[go: up one dir, main page]

JPH105778A - Nitrogen removing device - Google Patents

Nitrogen removing device

Info

Publication number
JPH105778A
JPH105778A JP16036996A JP16036996A JPH105778A JP H105778 A JPH105778 A JP H105778A JP 16036996 A JP16036996 A JP 16036996A JP 16036996 A JP16036996 A JP 16036996A JP H105778 A JPH105778 A JP H105778A
Authority
JP
Japan
Prior art keywords
tank
carrier
flow path
aerobic
aerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16036996A
Other languages
Japanese (ja)
Inventor
Hideki Iwabe
秀樹 岩部
Ichiro Nakano
一郎 中野
Kazuhiro Shinabe
和宏 品部
Masahiro Kinoshita
昌大 木下
Hiroshi Kishino
宏 岸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16036996A priority Critical patent/JPH105778A/en
Publication of JPH105778A publication Critical patent/JPH105778A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly distribute a microorganism immobilizing carrier in a tank. SOLUTION: The microorganism immobilizing carrier 11 is held in fluid state at an inside of an aerobic tank 3, and a carrier separating screen 12 forming a separated water passage 13 between a wall surface of the tank is provided at an upstream side position of a flow out end part tank wall being the flow out end of the aerobic tank 3. Then a parting wall 14 in the tank forming an upward passage 16 communicated with a basin in the tank at a bottom end opening of a bottom part side of the tank between a screen surface is provided at the upstream side position of the carrier separating screen 12, and an air diffusing device 17 is provided at a bottom part of the upward passage 16, and a carrier circulation flow passage 18 is provided by communicating a tank upper part side of the upward passage 16 and a flow in end side of the aerobic tank 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水や産業排水等
の処理に用いる窒素除去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen removing apparatus used for treating sewage and industrial wastewater.

【0002】[0002]

【従来の技術】従来、循環式硝化脱窒法では、汚水は始
めに脱窒を行う無酸素槽、続いて硝化を行う好気槽へと
流入し、好気槽から流出する処理水は、硝化循環液とし
て無酸素槽へ循環・返送する一部を除いて最終沈殿池へ
流出していく。無酸素槽ではBOD成分や窒素が脱窒反
応により除去され、好気槽ではアンモニア性窒素を含む
ケルダール性窒素を硝酸ないし亜硝酸にまで硝化する。
このプロセスにおいては、浮遊活性汚泥により硝化およ
び脱窒を行って窒素を除去することが一般的である。
2. Description of the Related Art Conventionally, in a circulating nitrification denitrification method, wastewater first flows into an anoxic tank for denitrification, then to an aerobic tank for nitrification, and treated water flowing out of the aerobic tank is converted to nitrification. Except for a part that is circulated and returned to the anoxic tank as circulating liquid, it flows out to the final sedimentation basin. In an anoxic tank, BOD components and nitrogen are removed by a denitrification reaction, and in an aerobic tank, Kjeldahl nitrogen including ammonia nitrogen is nitrified to nitric acid or nitrous acid.
In this process, it is common to perform nitrification and denitrification with suspended activated sludge to remove nitrogen.

【0003】また、循環式硝化脱窒法とは構成が異なる
ものの類似の原理を用いて窒素を除去する方式として、
嫌気・無酸素・好気法、硝化−内生脱窒法、ステップ流
入式多段硝化脱窒法といったようなものがある。
[0003] Also, as a method of removing nitrogen by using a similar principle, although the structure is different from the circulating nitrification denitrification method,
There are anaerobic / anoxic / aerobic method, nitrification-endogenous denitrification method, and step-flow type multi-stage nitrification denitrification method.

【0004】[0004]

【発明が解決しようとする課題】上述したような、循環
式硝化脱窒法、嫌気・無酸素・好気法、硝化−内生脱窒
法、無酸素槽と好気槽とを複数段に設けた多段式循環法
の何れかによって構成する生物学的処理系では、生物反
応槽全体の水理学的滞留時間に、流入汚水量ベースで1
2〜16時間も必要とする。このために、一般に標準活
性汚泥法により生物反応槽全体の滞留時間を6〜8時間
で設計・運転している大中都市部の既設下水処理場で
は、新たな用地確保が困難であることから、上述の構成
を作用することが困難であった。こうした問題の解決の
ために、低水温時においても硝化速度を大幅に高めるこ
とを目的として、低水温時において硝化活性の低下する
硝化菌を固定化担体に高濃度に固定化する固定化技術の
適用が検討されている。
As described above, the circulation type nitrification and denitrification method, the anaerobic / anoxic / aerobic method, the nitrification-endogenous denitrification method, and the anoxic tank and the aerobic tank are provided in a plurality of stages. In a biological treatment system constituted by any of the multistage circulation methods, the hydraulic residence time of the entire biological reaction tank is reduced by 1 based on the amount of inflowing wastewater.
It takes 2 to 16 hours. For this reason, it is generally difficult to secure new land at existing sewage treatment plants in large and medium urban areas where the residence time of the entire biological reaction tank is designed and operated with a standard activated sludge method with a residence time of 6 to 8 hours. However, it is difficult to operate the above configuration. In order to solve these problems, the purpose of immobilization technology is to immobilize nitrifying bacteria whose nitrification activity decreases at low water temperature at a high concentration on an immobilization carrier with the aim of greatly increasing the nitrification rate even at low water temperature. Application is being considered.

【0005】しかし、上述した方式において、微生物を
固定化した担体は一般に流動状態で使用するために、好
気槽から系外へ流出しないように保持する必要がある。
また、好気槽内での硝化菌固定化担体は、好気槽内での
曝気に伴う混合液の流れに沿って流動する一方で、好気
槽内では流入汚水が流入端から流出端に向かって流れて
行くために、好気槽の流入端側よりは、むしろ流出端側
において高濃度に存在するが、高い硝化反応効率を得る
ためには硝化菌固定化担体を好気槽内に均一に存在させ
る必要がある。
[0005] However, in the above-mentioned method, since the carrier on which the microorganisms are immobilized is generally used in a fluid state, it is necessary to hold the carrier so as not to flow out of the system from the aerobic tank.
In addition, the nitrifying bacteria-immobilized carrier in the aerobic tank flows along the flow of the mixed solution accompanying the aeration in the aerobic tank, while the inflow sewage flows from the inflow end to the outflow end in the aerobic tank. In order to flow toward the aerobic tank, it exists at a high concentration at the outflow end rather than the inflow end, but in order to obtain high nitrification reaction efficiency, the nitrifying bacteria-immobilized carrier is placed in the aerobic tank. Must be uniform.

【0006】さらに、脱窒速度を高めるための手段とし
て脱窒菌固定化技術があるが、脱窒菌と硝化菌とを各々
別の担体に固定化するよりも、同じ担体に固定化する方
が、担体仕様の決定や維持管理の面で容易になり、また
循環式硝化脱窒法や嫌気無酸素好気法やステップ流入式
多段硝化脱窒法では、担体分離用スクリーンを無酸素
槽、好気槽の両方に設置する必要がなく、後段の好気槽
のみに設置すればよいことになり、コスト低減や維持管
理の容易化が図られるので、このような装置上の手段を
見い出すことが課題であった。
Further, there is a technique for immobilizing a denitrifying bacterium as a means for increasing the denitrification rate. However, it is more preferable to immobilize the denitrifying bacterium and the nitrifying bacterium on the same carrier than on each other. It is easy to determine and maintain the carrier specifications, and in the circulating nitrification denitrification method, the anaerobic anoxic aerobic aerobic method, and the step-flow type multi-stage nitrification denitrification method, the carrier separation screen is used for the anoxic tank and aerobic tank. There is no need to install them on both sides, and it is only necessary to install them in the aerobic tank at the later stage. This reduces costs and facilitates maintenance and management. Was.

【0007】[0007]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の窒素除去装置は、好気槽を有する生物
学的処理系において、好気槽の内部に微生物固定化担体
を流動状態に保持し、好気槽の流出端をなす流出端部槽
壁の上流側位置に、槽壁面との間に分離水流路を形成す
る担体分離スクリーンを設け、担体分離スクリーンの上
流側位置に、槽底部側の下端開口において槽内流域に連
通する上向流路をスクリーン面との間に形成する槽内仕
切壁を設け、上向流路の下部に散気装置を設け、上向流
路の槽上部側と好気槽の流入端側とを連通して担体循環
流路を設けたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a nitrogen removing apparatus of the present invention comprises a biological treatment system having an aerobic tank, in which a microorganism-immobilized carrier is flown inside the aerobic tank. A carrier separation screen that forms a separation water flow path with the tank wall is provided at the upstream position of the outflow end tank wall that forms the outflow end of the aerobic tank, and is provided at the upstream position of the carrier separation screen. A partition wall in the tank that forms an upward flow path communicating with the flow area in the tank at the lower end opening on the bottom side of the tank between the screen surface, and an air diffusion device provided in a lower part of the upward flow path, A carrier circulation flow path is provided by connecting the tank upper side of the passage with the inflow end side of the aerobic tank.

【0008】この構成により、好気槽内の微生物固定化
担体は、好気槽内での曝気に伴う混合液の流れに沿って
流動するとともに、流入端から流出端に向かって流れ
る。好気槽の流出端において、好気槽の槽内混合液およ
び微生物固定化担体は、槽内仕切壁の下端開口から上向
流路内に流入し、散気装置から散気する散気ガスのエア
リフト作用によって生起する気液混相の上向流に沿って
流れる。このとき、担体分離スクリーンは微生物固定化
担体が槽外へ流れ出ることを防止する。上向流路の上部
に達した槽内混合液および微生物固定化担体は担体循環
流路を通して好気槽の流入端側に循環し、再び好気槽内
を流動する。このことによって、微生物固定化担体が好
気槽内に均一に存在することとなり、高い硝化反応効率
を得ることができる。
[0008] With this configuration, the microorganism-immobilized carrier in the aerobic tank flows along the flow of the mixed liquid accompanying the aeration in the aerobic tank, and also flows from the inflow end to the outflow end. At the outflow end of the aerobic tank, the mixed solution in the aerobic tank and the microorganism-immobilized carrier flow into the upward flow channel from the lower end opening of the partition wall in the aerobic tank, and diffused gas diffused from the diffuser. Flows along the upward flow of the gas-liquid mixed phase generated by the air lift action of the gas. At this time, the carrier separation screen prevents the microorganism-immobilized carrier from flowing out of the tank. The mixed liquid in the tank and the microorganism-immobilized carrier reaching the upper part of the upward flow path circulate through the carrier circulation flow path to the inflow end side of the aerobic tank and flow again in the aerobic tank. As a result, the microorganism-immobilized carrier is uniformly present in the aerobic tank, and high nitrification reaction efficiency can be obtained.

【0009】また、本発明の窒素除去装置は、無酸素槽
を好気槽の流入端に接続して設け、無酸素槽から好気槽
へ無酸素槽混合液が流入する生物学的処理系において、
無酸素槽および好気槽の内部に微生物固定化担体を流動
状態で保持するとともに、微生物固定化担体に硝化菌お
よび脱窒菌を固定化し、好気槽の流出端をなす流出端部
槽壁の上流側位置に、槽壁面との間に分離水流路を形成
する担体分離スクリーンを設け、担体分離スクリーンの
上流側位置に、槽底部側の下端開口において槽内流域に
連通する上向流路をスクリーン面との間に形成する槽内
仕切壁を設け、上向流路の下部に散気装置を設け、上向
流路の槽上部側と無酸素槽の流入端側とを連通して担体
循環流路を設けたものである。
Further, the nitrogen removing apparatus of the present invention is provided with an oxygen-free tank connected to an inflow end of an aerobic tank, and a biological treatment system in which a mixture of anoxic tank flows from the oxygen-free tank to the aerobic tank. At
The microorganism-immobilized carrier is kept in a fluid state inside the anoxic tank and the aerobic tank, and nitrifying bacteria and denitrifying bacteria are immobilized on the microorganism-immobilized carrier, and the outflow end tank wall forming the outflow end of the aerobic tank is formed. At the upstream position, a carrier separation screen that forms a separated water flow path between the tank wall surface is provided, and at the upstream position of the carrier separation screen, an upward flow path that communicates with the inside of the tank at the lower end opening on the tank bottom side. A partition wall in the tank formed between the upper surface and the screen is provided, and an air diffuser is provided at a lower portion of the upward flow path. The upper side of the upward flow path communicates with the inflow end side of the oxygen-free tank to support the carrier. A circulation channel is provided.

【0010】この構成により、無酸素槽内の微生物固定
化担体は、槽内を流入端から流出端に向かって流動し、
流出端から槽内混合液とともに好気槽の流入端側へ流入
し、好気槽内で曝気に伴う混合液の流れに沿って流動す
るとともに、流入端から流出端に向かって流れる。好気
槽の流出端において、好気槽の槽内混合液および微生物
固定化担体は上向流路内に流入し、上向流路の上部に達
した槽内混合液および微生物固定化担体は担体循環流路
を通して無酸素槽の流入端側に循環し、再び無酸素槽内
および好気槽内を流動する。このことによって、脱窒菌
と硝化菌を同時に固定した微生物固定化担体が無酸素槽
内および好気槽内に均一に存在することとなり、高い硝
化・脱窒反応効率を得ることができる。また、同一の微
生物固定化担体に脱窒菌と硝化菌を同時に固定化するこ
とにより、担体分離スクリーンを後段の好気槽のみに設
ければ良く、前段の無酸素槽に設ける必要はないから建
設コストの低減や維持管理の容易化が図られる。
With this configuration, the microorganism-immobilized carrier in the anoxic tank flows from the inflow end to the outflow end in the tank,
From the outflow end, it flows into the inflow end side of the aerobic tank together with the mixed liquid in the tank, flows along the flow of the mixed liquid accompanying aeration in the aerobic tank, and flows from the inflow end to the outflow end. At the outflow end of the aerobic tank, the mixture in the tank of the aerobic tank and the microorganism-immobilized carrier flow into the upward flow path, and the mixture in the tank and the microorganism-immobilized carrier reaching the upper part of the upward flow path are It circulates through the carrier circulation channel to the inflow end side of the anoxic tank, and flows again in the anoxic tank and the aerobic tank. As a result, the microorganism-immobilized carrier on which the denitrifying bacteria and the nitrifying bacteria are simultaneously fixed is uniformly present in the anoxic tank and the aerobic tank, and high nitrification and denitrification reaction efficiency can be obtained. In addition, by simultaneously immobilizing denitrifying bacteria and nitrifying bacteria on the same microorganism-immobilized carrier, the carrier separation screen can be provided only in the latter aerobic tank, and it is not necessary to provide it in the former anoxic tank. The cost can be reduced and the maintenance can be facilitated.

【0011】ここで、担体循環流路が硝化液循環流路を
兼ねることは、より好適な構成である。ここで、好気槽
に配置する主散気装置と上向流路に配置する散気装置と
を一体的に構成することは、より好適な構成である。
Here, it is a more preferable configuration that the carrier circulation channel also serves as the nitrification liquid circulation channel. Here, it is more preferable to integrally configure the main air diffuser arranged in the aerobic tank and the air diffuser arranged in the upward flow path.

【0012】また、槽内仕切壁の下端縁を槽内流域側へ
傾斜して設け、上向流路を下端側ほど流路断面が広がる
ように形成することにより、上向流路における散気ガス
を効率的に捕集することができ、槽内混合液および微生
物固定化担体の循環効率を高めることができる。
Further, the lower end edge of the partition wall in the tank is inclined toward the flow area in the tank, and the upward flow path is formed so that the cross section of the flow path becomes wider toward the lower end side. Gas can be efficiently collected, and the circulation efficiency of the mixed solution in the tank and the microorganism-immobilized carrier can be increased.

【0013】また、上向流路の下部に設ける散気装置に
代えて、担体循環流路の入口ないし途中にポンプを設置
することもできる。
Further, a pump may be provided at the entrance of the carrier circulation channel or in the middle thereof instead of the air diffuser provided below the upward channel.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図2において、汚水を生物学
的に処理する生物学的処理系1は、前段に無酸素槽2を
有し、後段に好気槽3を有しており、無酸素槽2には汚
水流入流路F1 が開口している。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2, a biological treatment system 1 for biologically treating sewage has an anoxic tank 2 in a front stage, an aerobic tank 3 in a rear stage, and sewage inflow passage F 1 is opening.

【0015】無酸素槽2と好気槽3は槽間接続部4を介
して連続しており、槽間接続部4は無酸素槽2の流出端
と好気槽3の流入端とを兼ねている。ここで、槽間接続
部4は越流堰をなす槽間仕切壁5によって構成している
が、図3に示すように、槽間仕切壁5の上流側に流水の
短絡を防止する案内壁6を設け、槽間仕切壁5と案内壁
6との間に連絡流路7を形成し、無酸素槽2の槽内混合
液が案内壁6の下端開口8から連絡流路7に流入して後
に、槽間仕切壁5の堰頂を越流して好気槽3に流入する
ように構成しても良い。
The anaerobic tank 2 and the aerobic tank 3 are continuous via an inter-tank connecting part 4, and the inter-tank connecting part 4 serves as an outflow end of the anoxic tank 2 and an inflow end of the aerobic tank 3. ing. Here, the inter-tank connecting portion 4 is constituted by an inter-tank partition wall 5 forming an overflow weir. As shown in FIG. 3, a guide wall 6 for preventing a short circuit of flowing water is provided upstream of the inter-tank partition wall 5. A communication channel 7 is formed between the tank partition wall 5 and the guide wall 6, and after the mixture in the tank of the oxygen-free tank 2 flows into the communication channel 7 from the lower end opening 8 of the guide wall 6, You may comprise so that it may flow over the weir top of the partition wall 5 between tanks, and may flow into the aerobic tank 3. FIG.

【0016】無酸素槽2の槽底部には機械式攪拌機9が
設置してあり、好気槽3の槽底部には主散気装置10が
設置してある。好気槽3の内部には微生物固定化担体1
1が流動状態に保持してあり、本実施形態においては、
微生物固定化担体11に硝化菌のみを固定しているが、
後述するように脱窒菌も同時に固定することも可能であ
る。好気槽3の流出端をなす流出端部槽壁3aの上流側
位置には、担体分離スクリーン12を設けており、担体
分離スクリーン12と流出端部槽壁3aの槽壁面との間
に分離水流路13を形成している。本実施形態において
は、担体分離スクリーン12は槽壁面の全面にわたって
対向するように水面上から槽底部まで配置しているが、
担体分離スクリーン12の設定形態は本実施形態に限る
ものではなく、例えば水面下の適当深さまで部分的に設
置する構成でも良い。担体分離スクリーン12の上流側
位置には、流水の流れを担体分離スクリーン12のスク
リーン面に沿った上向流に転向するために槽内仕切壁1
4を設けており、担体分離スクリーン12と槽内仕切壁
14の間に、槽底部側の下端開口15において槽内流域
に連通する上向流路16を形成している。ここで、槽内
仕切壁14は、図4に示すように、槽内仕切壁14の下
端縁14aを槽内流域側へ傾斜して設け、上向流路16
を下端側ほど流路断面が広がるように形成すること可能
である。この場合に上向流路16における散気ガスを効
率的に捕集することができ、槽内混合液および微生物固
定化担体11の循環効率を高めることができる。
A mechanical stirrer 9 is installed at the bottom of the anoxic tank 2, and a main diffuser 10 is installed at the bottom of the aerobic tank 3. The microorganism-immobilized carrier 1 is provided inside the aerobic tank 3.
1 is kept in a fluid state, and in this embodiment,
Although only the nitrifying bacteria are fixed on the microorganism-immobilized carrier 11,
As will be described later, denitrifying bacteria can also be fixed at the same time. A carrier separation screen 12 is provided upstream of the outflow end tank wall 3a forming the outflow end of the aerobic tank 3, and is separated between the carrier separation screen 12 and the tank wall surface of the outflow end tank wall 3a. A water channel 13 is formed. In the present embodiment, the carrier separation screen 12 is disposed from the water surface to the tank bottom so as to face the entire surface of the tank wall,
The setting mode of the carrier separation screen 12 is not limited to the present embodiment, and may be, for example, a configuration in which the carrier separation screen 12 is partially installed to an appropriate depth below the water surface. In the upstream position of the carrier separation screen 12, a partition wall 1 in the tank is provided in order to divert the flow of the flowing water to an upward flow along the screen surface of the carrier separation screen 12.
4, an upward flow path 16 communicating between the carrier separation screen 12 and the partition wall 14 in the tank at the lower end opening 15 on the tank bottom side is formed. Here, as shown in FIG. 4, the in-tank partition wall 14 is provided with the lower end edge 14 a of the in-tank partition wall 14 inclined toward the in-tank flow area side, and
Can be formed such that the cross section of the flow path becomes wider toward the lower end side. In this case, the diffused gas in the upward flow path 16 can be efficiently collected, and the circulation efficiency of the mixed solution in the tank and the microorganism-immobilized carrier 11 can be increased.

【0017】上向流路16の下部には、エアポンプとし
ての駆動源をなす散気装置17が設けてあり、散気装置
17から噴出する散気ガスのエアリフト作用によって上
向流路16内に気液混相の上向流が生起する。ここで、
本実施形態においては、主散気装置10と散気装置16
を別途に設けているが、後述するように、主散気装置1
0と散気装置17とを一体的に設けることも可能であ
る。また、図5〜図6に示すように、エアポンプとして
の駆動源をなす散気装置17に代えて、担体循環流路1
8の入口ないし途中に、担体循環の駆動源をなすと共に
上向流路16内に上向流を生起させるためのポンプ10
0を設置することも可能である。このポンプ100とし
ては微生物固定化担体11の損耗を抑制するために、ス
クリューポンプ等が望ましい。
An air diffuser 17 serving as a driving source as an air pump is provided below the upward flow path 16, and is provided in the upward flow path 16 by an air lift action of the diffused gas ejected from the diffuser 17. An upward flow of a gas-liquid mixed phase occurs. here,
In the present embodiment, the main diffuser 10 and the diffuser 16 are used.
Is provided separately, but as will be described later, the main diffuser 1
0 and the air diffuser 17 can be provided integrally. As shown in FIGS. 5 and 6, instead of the air diffuser 17 serving as a driving source as an air pump, the carrier circulation flow path 1 is used.
A pump 10 for forming a driving source for carrier circulation and generating an upward flow in the upward flow path 16 at the entrance or midway of the pump 8
It is also possible to set 0. As the pump 100, a screw pump or the like is desirable in order to suppress the wear of the microorganism-immobilized carrier 11.

【0018】上向流路16は槽上部側が槽の両側部に配
置した担体循環流路18を通して好気槽3の流入端側に
連通しており、分離水流路13は槽上部側が槽の両側部
に配置した硝化液循環流路19を通して無酸素槽2の流
入端側に連通している。ここで、本実施形態において
は、担体循環流路18および硝化液循環流路19は、水
面付近においてそれぞれ無酸素槽2および好気槽3に連
通しているが、槽底部付近に流入するように構成するこ
とも可能である。また、担体循環流路18および硝化液
循環流路19は開水路の樋によって形成しているが、閉
水路の管路によって形成することも可能である。この場
合に、担体循環流路18の途中には、上向流路16にお
ける散気ガスを除去するために、気液分離器を設ける。
分離水流路13には処理水を最終沈殿池等へ導くための
流出流路F2 が接続している。
The upward flow path 16 communicates with the inflow end side of the aerobic tank 3 through a carrier circulation flow path 18 arranged on the both sides of the tank at the upper part of the tank. It communicates with the inflow end side of the anoxic tank 2 through a nitrification liquid circulation flow path 19 arranged in the section. Here, in the present embodiment, the carrier circulation flow path 18 and the nitrification liquid circulation flow path 19 communicate with the oxygen-free tank 2 and the aerobic tank 3 near the water surface, respectively. It is also possible to configure. In addition, the carrier circulation flow path 18 and the nitrification liquid circulation flow path 19 are formed by troughs of an open channel, but may be formed by a conduit of a closed channel. In this case, a gas-liquid separator is provided in the middle of the carrier circulation flow path 18 in order to remove gas diffused in the upward flow path 16.
An outflow channel F 2 for guiding the treated water to a final sedimentation basin or the like is connected to the separated water channel 13.

【0019】また、上述の方式の別の形として、担体循
環を促進するために駆動装置としてポンプ等を付加して
使用しても良い。この場合、ポンプとしては微生物固定
化担体の損耗を抑制するためにスクリューポンプ等が望
ましい。また、ポンプ吸込側は閉水路で、ポンプ吐出側
は開水路としても良い。尚、硝化−内生脱窒法のように
好気槽の後段に無酸素槽が配置される場合に対しては、
図1に示す構成において無酸素槽をそのように配置する
とともに、硝化液循環流路を無くするように構成する。
上記した構成における作用を説明する。汚水流入流路F
1 から無酸素槽2に流入した汚水は、機械式攪拌器9の
攪拌作用を受けて無酸素槽2の内部流域を巡回しつつ、
流入端側から流出端側へ移動し、この間に嫌気性菌の脱
窒反応によって汚水中のBOD成分および窒素を除去す
る。無酸素槽2の槽内混合液は流出端から槽間接合部4
の槽間仕切壁5を越流して好気槽3に流入する。
Further, as another form of the above-mentioned system, a pump or the like may be additionally provided as a driving device for promoting circulation of the carrier. In this case, as the pump, a screw pump or the like is desirable in order to suppress the wear of the microorganism-immobilized carrier. Also, the pump suction side may be a closed channel, and the pump discharge side may be an open channel. In the case where an anoxic tank is placed after the aerobic tank as in the nitrification-endogenous denitrification method,
In the configuration shown in FIG. 1, the oxygen-free tank is arranged as such and the nitrification liquid circulation flow path is eliminated.
The operation of the above configuration will be described. Sewage inflow channel F
The sewage flowing from 1 into the anoxic tank 2 is stirred by the mechanical stirrer 9 and circulates in the internal basin of the anoxic tank 2,
It moves from the inflow end to the outflow end, during which the BOD component and nitrogen in the wastewater are removed by a denitrification reaction of anaerobic bacteria. The mixed liquid in the tank of the oxygen-free tank 2 flows from the outflow end to the junction 4
And flows into the aerobic tank 3.

【0020】好気槽3では、主散気装置10から曝気す
る空気もしくは酸素含有ガスを受けて、硝化菌の硝化反
応により、アンモニア性窒素を含むケルダール性窒素を
硝酸ないし亜硝酸にまで硝化する。この間に、好気槽3
の内部流域に在留する微生物固定化担体11は、好気槽
3での曝気に伴う槽内混合液の流れに沿って流動すると
ともに、流入端から流出端に向かって流れる。
In the aerobic tank 3, the air or the oxygen-containing gas to be aerated is received from the main diffuser 10, and the nitrifying reaction of nitrifying bacteria nitrifies the Kjeldahl nitrogen containing ammonia nitrogen to nitric acid or nitrous acid. . During this time, aerobic tank 3
The microorganism-immobilized carrier 11 remaining in the internal flow area flows along the flow of the mixed liquid in the tank accompanying the aeration in the aerobic tank 3, and also flows from the inflow end to the outflow end.

【0021】好気槽3の流出端において、好気槽3の槽
内混合液および微生物固定化担体11は、槽内仕切壁1
4の下端開口15から上向流路16に流入し、散気装置
17から散気する散気ガスのエアリフト作用によって生
起する気液混相の上向流に沿って流れる。このとき、担
体分離スクリーン12は微生物固定化担体11が槽外へ
流れ出ることを防止し、上向流は担体分離スクリーン1
2のスクリーン面に沿って流れ、スクリーン面に微生物
固定化担体11等が付着することを防止する。上向流路
16の上部に達した槽内混合液および微生物固定化担体
11は担体循環流路18を介して好気槽3の流入端側に
循環し、再び好気槽3の内部流域を流動する。このこと
によって、微生物固定化担体11が好気槽3の内部に均
一に存在することとなり、高い硝化反応効率を得ること
ができる。
At the outflow end of the aerobic tank 3, the mixed solution in the aerobic tank 3 and the microorganism-immobilized carrier 11 are transferred to the partition wall 1 in the aerobic tank 3.
4 flows into the upward flow path 16 from the lower end opening 15 and flows along the upward flow of the gas-liquid mixed phase generated by the air-lift action of the diffused gas diffused from the diffuser 17. At this time, the carrier separation screen 12 prevents the microorganism-immobilized carrier 11 from flowing out of the tank.
2, which flows along the screen surface and prevents the microorganism-immobilized carrier 11 and the like from adhering to the screen surface. The mixed liquid in the tank and the microorganism-immobilized carrier 11 reaching the upper part of the upward flow path 16 circulate to the inflow end side of the aerobic tank 3 via the carrier circulation flow path 18, and again circulate the internal flow area of the aerobic tank 3. Flow. As a result, the microorganism-immobilized carrier 11 is uniformly present inside the aerobic tank 3, and high nitrification reaction efficiency can be obtained.

【0022】図7〜図8に示すように、好気槽3の流出
端に連通して後段の無酸素槽21を設けて多段処理を行
うようにしても良い。この場合には、流出端部槽壁3a
に下端開口22を設け、担体分離スクリーン12を適当
深さまでで止める構成となすことにより、上向流の短絡
的な流れを防止し、槽内混合液および微生物固定化担体
11の循環量を確保する。
As shown in FIGS. 7 and 8, a multistage treatment may be performed by providing a subsequent anoxic tank 21 in communication with the outflow end of the aerobic tank 3. In this case, the outflow end tank wall 3a
The lower end opening 22 is provided at the bottom, and the carrier separation screen 12 is stopped at an appropriate depth to prevent short-circuit flow of upward flow, and secure the circulation amount of the mixed solution in the tank and the microorganism-immobilized carrier 11. I do.

【0023】図9〜図10に示すように、上向流路16
の槽上部側と無酸素槽2の流入端側とを連通して担体循
環流路31を設けたものである。本実施形態において
は、担体循環流路31は硝化液循環のための流路を兼ね
るものであるが、担体循環流路31とは別途に硝化液循
環のための流路を設けても良い。また、担体循環流路3
1は無酸素槽2の水面付近に開口しているが、槽底部に
連通させることも可能である。微生物固定化担体11に
は硝化菌および脱窒菌を同時に固定している。
As shown in FIG. 9 and FIG.
A carrier circulation channel 31 is provided so as to communicate the tank upper side with the inflow end side of the oxygen-free tank 2. In the present embodiment, the carrier circulation channel 31 also serves as a channel for nitrifying solution circulation. However, a channel for nitrifying solution circulation may be provided separately from the carrier circulation channel 31. In addition, the carrier circulation channel 3
Although 1 is open near the water surface of the oxygen-free tank 2, it can be connected to the tank bottom. Nitrifying bacteria and denitrifying bacteria are immobilized on the microorganism-immobilized carrier 11 at the same time.

【0024】この構成により、無酸素槽2の内部に在留
する微生物固定化担体11は、槽内を流入端から流出端
に向かって流動し、槽内混合液とともに槽間接続部4の
連絡流路7を通って好気槽3の流入端側へ流入する。好
気槽3において微生物固定化担体11は曝気に伴う混合
液の流れに沿って流動するとともに、流入端から流出端
に向かって流れる。好気槽3の流出端において、槽内混
合液および微生物固定化担体11は上向流路16に流入
し、担体循環流路31を通して無酸素槽2の流入端側に
循環し、再び無酸素槽2および好気槽3の内部を流動す
る。
With this configuration, the microorganism-immobilized carrier 11 residing in the anoxic tank 2 flows from the inflow end to the outflow end in the tank, and flows together with the mixed solution in the tank at the inter-tank connection section 4. It flows into the inflow end side of the aerobic tank 3 through the passage 7. In the aerobic tank 3, the microorganism-immobilized carrier 11 flows along the flow of the mixed liquid accompanying aeration, and also flows from the inflow end to the outflow end. At the outflow end of the aerobic tank 3, the mixed liquid in the tank and the microorganism-immobilized carrier 11 flow into the upward channel 16, circulate through the carrier circulation channel 31 to the inflow end side of the anoxic tank 2, and It flows inside the tank 2 and the aerobic tank 3.

【0025】このことによって、脱窒菌と硝化菌を同時
に固定した微生物固定化担体11が無酸素槽2および好
気槽3に均一に存在することとなり、高い硝化・脱窒反
応効率を得ることができる。また、同一の微生物固定化
担体11に脱窒菌と硝化菌を同時に固定化することによ
り、微生物固定化担体11を無酸素槽2に留める必要が
ないので、無酸素槽2に担体分離スクリーン等を設ける
必要がなく、建設コストの低減や維持管理の容易化が図
られる。
As a result, the microorganism-immobilized carrier 11 on which the denitrifying bacteria and the nitrifying bacteria are simultaneously fixed is uniformly present in the anoxic tank 2 and the aerobic tank 3, and high nitrification and denitrification reaction efficiency can be obtained. it can. Further, since the denitrifying bacteria and the nitrifying bacteria are simultaneously immobilized on the same microorganism-immobilized carrier 11, there is no need to fix the microorganism-immobilized carrier 11 in the oxygen-free tank 2. Therefore, a carrier separation screen or the like is provided in the oxygen-free tank 2. There is no need to provide it, and construction costs can be reduced and maintenance can be facilitated.

【0026】図11〜図12に示すように、槽内仕切壁
41および担体分離スクリーン42は好気槽3の末端で
はなく、その側面部に設ける、すなわち槽の流域におけ
る流れと平行に設けることも可能であり、担体循環流路
43は好気槽3における流れを横切る方向に沿って、流
入端側およびその反対側の両方に配置している。上向流
路44の下部には散気装置45が主散気装置10と一体
的に設けてあるが、散気装置45は主散気装置10と別
体に設けることもできる。
As shown in FIGS. 11 to 12, the partition wall 41 in the tank and the carrier separation screen 42 are provided not on the end of the aerobic tank 3 but on the side thereof, that is, provided in parallel with the flow in the tank basin. The carrier circulation channel 43 is disposed on both the inflow end side and the opposite side along the direction crossing the flow in the aerobic tank 3. Although a diffuser 45 is provided integrally with the main diffuser 10 below the upward flow path 44, the diffuser 45 may be provided separately from the main diffuser 10.

【0027】図13に示すように、担体循環流路43は
好気槽3の流入端側にのみ配置することも可能である。
図14に示すように、槽間接合部4によって無酸素槽2
と好気槽3を仕切るとともに、無酸素槽2と好気槽3を
狭路の連絡流路51によって連通し、連絡流路51を好
気槽3の中央付近に連通させることも可能である。
As shown in FIG. 13, the carrier circulation channel 43 can be arranged only on the inflow end side of the aerobic tank 3.
As shown in FIG. 14, the anoxic tank 2
And the aerobic tank 3, and the anoxic tank 2 and the aerobic tank 3 can be communicated by a narrow communication passage 51, and the communication passage 51 can be communicated near the center of the aerobic tank 3. .

【0028】図15に示すように、双方の担体循環流路
43は、流出口を相対向して開口することも可能であ
り、連絡流路51とともに、槽の中央付近において開口
している。
As shown in FIG. 15, both carrier circulation passages 43 can be opened with their outlets facing each other, and together with the communication passage 51, are opened near the center of the tank.

【0029】図16に示すように、担体循環流路43は
一方のみを設ける構成とすることも可能である。図17
に示すように、担体循環流路71は槽の中央を横断する
ように設けることも可能である。
As shown in FIG. 16, the carrier circulation channel 43 may be provided with only one. FIG.
As shown in (2), the carrier circulation channel 71 can be provided so as to cross the center of the tank.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、好
気槽内の微生物固定化担体が、好気槽内を流入端から流
出端に向かって流れ、流出端から上向流路および担体循
環流路を通して好気槽の流入端側に循環し、再び好気槽
内を流動することによって、微生物固定化担体が好気槽
内に均一に存在することとなり、高い硝化反応効率を得
ることができる。また、脱窒菌と硝化菌を同時に固定し
た微生物固定化担体が無酸素槽および好気槽を流動し、
上向流路および担体循環流路を通って無酸素槽の流入端
に循環し、再び無酸素槽および好気槽の内部流域を流動
することにより、高い硝化・脱窒反応効率を得ることが
でき、微生物固定化担体を無酸素槽内に留めるための担
体分離スクリーンを設ける必要がなく、建設コストの低
減や維持管理の容易化が図られる。
As described above, according to the present invention, the microorganism-immobilized carrier in the aerobic tank flows in the aerobic tank from the inflow end to the outflow end, and flows upward from the outflow end. By circulating to the inflow end side of the aerobic tank through the carrier circulation flow path and flowing again in the aerobic tank, the microorganism-immobilized carrier is uniformly present in the aerobic tank, and high nitrification reaction efficiency is improved. Obtainable. In addition, a microorganism-immobilized carrier in which denitrifying bacteria and nitrifying bacteria are simultaneously fixed flows in an anoxic tank and an aerobic tank,
By circulating through the upward flow path and the carrier circulation flow path to the inflow end of the anoxic tank and flowing again through the internal flow area of the anoxic tank and the aerobic tank, high nitrification / denitrification reaction efficiency can be obtained. Thus, there is no need to provide a carrier separation screen for retaining the microorganism-immobilized carrier in the oxygen-free tank, so that construction costs can be reduced and maintenance can be facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示す窒素除去装置の全体平
面図である。
FIG. 1 is an overall plan view of a nitrogen removing apparatus according to an embodiment of the present invention.

【図2】同実施形態における窒素除去装置の全体断面図
である。
FIG. 2 is an overall cross-sectional view of the nitrogen removing device in the embodiment.

【図3】本発明の他の実施形態を示す槽間接続部の断面
図である。
FIG. 3 is a cross-sectional view of an inter-tank connecting portion showing another embodiment of the present invention.

【図4】本発明の他の実施形態を示す槽内仕切壁の断面
図である。
FIG. 4 is a sectional view of an in-tank partition wall showing another embodiment of the present invention.

【図5】本発明の他の実施形態を示す窒素除去装置の全
体平面図である。
FIG. 5 is an overall plan view of a nitrogen removing apparatus according to another embodiment of the present invention.

【図6】同実施形態における窒素除去装置の全体断面図
である。
FIG. 6 is an overall cross-sectional view of the nitrogen removing device in the same embodiment.

【図7】本発明の他の実施形態を示す窒素除去装置の全
体平面図である。
FIG. 7 is an overall plan view of a nitrogen removing apparatus showing another embodiment of the present invention.

【図8】同実施形態における窒素除去装置の全体断面図
である。
FIG. 8 is an overall cross-sectional view of the nitrogen removing device in the same embodiment.

【図9】本発明の他の実施形態を示す窒素除去装置の全
体平面図である。
FIG. 9 is an overall plan view of a nitrogen removing apparatus according to another embodiment of the present invention.

【図10】同実施形態における窒素除去装置の全体断面
図である。
FIG. 10 is an overall cross-sectional view of the nitrogen removing device in the embodiment.

【図11】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 11 is an overall plan view of a nitrogen removing apparatus showing another embodiment of the present invention.

【図12】図11のA−A矢視図である。FIG. 12 is a view taken in the direction of arrows AA in FIG. 11;

【図13】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 13 is an overall plan view of a nitrogen removing apparatus showing another embodiment of the present invention.

【図14】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 14 is an overall plan view of a nitrogen removing apparatus showing another embodiment of the present invention.

【図15】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 15 is an overall plan view of a nitrogen removing apparatus showing another embodiment of the present invention.

【図16】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 16 is an overall plan view of a nitrogen removing apparatus according to another embodiment of the present invention.

【図17】本発明の他の実施形態を示す窒素除去装置の
全体平面図である。
FIG. 17 is an overall plan view of a nitrogen removing apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 生物学的処理系 2 無酸素槽 3 好気槽 4 槽間接続部 5 槽間仕切壁 10 主散気装置 11 微生物固定化担体 12 担体分離スクリーン 13 分離水流路 14 槽内仕切壁 16 上向流路 17 散気装置 18 担体循環流路 19 硝化液循環流路 DESCRIPTION OF SYMBOLS 1 Biological treatment system 2 Oxygen-free tank 3 Aerobic tank 4 Inter-tank connection section 5 Inter-tank partition wall 10 Main air diffuser 11 Microorganism immobilization carrier 12 Carrier separation screen 13 Separated water flow path 14 In-tank partition wall 16 Upflow Path 17 Air diffuser 18 Carrier circulation path 19 Nitrification liquid circulation path

フロントページの続き (72)発明者 木下 昌大 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内 (72)発明者 岸野 宏 大阪府大阪市浪速区敷津東一丁目2番47号 株式会社クボタ内Continued on the front page (72) Inventor Masahiro Kinoshita 2-47, Shikitsu Higashi 1-chome, Naniwa-ku, Osaka-shi, Osaka (72) Inventor Hiroshi Kishino 1-chome 2, Shikitsu-higashi, Naniwa-ku, Osaka, Osaka No. 47 Inside Kubota Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 好気槽を有する生物学的処理系におい
て、好気槽の内部に微生物固定化担体を流動状態に保持
し、好気槽の流出端をなす流出端部槽壁の上流側位置
に、槽壁面との間に分離水流路を形成する担体分離スク
リーンを設け、担体分離スクリーンの上流側位置に、槽
底部側の下端開口において槽内流域に連通する上向流路
をスクリーン面との間に形成する槽内仕切壁を設け、上
向流路の下部に散気装置を設け、上向流路の槽上部側と
好気槽の流入端側とを連通して担体循環流路を設けたこ
とを特徴とする窒素除去装置。
In a biological treatment system having an aerobic tank, a microorganism-immobilized carrier is kept in a fluid state inside the aerobic tank, and an upstream side of an outflow end tank wall forming an outflow end of the aerobic tank. In the position, a carrier separation screen that forms a separation water flow path between the tank wall surface is provided, and at an upstream position of the carrier separation screen, an upward flow path that communicates with the inside of the tank at the lower end opening on the tank bottom side is provided on the screen surface. A partition wall in the tank formed between the upper flow path and an air diffuser at the lower part of the upward flow path. The upper part of the upward flow path communicates with the inflow end side of the aerobic tank to circulate the carrier circulation flow. A nitrogen removing device comprising a passage.
【請求項2】 無酸素槽を好気槽の流入端に接続して設
け、無酸素槽から好気槽へ無酸素槽混合液が流入する生
物学的処理系において、無酸素槽および好気槽の内部に
微生物固定化担体を流動状態で保持するとともに、微生
物固定化担体に硝化菌および脱窒菌を固定化し、好気槽
の流出端をなす流出端部槽壁の上流側位置に、槽壁面と
の間に分離水流路を形成する担体分離スクリーンを設
け、担体分離スクリーンの上流側位置に、槽底部側の下
端開口において槽内流域に連通する上向流路をスクリー
ン面との間に形成する槽内仕切壁を設け、上向流路の下
部に散気装置を設け、上向流路の槽上部側と無酸素槽の
流入端側とを連通して担体循環流路を設けたことを特徴
とする窒素除去装置。
2. A biological treatment system in which an anoxic tank is connected to an inflow end of an aerobic tank and a mixed solution of the anoxic tank flows from the anoxic tank to the aerobic tank. While holding the microorganism-immobilized carrier in a fluidized state inside the tank, the nitrifying bacteria and the denitrifying bacteria are immobilized on the microorganism-immobilized carrier, and the tank is located upstream of the outflow end tank wall forming the outflow end of the aerobic tank. A carrier separation screen that forms a separation water flow path between the wall surface is provided, and an upstream flow path communicating with the in-tank flow area at the lower end opening on the tank bottom side is provided at an upstream position of the carrier separation screen between the screen surface. A partition wall in the tank to be formed was provided, an air diffuser was provided at the lower part of the upward flow path, and a carrier circulation flow path was provided by communicating the tank upper side of the upward flow path with the inflow end side of the oxygen-free tank. A nitrogen removing device characterized by the above-mentioned.
【請求項3】 好気槽に配置する主散気装置と上向流路
に配置する散気装置とを一体的に構成したことを特徴と
する請求項1又は2記載の窒素除去装置。
3. The nitrogen removing device according to claim 1, wherein a main diffuser disposed in the aerobic tank and a diffuser disposed in the upward flow path are integrally formed.
【請求項4】 槽内仕切壁の下端縁を槽内流域側へ傾斜
して設け、上向流路を下端側ほど流路断面が広がるよう
に形成したことを特徴とする請求項1〜3の何れか1項
記載の窒素除去装置。
4. The tank according to claim 1, wherein a lower end edge of the partition wall in the tank is provided to be inclined toward a flow area in the tank, and an upward flow path is formed so that a flow path cross section increases toward a lower end side. The nitrogen removing device according to any one of the above.
【請求項5】 上向流路の下部に設ける散気装置に代え
て、担体循環流路の入口ないし途中にポンプを設置した
ことを特徴とする請求項1〜4の何れか1項記載の窒素
除去装置。
5. The pump according to claim 1, wherein a pump is provided at an inlet of or in the middle of the carrier circulation channel, instead of the air diffuser provided below the upward channel. Nitrogen removal equipment.
JP16036996A 1996-06-21 1996-06-21 Nitrogen removing device Pending JPH105778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16036996A JPH105778A (en) 1996-06-21 1996-06-21 Nitrogen removing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16036996A JPH105778A (en) 1996-06-21 1996-06-21 Nitrogen removing device

Publications (1)

Publication Number Publication Date
JPH105778A true JPH105778A (en) 1998-01-13

Family

ID=15713493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16036996A Pending JPH105778A (en) 1996-06-21 1996-06-21 Nitrogen removing device

Country Status (1)

Country Link
JP (1) JPH105778A (en)

Similar Documents

Publication Publication Date Title
US6787035B2 (en) Bioreactor for treating wastewater
KR19990021838A (en) Aerobic treatment method and treatment tank of sewage
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JPH02214597A (en) Device for nitrifying sewage
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
CN110510815B (en) Integrated sewage treatment device based on simultaneous nitrification and denitrification and sewage treatment method
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
CN108911138A (en) Vertical partitioning anaerobic-aerobic-mud-water separation integral type sewage processing method
JP3150530B2 (en) Biological nitrogen removal equipment
JP3373015B2 (en) Wastewater nitrification denitrification treatment equipment
JP2000301184A (en) Nitrogen removing apparatus
JP3223945B2 (en) Nitrification / denitrification equipment
JPH105778A (en) Nitrogen removing device
JPH10165984A (en) Nitrogen removing apparatus
JPH08506267A (en) Method and apparatus for wastewater treatment with biological activated sludge
KR100446107B1 (en) Bioreactor for Treating Wastewater
JP3049701B2 (en) Nitrification / denitrification equipment
JPH07136678A (en) Wastewater treatment method and tank
KR100540549B1 (en) Advanced Wastewater Treatment System Using Vertical Membrane Bioreactor
JPH1147786A (en) Device for removing nitrogen
JPH0747390A (en) Sewage treatment equipment
JPH1043794A (en) Nitrogen removing device
JPH10146596A (en) Nitrogen removing device
JPH07163994A (en) Biological treating device of sewage
JP3652473B2 (en) Wastewater treatment system