 10: air flow,
11, 11a, 11b: electric insulating film, 12: intake main passage, 13: sub passage, 14, 14a, 14b: support, 1
5: external circuit, 17: gold wire, 18a, 18b: differential amplifier, 19: transistor, 20: power supply, 21a, 21
b, 21c, 21d, 21e... resistors, 23a, 23b,
23c, 23d, 23e ... hollow, 24, 24a, 24b
…bridge
Claims (4)
の測温抵抗体との間に中央測温抵抗体を並設した測温抵
抗体群および該測温抵抗体群を近接包囲し配設した発熱
抵抗体を有する測定素子と、 前記中央測温抵抗体の温度が一定値になるように前記発
熱抵抗体の加熱を制御する加熱制御手段と、 前記上流側測温抵抗体と前記下流側測温抵抗体との温度
差に基づいて前記被測定流体の流れ方向および流量を検
知する流量計測手段とを備えたことを特徴とする熱式空
気流量計。1. A temperature measuring resistor group in which a central temperature measuring resistor is juxtaposed between a temperature measuring resistor on an upstream side and a temperature measuring resistor on a downstream side of a fluid to be measured, and a group of the temperature measuring resistors. A measuring element having a heating resistor disposed in close proximity to the heating element, heating control means for controlling heating of the heating resistor so that the temperature of the central temperature measuring resistor becomes a constant value, and the upstream temperature measuring resistor A thermal air flow meter, comprising: flow rate measuring means for detecting a flow direction and a flow rate of the fluid to be measured based on a temperature difference between a body and the downstream resistance temperature detector.
測温抵抗体群及び前記発熱抵抗体から離間した位置に配
設した空気温度測温抵抗体を有し、 前記加熱制御手段は、該空気温度測温抵抗体の温度に対
して前記中央測温抵抗体の温度が一定値高くなるよう
に、前記発熱抵抗体に流す加熱電流を制御することを特
徴とする熱式空気流量計。2. The heating element according to claim 1, wherein the measuring element has an air temperature measuring resistor disposed at a position separated from the temperature measuring resistor group and the heating resistor. A thermal air flowmeter, wherein a heating current flowing through the heating resistor is controlled so that the temperature of the central temperature measuring resistor becomes higher than the temperature of the air temperature measuring resistor by a constant value.
該電気絶縁膜上に、被測定流体の上流側測温抵抗体と下
流側測温抵抗体との間に中央測温抵抗体を並設した測温
抵抗体群と,該測温抵抗体群を近接包囲し配設した発熱
抵抗体と,前記測温抵抗体群及び前記発熱抵抗体から離
間した位置に配設した空気温度測温抵抗体と,を形成し
てなる測定素子と、 前記中央測温抵抗体と前記空気温度測温抵抗体の温度差
を一定に保つように前記発熱抵抗体に流す加熱電流を制
御する加熱制御手段と、 前記上流側測温抵抗体と前記下流側測温抵抗体との温度
差に基づいて前記被測定流体の流れ方向および流量を検
知する流量計測手段とを備えたことを特徴とする熱式空
気流量計。3. A central temperature measuring resistor is provided between an upstream temperature measuring resistor and a downstream temperature measuring resistor of a fluid to be measured, on the electric insulating film of a semiconductor substrate having an upper surface covered with an electric insulating film. A group of juxtaposed temperature measuring resistors, a heating resistor arranged so as to closely surround the temperature measuring resistor group, and an air temperature sensor arranged at a position separated from the temperature measuring resistor group and the heating resistor. A heating element for forming a heating resistor; and a heating control for controlling a heating current flowing through the heating resistor so as to keep a temperature difference between the central temperature measuring resistor and the air temperature measuring resistor constant. Means, and a flow rate measuring means for detecting a flow direction and a flow rate of the fluid to be measured based on a temperature difference between the upstream temperature measuring resistor and the downstream temperature measuring resistor. Type air flow meter.
記電気絶縁膜で覆われた前記上面から下面まで貫通して
いる空洞を有し、 前記測温抵抗体群及び前記発熱抵抗体は、該空洞上の前
記電気絶縁膜の部位に形成されていることを特徴とする
熱式空気流量計。4. The temperature measuring resistor group and the heating resistor according to claim 3, wherein the semiconductor substrate has a cavity penetrating from the upper surface to the lower surface covered with the electrical insulating film. A thermal air flowmeter formed at a position of the electric insulating film on the cavity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8223489A JPH1062220A (en) | 1996-08-26 | 1996-08-26 | Thermal air-flowemeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8223489A JPH1062220A (en) | 1996-08-26 | 1996-08-26 | Thermal air-flowemeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1062220A true JPH1062220A (en) | 1998-03-06 |
Family
ID=16798944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8223489A Pending JPH1062220A (en) | 1996-08-26 | 1996-08-26 | Thermal air-flowemeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1062220A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6629456B2 (en) | 2000-12-20 | 2003-10-07 | Denso Corporation | Thermal flowmeter for detecting rate and direction of fluid flow |
US6862930B1 (en) | 1998-10-21 | 2005-03-08 | Denso Corporation | Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions |
JP2006349688A (en) * | 2005-06-17 | 2006-12-28 | Robert Bosch Gmbh | Hot air mass meter reduced in vulnerability of contamination |
WO2012014956A1 (en) * | 2010-07-30 | 2012-02-02 | 日立オートモティブシステムズ株式会社 | Thermal flow meter |
-
1996
- 1996-08-26 JP JP8223489A patent/JPH1062220A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6862930B1 (en) | 1998-10-21 | 2005-03-08 | Denso Corporation | Fluid flow amount measuring apparatus responsive to fluid flow in forward and reverse directions |
US6629456B2 (en) | 2000-12-20 | 2003-10-07 | Denso Corporation | Thermal flowmeter for detecting rate and direction of fluid flow |
JP2006349688A (en) * | 2005-06-17 | 2006-12-28 | Robert Bosch Gmbh | Hot air mass meter reduced in vulnerability of contamination |
WO2012014956A1 (en) * | 2010-07-30 | 2012-02-02 | 日立オートモティブシステムズ株式会社 | Thermal flow meter |
JP2012032247A (en) * | 2010-07-30 | 2012-02-16 | Hitachi Automotive Systems Ltd | Thermal type flowmeter |
US9188470B2 (en) | 2010-07-30 | 2015-11-17 | Hitachi Automotive Systems, Ltd. | Thermal flow meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5050429A (en) | Microbridge flow sensor | |
JP3366818B2 (en) | Thermal air flow meter | |
EP2339334B1 (en) | Thermal gas sensor | |
US5705745A (en) | Mass flow sensor | |
US5291781A (en) | Diaphragm-type sensor | |
JP3335860B2 (en) | Measuring element for thermal air flow meter and thermal air flow meter | |
JP5315304B2 (en) | Thermal flow meter | |
US4733559A (en) | Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates | |
CN101308036A (en) | Thermal Flow Meter | |
US6470742B1 (en) | Flow sensor | |
JPH1123338A (en) | Thermosensitive flow-rate detecting element and flow-rate sensor using the same | |
US6935172B2 (en) | Thermal type flow measuring device | |
JP2001027558A (en) | Thermal type flowrate sensor | |
WO1992021940A1 (en) | Mass air flow sensor | |
JP3193872B2 (en) | Thermal air flow meter | |
US6725716B1 (en) | Thermo-sensitive flow rate sensor and method of manufacturing the same | |
EP1870681B1 (en) | Thermal type flow rate measuring apparatus | |
JPH0625684B2 (en) | Fluid flow rate detection sensor | |
JPH1062220A (en) | Thermal air-flowemeter | |
JPH0829224A (en) | Flow rate detection device | |
US6279394B1 (en) | Mass air flow meter | |
JPH102773A (en) | Thermal air flowmeter | |
JP6807005B2 (en) | Flow sensor | |
US6250150B1 (en) | Sensor employing heating element with low density at the center and high density at the end thereof | |
JP2602117B2 (en) | Flow sensor |