[go: up one dir, main page]

JPH1054773A - Pressure measuring sensor usable in high temperature environment - Google Patents

Pressure measuring sensor usable in high temperature environment

Info

Publication number
JPH1054773A
JPH1054773A JP24244396A JP24244396A JPH1054773A JP H1054773 A JPH1054773 A JP H1054773A JP 24244396 A JP24244396 A JP 24244396A JP 24244396 A JP24244396 A JP 24244396A JP H1054773 A JPH1054773 A JP H1054773A
Authority
JP
Japan
Prior art keywords
pressure
mechanical load
charge
combustion
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24244396A
Other languages
Japanese (ja)
Other versions
JP3256799B2 (en
Inventor
Hajime Yokoyama
肇 横山
Hiroshi Yokoyama
宏 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EE II SYST KK
Original Assignee
EE II SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EE II SYST KK filed Critical EE II SYST KK
Priority to JP24244396A priority Critical patent/JP3256799B2/en
Publication of JPH1054773A publication Critical patent/JPH1054773A/en
Application granted granted Critical
Publication of JP3256799B2 publication Critical patent/JP3256799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure sensor capable of easily measuring pressure, which is very compact, light in weight and has a simple construction, high durability, and low in price, and requiring no additional device such as cooling device even in s high temperature environment. SOLUTION: This pressure sensor can directly measure combustion pressure P of an internal combustion engine generated by burning fuel mixture of gasificated gas at a high temperature of 1000 deg.C or higher without additional device such as cooling device and output a charge signal which is in proportion to the pressure at speed of 1μs, so that the signal is converted into a voltage signal by a charge amplifier and it signal value is read out by an induced unit Pa of the pressure and at the same time combustion waveform for determining condition of combustion (normal or abnormal) can be monitored by a self diagnostic system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本案によるセンサは高温度中で使
用できるので、各種内燃機関の燃焼室内に直接取り付
け、燃焼に伴い発生する燃焼圧を常時計測するための圧
力センサに利用すれば内燃機関の下記項目の制御および
検出が可能になる。 1.ノック検知(正常燃焼波形と非正常燃焼のモニタに
よる波形比較)。 2.EGR(排気ガス還流)制御。 3.MBT(最大トルクのための最小進角電気位置)制
御。 4.失火検出(アイドリング時、エンジンブレーキ走行
時における)。 5.最適混合比制御(トルク変動の即時検出によるリー
ンバーン制御)。 6.排ガス対策。 内燃機関における利用以外に、原子力反応装置内におけ
る高温度中の圧力変動状態をセンサの冷却なしに直接計
測することができる。
Since the sensor according to the present invention can be used at high temperatures, it can be used directly in the combustion chambers of various internal combustion engines and used as a pressure sensor for constantly measuring the combustion pressure generated during combustion. The following items can be controlled and detected. 1. Knock detection (comparison between normal combustion waveform and abnormal combustion monitor). 2. EGR (exhaust gas recirculation) control. 3. MBT (minimum advance electrical position for maximum torque) control. 4. Misfire detection (idling, engine braking). 5. Optimal mixture ratio control (lean burn control by immediate detection of torque fluctuation). 6. Exhaust gas measures. In addition to the use in an internal combustion engine, the pressure fluctuation state at a high temperature in a nuclear reactor can be directly measured without cooling a sensor.

【0002】[0002]

【従来の技術】従来、圧力または力を計測するためには
作用した機械的負荷によってセンサ自体が変形し、その
変形量を計測するいわゆる歪ゲージと、機械的負荷を圧
電素子に作用させて電荷を発生させる圧電センサが用い
られている。一般に前者は圧力または力の変化が遅い状
態、すなわち静的測定に適し、後者は圧力また力が急激
に変化するような状態、すなわち連続する動的圧力ピー
クの計測に適しているといえる。しかしながら両者とも
使用温度範囲に限界があり、特に圧電センサの高温度域
における使用温度の限界は圧電素子自体のキューリー点
により制約を受け決定される。通常それらは下記に示す
範囲のため現状ではセンサ自体を燃焼室内に直接取り付
けて使用することができない。
2. Description of the Related Art Conventionally, in order to measure pressure or force, a sensor itself is deformed by an applied mechanical load, and a so-called strain gauge for measuring an amount of the deformation, and a mechanical load is applied to a piezoelectric element to charge the piezoelectric element. Is used. In general, the former can be said to be suitable for a state where pressure or force changes slowly, that is, static measurement, and the latter is suitable for a state where pressure or force changes rapidly, ie, measurement of a continuous dynamic pressure peak. However, in both cases, the operating temperature range is limited, and particularly the operating temperature limit in the high temperature range of the piezoelectric sensor is determined by being restricted by the Curie point of the piezoelectric element itself. Usually, because of the following ranges, the sensor itself cannot be used by directly mounting it in the combustion chamber at present.

【0003】[0003]

【発明が解決しようとする課題】通常の温度範囲におけ
る圧力または力を圧電センサにより計測することは、セ
ンサ自体の変位がなく、応答速度が速く、小型である等
の優れた特性によりしばしば使用される。しかしセンサ
素子のキューリー温度を越えて使用することはできない
ため内燃機関の燃焼室内で混合気が爆発する際の100
0℃を越える高温度中の気圧(燃焼圧)変動を直接測定
するような目的は達成できない。この場合対策として圧
力センサの周辺を冷却するための水冷式アダプタを使う
か、圧力センサを温度の低い場所に取り付け、燃焼室か
らセンサまでを導入管で連結し温度を低下させてから発
生した圧力ピークを検出する方法が採られている。これ
らの方法における欠陥は水冷方式は装置が大掛かりにな
り内燃機関を床上でテストするような場合には使うこと
ができるが、車載状態での使用は極めて困難である。ま
た燃焼室からセンサまでを圧力導入管で連結する方式は
応答が遅れること、長期間の使用で導入管の内部にカー
ボン等が付着して精度のよい計測ができなくなる等の欠
陥がある。
The measurement of pressure or force in a normal temperature range by a piezoelectric sensor is often used because of excellent characteristics such as no displacement of the sensor itself, fast response speed and small size. You. However, since the sensor cannot be used beyond the Curie temperature of the sensor element, the air-fuel mixture explodes in the combustion chamber of the internal combustion engine.
The purpose of directly measuring pressure (combustion pressure) fluctuations at high temperatures exceeding 0 ° C. cannot be achieved. In this case, as a countermeasure, use a water-cooled adapter to cool the area around the pressure sensor, or install the pressure sensor in a place with a low temperature, connect the combustion chamber to the sensor with an inlet pipe, and reduce the pressure generated after lowering the temperature. A method of detecting a peak is employed. A drawback in these methods is that the water-cooled system can be used when testing the internal combustion engine on the floor due to the large size of the apparatus, but it is extremely difficult to use it in a vehicle. In addition, the method of connecting the combustion chamber to the sensor with a pressure introducing pipe has defects such as a delay in response, and the inability to perform accurate measurement due to carbon or the like adhering to the inside of the introducing pipe due to long-term use.

【0004】[0004]

【課題を解決するための手段】内燃機関の燃焼室内で発
生する圧力ピークの状態を直接計測するためには圧力セ
ンサを燃焼室内に設置することが望ましい。しかし燃焼
室内で混合気が燃焼する際の温度は1000℃を越える
ため、センサ自体が高温度に耐えられるものでなければ
ならない。従来、圧電素子として一般に使用されている
水晶、チタン酸ジルコン酸鉛、チタン酸等単結晶材料の
キューリー点(または温度)はいずれも320〜550
℃程度と低い。キューリー点とはその物質の溶解温度ま
たは融点と異なり、加わった温度により結晶状態が変化
して圧電効果が得られなくなる温度を指しており、当然
燃焼室内で混合気が燃焼する際に発生する高温中では使
用できない。本案においてはキューリー点が非常に高い
ニオブ酸リチウム(LiNbO)、またはキューリー
点が存在しないランガサイト(LaGaSi
14)単結晶材を圧電素子に使うことにより燃焼室内
で発生する圧力ピークの状態を直接計測するものであ
る。それぞれの単結晶材の融点ならびにキューリー点を
下記に示す。 一般に単結晶材の結晶学的軸X、YおよびZの3軸のう
ちX、Yの2軸については電気的軸と呼ばれZは光学的
軸と呼ばれている。単結晶材は与えられた機械的な負荷
に対し、それ自体が有する圧電効果により電荷を発生す
るが、具体的に述べれば結晶のY軸に対しX軸の方向に
機械的負荷を与えればY軸の両面に電荷を発生(縦軸効
果)し、同じくX軸に対しY軸の方向に機械的負荷を与
えればX軸の両面に電荷を発生(横軸効果)する。図1
は結晶学的軸Xにしたがってカットされた単結晶圧電素
子1に対して機械的負荷Fの加わる方向と圧電素子上に
発生する電荷qを示している。すなわち図1では負荷F
が圧電素子1に対して圧縮力(正の方向)+Fとして作
用した場合、素子のある面に正の極性+qの電荷が現れ
れば素子の反対側(裏側)の面には負の極性−qが現れ
る状態を示している。図2は機械的負荷Fが逆に引っ張
り方向(負の方向)−Fに作用した場合に圧電素子上に
発生する電荷の極性が逆転して−qで現れ、同時に反対
側(裏側)の面には正の極性+qが現れる状態を示して
いる。次に本案において使用される単結晶材料の縦軸効
果における公称感度を示す。また比較のため従来一般的
に圧電素子として使用されている水晶の縦軸効果におけ
る公称感度を示す。 すなわち縦軸効果において電荷qは、作用した機械的負
荷の合計に直接比例して負荷が作用した圧電素子の表面
に現れ、その量は圧電素子の大きさや形状に無関係で、
ニオブ酸リチウム(LiNbO)においては1ニュー
トン当たり6ピコクーロンの電荷が現れ、ランガサイト
(LaGaSiO14)においては1ニュートン当
たり4ピコクーロンの電荷が、また、ちなみに水晶にお
いては1ニュートン当たり2ピコクーロンの電荷を発生
する。図3は本案における圧力検出用単結晶圧電素子セ
ンサの基本的な構成を示している。即ち図3では2枚の
単結晶圧電素子1、2枚の単結晶圧電素子の間に挟み電
荷信号を取り出すようにした電極2、力または圧力を圧
電素子に伝達するダイアフラム3、圧電素子および絶縁
材4を内蔵し、センサ全体を内燃機関のシリンダヘッド
部分にネジ込みできるようにしたハウジング5である。
本案による圧力検出用単結晶圧電素子センサは図3に示
すように2枚の単結晶圧電素子1を機械的負荷が作用す
る方向に整列させ、ダイアフラム3により燃焼による圧
力変動を圧電素子に伝達し電荷信号を発生させ、その電
荷信号を電極2で取り出すようにした構造を特徴とする
ものである。
In order to directly measure the state of a pressure peak generated in a combustion chamber of an internal combustion engine, it is desirable to install a pressure sensor in the combustion chamber. However, since the temperature at which the air-fuel mixture burns in the combustion chamber exceeds 1000 ° C., the sensor itself must be able to withstand high temperatures. Conventionally, the Curie point (or temperature) of a single crystal material such as quartz, lead zirconate titanate, or titanic acid, which is generally used as a piezoelectric element, is 320 to 550.
As low as ° C. The Curie point is different from the melting temperature or melting point of the substance, and refers to the temperature at which the crystal state changes due to the applied temperature and the piezoelectric effect cannot be obtained. Naturally, the high temperature generated when the air-fuel mixture burns in the combustion chamber Cannot be used inside. In the present invention, lithium niobate (LiNbO 3 ) having a very high Curie point or langasite (La 3 Ga 5 Si) having no Curie point is used.
O 14 ) A pressure peak generated in a combustion chamber is directly measured by using a single crystal material for a piezoelectric element. The melting point and Curie point of each single crystal material are shown below. Generally, of the three crystallographic axes X, Y, and Z of a single crystal material, two of X and Y are called electrical axes, and Z is called an optical axis. The single crystal material generates an electric charge due to a piezoelectric effect of the single crystal material under a given mechanical load. Specifically, when a mechanical load is applied in the X-axis direction with respect to the Y-axis of the crystal, the single crystal material has a Y-axis. Electric charges are generated on both sides of the axis (vertical axis effect). Similarly, when a mechanical load is applied to the X axis in the direction of the Y axis, electric charges are generated on both sides of the X axis (horizontal axis effect). FIG.
Indicates the direction in which a mechanical load F is applied to the single crystal piezoelectric element 1 cut along the crystallographic axis X and the electric charge q generated on the piezoelectric element. That is, in FIG.
Acts on the piezoelectric element 1 as a compressive force (positive direction) + F, and if a charge of positive polarity + q appears on one surface of the element, a negative polarity −q is applied on the surface on the opposite side (back side) of the element. Shows the state where appears. FIG. 2 shows that the polarity of the charge generated on the piezoelectric element when the mechanical load F acts in the pulling direction (negative direction) -F is reversed and appears at -q, and at the same time, the surface on the opposite side (back side). Shows a state where a positive polarity + q appears. Next, the nominal sensitivity in the vertical axis effect of the single crystal material used in the present invention is shown. For comparison, the nominal sensitivity in the vertical axis effect of a quartz crystal conventionally used as a piezoelectric element is shown. That is, in the vertical axis effect, the electric charge q appears on the surface of the loaded piezoelectric element in direct proportion to the total applied mechanical load, and its amount is independent of the size and shape of the piezoelectric element.
In lithium niobate (LiNbO 3 ), a charge of 6 pico-coulombs appears per newton, in langasite (La 3 Ga 5 SiO 14 ), a charge of 4 pico-coulombs appears per newton, and in the case of quartz, 2 pico-coulombs appear. Generates picocoulomb charges. FIG. 3 shows a basic configuration of the single crystal piezoelectric element sensor for pressure detection according to the present invention. That is, in FIG. 3, two single-crystal piezoelectric elements 1, an electrode 2 sandwiched between two single-crystal piezoelectric elements to extract a charge signal, a diaphragm 3 for transmitting force or pressure to the piezoelectric element, a piezoelectric element, and an insulating element A housing 5 containing the material 4 so that the entire sensor can be screwed into a cylinder head portion of the internal combustion engine.
The single-crystal piezoelectric element sensor for pressure detection according to the present invention arranges two single-crystal piezoelectric elements 1 in the direction in which a mechanical load acts as shown in FIG. 3, and transmits the pressure fluctuation due to combustion to the piezoelectric element by the diaphragm 3. It is characterized in that a charge signal is generated and the charge signal is taken out by the electrode 2.

【0005】[0005]

【作 用】圧電センサは機械的負荷が圧電素子に作用
することにより素子の結晶がが変形し、素子表面の変形
量に応じて電荷エネルギーが帯電するのでその電荷量を
計測して機械的負荷の単位(N、Pa、Kgf等)に換
算することを原理としているが、実際には帯電した電荷
エネルギーを直接取り扱うことは困難なためチャージア
ンプを介在させて取り扱いの容易な電圧信号に変換しな
ければならない。帯電した電荷の放電を防ぐためにセン
サ素子自体、センサハウジング、電気コネクタ、および
チャージアンプに至るまでの接続ケーブルなど系全体を
構成する各要素の絶縁抵抗は高く保たれねばならない。
図4は本案による圧力検出用単結晶圧電素子センサとチ
ャージアンプの構成を示すものである。2枚の単結晶圧
電素子1は帯電する電荷の同極側を向かい合わせにする
ことにより同一の機械的負荷にたいし2倍の電荷感度
(2xq)が得られる。いま機械的負荷が加わると圧電
素子1の表面に機械的負荷に直接比例した量の帯電がお
こなわれる。帯電した電荷は一度コンデンサ6に蓄えら
れた後、固定抵抗7を通じて放電する。この場合蓄えら
れる電荷が正(+)であるか負(−)であるかは、素子
に作用する機械的負荷が正圧(圧縮)方向であるか、負
圧(引っ張り)方向であるかにより決定される。コンデ
ンサ6の電気容量と固定抵抗7の電気抵抗により回路の
時定数が決定され、それに伴い放電時間が決定される。
図4の8はMosトランジスタを示し、コンデンサ6に
蓄えられた電荷エネルギーを電気量に変換し取り扱いの
容易なアナログ電圧として出力する。本案による圧力検
出用単結晶圧電素子センサは上に述べられたチャージア
ンプに接続されているので圧電素子センサに基準圧力を
与え、それに伴って出力する電気信号を調整すれば圧電
素子センサとチャージアンプによる測定の系全体は基準
圧力により校正することができる。したがって本圧力セ
ンサを燃焼室に直接取り付ければ、燃焼に伴う圧力の変
動を圧力に直接比例した電気信号に変換して出力させる
ことができるのでMPa、barのようなそれぞれの誘
導単位の値で計測できる。
[Function] A piezoelectric sensor deforms the crystal of the element when a mechanical load acts on the piezoelectric element, and charges electric energy in accordance with the amount of deformation of the element surface. (N, Pa, Kgf, etc.) in principle, but it is difficult to directly handle the charged electric energy. In practice, it is converted into a voltage signal that can be easily handled through a charge amplifier. There must be. In order to prevent the discharge of the charged electric charge, the insulation resistance of each element constituting the whole system such as the sensor element itself, the sensor housing, the electric connector, and the connection cable leading to the charge amplifier must be kept high.
FIG. 4 shows a configuration of a single crystal piezoelectric element sensor for pressure detection and a charge amplifier according to the present invention. The two single-crystal piezoelectric elements 1 face each other with the same polarities of the charges to be charged facing each other, so that twice the charge sensitivity (2 × q) with respect to the same mechanical load can be obtained. When a mechanical load is applied, the surface of the piezoelectric element 1 is charged in an amount directly proportional to the mechanical load. The charged electric charge is once stored in the capacitor 6 and then discharged through the fixed resistor 7. In this case, whether the stored charge is positive (+) or negative (-) depends on whether the mechanical load acting on the element is in the positive pressure (compression) direction or the negative pressure (pull) direction. It is determined. The time constant of the circuit is determined by the electric capacity of the capacitor 6 and the electric resistance of the fixed resistor 7, and the discharge time is accordingly determined.
Reference numeral 8 in FIG. 4 denotes a Mos transistor, which converts the charge energy stored in the capacitor 6 into an electric quantity and outputs it as an easily handled analog voltage. The single-crystal piezoelectric element sensor for pressure detection according to the present invention is connected to the charge amplifier described above, so that a reference pressure is applied to the piezoelectric element sensor, and the electric signal output according to the reference pressure is adjusted. Can be calibrated by the reference pressure. Therefore, if this pressure sensor is directly attached to the combustion chamber, fluctuations in pressure due to combustion can be converted into electric signals that are directly proportional to the pressure and output, so measurement is performed using the value of each induction unit such as MPa or bar. it can.

【0006】[0006]

【実施例】図5は本案による圧力センサを内燃機関のシ
リンダヘッド9の燃焼室10に取り付けた状態を示す。
本案による圧力センサはキューリー点が非常に高い、ま
たは相転移が存在しない圧電素子を使用することにより
図5のように圧力センサの感圧部すなわちダイアフラム
3をシリンダヘッド9より燃焼室10内に露出させた状
態で稼動させることができ、燃焼の際に発生する圧力負
荷Pを直接圧電素子に伝達することができる。この構成
は機械的負荷の変化を極めて短い振動系で伝達するので
センサ自体の共振周波数が高く、応答速度が速く、広い
ダイナミックレンジを獲得できる利点がある。したがっ
て圧力ピークの正確な計測と燃焼波形のモニタ、トルク
変動の判別が可能になる。燃焼室10内で発生し圧力セ
ンサに与える機械的負荷は、燃焼による圧力負荷Pが一
番大きいと考えられるが、アイドリング回転時、エンジ
ンブレーキ状態における回転時等では大きな燃焼圧は発
生せず吸気、排気の際に発生する圧力変動と区別しにく
い。したがって燃焼による圧力変動のみを正確に計測の
ためにこのシステムでは、クランク軸の回転角を計測し
て特定の角度においてチャージアンプ回路のリセットと
燃焼圧信号の読み込みをするよう回転角検出用ロータリ
ィエンコーダ11を備え作動信号を出すようにしてい
る。
FIG. 5 shows a pressure sensor according to the present invention mounted in a combustion chamber 10 of a cylinder head 9 of an internal combustion engine.
The pressure sensor according to the present invention uses a piezoelectric element having a very high Curie point or having no phase transition, thereby exposing the pressure-sensitive portion, that is, the diaphragm 3 of the pressure sensor into the combustion chamber 10 from the cylinder head 9 as shown in FIG. The operation can be performed in a state where the pressure is applied, and the pressure load P generated at the time of combustion can be directly transmitted to the piezoelectric element. This configuration has the advantages that the change in mechanical load is transmitted through an extremely short vibration system, so that the resonance frequency of the sensor itself is high, the response speed is fast, and a wide dynamic range can be obtained. Therefore, it is possible to accurately measure the pressure peak, monitor the combustion waveform, and determine the torque fluctuation. As for the mechanical load generated in the combustion chamber 10 and applied to the pressure sensor, the pressure load P due to combustion is considered to be the largest, but a large combustion pressure is not generated during idling rotation, rotation during engine braking, and the like. It is difficult to distinguish from pressure fluctuations that occur during exhaust. Therefore, in order to accurately measure only the pressure fluctuation due to combustion, this system measures the rotation angle of the crankshaft, and rotates the rotation angle detection rotary so that the charge amplifier circuit is reset and the combustion pressure signal is read at a specific angle. An encoder 11 is provided to output an operation signal.

【0007】[0007]

【発明の効果】本案による圧力センサは極めて小型で軽
量、簡単な構造、耐久性、低価格、さらに高温度の環境
下でも冷却等の付加装置を必要とせずに容易に圧力計測
がでるきることを特徴としている。ここで使用される圧
力検出用単結晶圧電素子の機械的強度、または耐圧は素
子の面積10mmにたいし150barであり、この
値は通常排気量2000cc程度の排気量のエンジンに
おける燃焼圧に相当する。したがってこの圧力センサは
小型化でき、特に取り付け部分のネジ外径はM10相当
とすることができ、実際の使用に際してはエンジンのシ
リンダヘッド部分にM10程度のネジ穴を加工するだけ
でセンサの取り付けができるため車載の状態で内燃機燃
焼室内の燃焼圧の計測、燃焼波形のモニタを行うことが
できる。本案による圧力センサは燃焼圧の計測と同時に
燃焼波形のモニタが可能なのでこの機能をノッキング検
出として使うことができる。すなわちノッキングとは負
荷変動に伴うトルク変動に対し点火時期が追従せず燃焼
室内で異常燃焼がおこりエンジン全体が異常振動する状
態である。従来のノッキング検出は加速度センサにより
異常振動を検知するようにしている。しかしエンジン自
体はクランク軸やカム軸の回転、それに伴う弁の開閉
(打弁振動)、吸気、爆発、排気等常に振動を発生して
いるため、加速度センサにより異常燃焼による異常振動
だけを検出するのは困難である。一般にはクランク軸に
回転角エンコーダを取り付けクランク軸角が爆発の行程
に入ったタイミングで加速度センサからの信号を受け取
るようにしている。本案による圧力センサは燃焼波形を
直接モニタすることができるのでトルク変動に伴う異常
燃焼を燃焼波形の異常として検出します。特に省エネル
ギーを目的とした希薄燃焼方式の内燃機関においては燃
焼圧センサを使ってトルク変動を直接検知し、希薄燃焼
限界のためのMBT(最大トルのクのための最小進角電
気位置)制御を容易におこなうことができる。排気量の
増加または加給器付き内燃機など機械的負荷の増加(燃
焼圧の増加)に対しては素子面積の拡大、すなわち燃焼
圧センサの大型化により対応する必要がある。
The pressure sensor according to the present invention is extremely small and lightweight, has a simple structure, is durable, is inexpensive, and can easily measure pressure even in a high temperature environment without requiring additional equipment such as cooling. It is characterized by. The mechanical strength or pressure resistance of the single-crystal piezoelectric element for pressure detection used here is 150 bar for an area of 10 mm 2 of the element, and this value corresponds to the combustion pressure in an engine with a displacement of about 2,000 cc normally. I do. Therefore, this pressure sensor can be downsized. In particular, the screw outer diameter of the mounting portion can be equivalent to M10. In actual use, the sensor can be mounted only by machining a screw hole of about M10 in the cylinder head portion of the engine. Therefore, the measurement of the combustion pressure in the combustion chamber of the internal combustion engine and the monitoring of the combustion waveform can be performed while the vehicle is mounted on the vehicle. Since the pressure sensor according to the present invention can monitor the combustion waveform simultaneously with the measurement of the combustion pressure, this function can be used as knocking detection. That is, knocking is a state in which the ignition timing does not follow the torque fluctuation accompanying the load fluctuation, abnormal combustion occurs in the combustion chamber, and the entire engine abnormally vibrates. In the conventional knock detection, abnormal vibration is detected by an acceleration sensor. However, since the engine itself constantly generates vibrations such as rotation of the crankshaft and camshaft, opening and closing of valves (valve driving vibration), intake, explosion, exhaust, etc., the acceleration sensor detects only abnormal vibration due to abnormal combustion. It is difficult. Generally, a rotation angle encoder is mounted on a crankshaft to receive a signal from an acceleration sensor at a timing when the crankshaft angle enters a stroke of explosion. Since the pressure sensor according to the present invention can directly monitor the combustion waveform, it detects abnormal combustion due to torque fluctuation as an abnormality in the combustion waveform. In particular, in a lean-burn internal combustion engine with the aim of conserving energy, torque fluctuations are directly detected using a combustion pressure sensor, and MBT (minimum advance electrical position for maximum torque) control for lean combustion limit is performed. It can be done easily. It is necessary to cope with an increase in the displacement or an increase in the mechanical load (increase in the combustion pressure) such as an internal combustion engine with a feeder by increasing the element area, that is, increasing the size of the combustion pressure sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】単結晶圧電素子1に対して圧縮方向の機械的負
荷(+F)が作用した場合に素子表面に発生する電荷と
その極性+qを示す。+X、+Y、+Z は結晶の方位
を示す。
FIG. 1 shows electric charges generated on the element surface when a mechanical load (+ F) in a compression direction acts on a single crystal piezoelectric element 1 and its polarity + q. + X, + Y, + Z indicate the orientation of the crystal.

【図2】単結晶圧電素子1に対して引っ張り方向の機械
的負荷(−F)が作用した場合に素子表面に発生する電
荷とその極性−qを示す。+X、+Y、+Z は結晶の
方位を示す。
FIG. 2 shows electric charges generated on the element surface when a mechanical load (−F) in a tensile direction acts on the single crystal piezoelectric element 1 and its polarity −q. + X, + Y, + Z indicate the orientation of the crystal.

【図3】本発明における単結晶圧電素子1、電荷qを取
り出すための金属薄膜電極2、およびセンサハウジング
3の構成を示す。この構成においては2枚の単結晶圧電
素子1を向かい合わせ(2枚1組=一対)、金属薄膜電
極2を間に挟んで配置しているので圧縮方向の機械的負
荷(+F)が作用した場合、それぞれの素子表面に発生
した電荷qは2倍の電荷感度で取り出すことができる。
すなわち金属薄膜電極2に2x−qが印刷されればセン
サハウジング3には2x+qが印刷される。
FIG. 3 shows a configuration of a single crystal piezoelectric element 1, a metal thin film electrode 2 for extracting electric charge q, and a sensor housing 3 in the present invention. In this configuration, the two single-crystal piezoelectric elements 1 face each other (one pair = one pair) and the metal thin-film electrode 2 is interposed therebetween, so that a mechanical load (+ F) in the compression direction acts. In this case, the charge q generated on each element surface can be taken out with twice the charge sensitivity.
That is, if 2x-q is printed on the metal thin-film electrode 2, 2x + q is printed on the sensor housing 3.

【図4】本案による圧力検出用単結晶圧電素子センサ1
(2枚1組=一対)と電極2により発生した電荷を取り
出し取扱の容易なアナログ信号電圧に変換するチャージ
アンプの構成を示す。チャージアンプはコンデンサ6、
固定抵抗7、Mosトランジスタ8により構成する。図
では圧電素子センサ1に正の圧力+Fが負荷され、電極
2に電荷2x−qが帯電した状態を示している。
FIG. 4 shows a single-crystal piezoelectric element sensor 1 for pressure detection according to the present invention.
1 shows a configuration of a charge amplifier that takes out charges generated by two pairs (one pair = one pair) and electrodes 2 and converts them into analog signal voltages that are easy to handle. The charge amplifier is capacitor 6,
It is composed of a fixed resistor 7 and a Mos transistor 8. The figure shows a state in which a positive pressure + F is applied to the piezoelectric element sensor 1 and charges 2x−q are charged to the electrodes 2.

【図5】圧力センサを内燃機関のシリンダヘッド9の燃
焼室10に取り付けた状態、ならびにクランク軸に回転
角検出用ロータリィエンコーダ10を備えた燃焼圧およ
び燃焼波形検出システムを示す。シリンダヘッド9の燃
焼室10において混合気の燃焼によって燃焼圧力負荷P
が発生し、ピストン12と圧力センサのダイアフラム3
に+Fの圧力が作用した状態を示す。
FIG. 5 shows a state in which a pressure sensor is attached to a combustion chamber 10 of a cylinder head 9 of an internal combustion engine, and a combustion pressure and combustion waveform detection system provided with a rotary encoder 10 for detecting a rotation angle on a crankshaft. In the combustion chamber 10 of the cylinder head 9, the combustion pressure load P
Occurs, the piston 12 and the diaphragm 3 of the pressure sensor
Shows a state in which the pressure of + F acts on.

【符合の説明】[Description of sign]

1 単結晶圧電素子 2 電 極 3 ダイアフラム 4 絶 縁 材 5 ハウジング 6 コンデンサ 7 固定抵抗 8 Mosトランジスタ 9 内燃機関のシリンダヘッド 10 燃焼室 11 回転角検出用エンコーダ 12 ピストン +F 圧縮方向の機械的負荷(この場合主に圧力)が作
用した状態 −F 引っ張り方向の機械的負荷(この場合主に圧力)
が作用した状態 +q 正の極性を有する電荷 −q 負の極性を有する電荷 P 混合気の燃焼によって発生した燃焼圧力負荷
DESCRIPTION OF SYMBOLS 1 Single crystal piezoelectric element 2 Electrode 3 Diaphragm 4 Insulation material 5 Housing 6 Capacitor 7 Fixed resistance 8 Mos transistor 9 Cylinder head of internal combustion engine 10 Combustion chamber 11 Encoder for rotation angle detection 12 Piston + F Mechanical load in compression direction (this -F mechanical state in the tensile direction (mainly pressure)
+ Q Charge with positive polarity -q Charge with negative polarity P Combustion pressure load generated by combustion of air-fuel mixture

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年7月15日[Submission date] July 15, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図6】圧電素子1に対して圧縮方向の機械的負荷(+
F)が作用した場合に素子の側面に発生する電荷とその
極性+qおよび反対側の面に発生する電荷の極性−qの
状態を示す。学術的には横軸効果による圧電現象と称さ
れる。+X、+Y、+Zは結晶の方位を示す。ちなみに
図1および図2は縦軸効果による圧電現象と称し、電荷
は与えられた機械的負荷の合計に直接比例して素子の表
面に現れ電荷の量(公称電荷感度)は素子の大きさや形
状に関係なくニオブ酸リチウムにおいては6pC/N、
ランガサイトにおいては4pC/Nである。これに対し
横軸効果による電荷感度は縦軸効果と異なり素子の大き
さや形状に関係しX寸法に対するY寸法の比に依存す
る。一般に横軸効果の電荷感度は縦軸効果に比較し50
倍またはそれ以上が得られる。
FIG. 6 shows a mechanical load (+
The state of the charge generated on the side surface of the element and the polarity + q thereof and the polarity -q of the charge generated on the opposite surface when F) acts are shown. Scientifically, it is called a piezoelectric phenomenon due to the horizontal axis effect. + X, + Y, + Z indicate the orientation of the crystal. 1 and 2 refer to a piezoelectric effect due to the vertical axis effect, in which charge appears on the surface of the device in direct proportion to the total applied mechanical load, and the amount of charge (nominal charge sensitivity) is the size and shape of the device. 6 pC / N for lithium niobate,
In Langasite it is 4 pC / N. On the other hand, unlike the vertical axis effect, the charge sensitivity due to the horizontal axis effect is related to the size and shape of the element and depends on the ratio of the Y dimension to the X dimension. Generally, the charge sensitivity of the horizontal axis effect is 50 times greater than that of the vertical axis effect.
Double or more is obtained.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図7】圧電素子1に対して引っ張り方向の機械的負荷
(−F)が作用した場合に素子の側面に発生する電荷と
その極性−qおよび反対側の側面に発生する電荷の極性
+qの状態を示す。学術的表現では横軸効果による圧電
現象と称される。+X、+Y、+Zは結晶の方位を示
す。
FIG. 7 shows the relationship between the electric charge generated on the side surface of the piezoelectric element 1 when a mechanical load (−F) is applied to the piezoelectric element 1 and its polarity −q and the polarity + q of the electric charge generated on the opposite side surface. Indicates the status. In academic terms, it is called a piezoelectric phenomenon due to the horizontal axis effect. + X, + Y, + Z indicate the orientation of the crystal.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図6[Correction target item name] Fig. 6

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図6】 FIG. 6

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図7】 FIG. 7

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 キューリー点が非常に高い、またはその
物質の融点に到達するまでキューリー点が存在しないこ
とを特徴とするニオブ酸リチウム(LiNbO)また
はランガサイト(Laa5SiO14)等の置換型
結晶材料を、結晶学上の座標軸Xにしたがって切断し、
正しく平行な2つの面を有するチップ状に形成した圧電
素子。
1. A lithium niobate (LiNbO 3 ) or langasite (La 3 G a5 SiO 14 ) characterized by having a very high Curie point or no Curie point until the melting point of the substance is reached. Is cut along the crystallographic coordinate axis X,
A piezoelectric element formed in a chip shape having two correctly parallel surfaces.
【請求項2】 ニオブ酸リチウム(LiNbO)また
はランガサイト(LaGaSiO14)等の単結晶
材を座標軸Xにしたがって切断し形成した圧電素子の表
面に、圧力または力のような機械的負荷を与えると、作
用した機械的負荷の合計に直接比例して電荷が印刷され
る。平行した圧電素子の両面に正の方向の機械的負荷
(圧縮方向の負荷)が加わった場合、ある面に+の電荷
が発生すれば平行する反対側の面には−の電荷が現れ、
逆に負の方向(引っ張りの方向)の機械的負荷が作用し
たときには極性が反転し−の電荷が現れ、反対側の面に
は+の電荷が印刷される。この特性を利用し圧電素子を
機械的負荷が作用する方向に整列させ、それらの単結晶
電子材料のキューリー点または融点以内で機械的負荷を
加えた場合、そこに発生した電荷量と極性を測定してニ
ュートン(N)、パスカル(Pa)、またはKgf、な
どの種々の誘導単位に変換し、機械的負荷の大きさと方
向を計測するようにした圧力または力センサ。
2. A machine such as pressure or force is applied to the surface of a piezoelectric element formed by cutting a single crystal material such as lithium niobate (LiNbO 3 ) or langasite (La 3 Ga 5 SiO 14 ) in accordance with a coordinate axis X. When a mechanical load is applied, the charge is printed in direct proportion to the total applied mechanical load. When a mechanical load in the positive direction (load in the compression direction) is applied to both surfaces of the parallel piezoelectric element, if a positive charge is generated on one surface, a negative charge appears on the opposite parallel surface,
Conversely, when a mechanical load in the negative direction (pulling direction) is applied, the polarity is inverted and a negative charge appears, and a positive charge is printed on the opposite surface. Using this characteristic, the piezoelectric elements are aligned in the direction in which a mechanical load acts, and when a mechanical load is applied within the Curie point or melting point of these single-crystal electronic materials, the amount of charge and polarity generated there are measured. A pressure or force sensor that converts the magnitude and direction of a mechanical load into various induction units such as Newton (N), Pascal (Pa), or Kgf.
JP24244396A 1996-08-12 1996-08-12 Pressure measurement sensor that can be used at high temperatures Expired - Fee Related JP3256799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24244396A JP3256799B2 (en) 1996-08-12 1996-08-12 Pressure measurement sensor that can be used at high temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24244396A JP3256799B2 (en) 1996-08-12 1996-08-12 Pressure measurement sensor that can be used at high temperatures

Publications (2)

Publication Number Publication Date
JPH1054773A true JPH1054773A (en) 1998-02-24
JP3256799B2 JP3256799B2 (en) 2002-02-12

Family

ID=17089174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24244396A Expired - Fee Related JP3256799B2 (en) 1996-08-12 1996-08-12 Pressure measurement sensor that can be used at high temperatures

Country Status (1)

Country Link
JP (1) JP3256799B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106875A1 (en) * 2005-03-30 2006-10-12 Fukuda Crystal Laboratory Gallate single crystal, process for producing the same, piezoelectric device for high-temperature use and piezoelectric sensor for high-temperature use
US7152482B2 (en) 2002-10-01 2006-12-26 National Institute Of Advanced Industrial Science & Technology Piezoelectric sensor and input device including same
JP2010185852A (en) * 2009-02-13 2010-08-26 Tdk Corp Pressure sensor
CN106950009A (en) * 2017-02-20 2017-07-14 华能国际电力股份有限公司 High-temperature environment pressure measurement system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7152482B2 (en) 2002-10-01 2006-12-26 National Institute Of Advanced Industrial Science & Technology Piezoelectric sensor and input device including same
WO2006106875A1 (en) * 2005-03-30 2006-10-12 Fukuda Crystal Laboratory Gallate single crystal, process for producing the same, piezoelectric device for high-temperature use and piezoelectric sensor for high-temperature use
US7947192B2 (en) 2005-03-30 2011-05-24 Fukuda Crystal Laboratory Gallate single crystal, process for producing the same, piezoelectric device for high-temperature use and piezoelectric sensor for high-temperature use
JP2013040093A (en) * 2005-03-30 2013-02-28 Fukuda Crystal Laboratory Gallate single crystal, piezoelectric device for high-temperature use and piezoelectric sensor for high-temperature use
JP5174456B2 (en) * 2005-03-30 2013-04-03 株式会社福田結晶技術研究所 Galate single crystal and method for producing the same
JP2010185852A (en) * 2009-02-13 2010-08-26 Tdk Corp Pressure sensor
CN106950009A (en) * 2017-02-20 2017-07-14 华能国际电力股份有限公司 High-temperature environment pressure measurement system
CN106950009B (en) * 2017-02-20 2023-08-15 华能国际电力股份有限公司 High-temperature environment pressure measurement system

Also Published As

Publication number Publication date
JP3256799B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US20070220960A1 (en) Method and apparatus for engine torque sensing
US20110083498A1 (en) In-cylinder pressure sensor diagnostic systems and methods
EP1469293A1 (en) Engine cylinder pressure sensor
JP4410424B2 (en) In-cylinder pressure detection device for internal combustion engine
JPH1054773A (en) Pressure measuring sensor usable in high temperature environment
JP2666231B2 (en) Device for detecting combustion state of internal combustion engine
EP0855588B1 (en) Normalized misfire detection method
JP3541570B2 (en) In-cylinder pressure sensor for engine
Von Berg et al. Measurement of the cylinder pressure in combustion engines with a piezoresistive/spl beta/-SiC-on-SOI pressure sensor
US20090025468A1 (en) Piezoelectric Combustion Chamber Pressure Sensor Having a Pressure Transmission Pin
Neumann High temperature pressure sensor based on thin film strain gauges on stainless steel for continuous cylinder pressure control
JPH07209126A (en) System for detecting and controlling combustion pressure using piezoelectric sensor
GB2363846A (en) Determination of engine torque using an ion current sensor
JP2005009988A (en) Sensor for pressure measurement
JPH0236327A (en) Semiconductor pressure transducer
Sugitani et al. Combustion pressure sensor for Toyota lean burn engine control
JPH05172679A (en) Pressure detector
US6324483B1 (en) Angular acceleration transducer
JP2006250916A (en) Cylinder pressure sensor using al-substituted lgs single crystal as piezoelectric element
Kusakabe et al. A cylinder pressure sensor for internal combustion engine
JPH0613995B2 (en) Torque detector for internal combustion engine
JPH02161172A (en) Combustion state detecting device for internal combustion engine
EP4053530A1 (en) Piezoelectric based sensors and manufacturing methods
Maurya et al. In-cylinder pressure measurement in reciprocating engines
Teichmann et al. Combustion diagnostics

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

LAPS Cancellation because of no payment of annual fees
R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350