[go: up one dir, main page]

JPH1047141A - Judging device for deterioration of catalyst for engine - Google Patents

Judging device for deterioration of catalyst for engine

Info

Publication number
JPH1047141A
JPH1047141A JP8216811A JP21681196A JPH1047141A JP H1047141 A JPH1047141 A JP H1047141A JP 8216811 A JP8216811 A JP 8216811A JP 21681196 A JP21681196 A JP 21681196A JP H1047141 A JPH1047141 A JP H1047141A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
deterioration
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8216811A
Other languages
Japanese (ja)
Other versions
JP3823384B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Takahisa Ishihara
隆久 石原
Koji Miyamoto
浩二 宮本
Hajime Suetsugu
元 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP21681196A priority Critical patent/JP3823384B2/en
Publication of JPH1047141A publication Critical patent/JPH1047141A/en
Application granted granted Critical
Publication of JP3823384B2 publication Critical patent/JP3823384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the aggravation of exhaust gas during judging deterioration by accurately detecting the minute deterioration of a catalyst with controlled cost-up, and carrying out the feedback control of an air-fuel ratio at the same time as the deterioration judgement of the catalyst. SOLUTION: In the case where dither is added into the feed back control of an air-fuel ratio, in the catalyst of normal level, when a sensor output on the downstream of the catalyst is 1.0Hz in the fluctuation frequency of air-fuel ratio fluctuation on the upstream of the catalyst, the sensor output begins to vary toward a lean side, and in the case where the fluctuation frequency is less than 0.5Hz and varys largely, in the catalyst of deterioration level, a sensor output on the downstream of the catalyst begins to vary toward a lean side under such conditions as the variation frequency of 3.0Hz, and fluctuation width of &p1.0(A/F), and in the case where the sensor output is less than 2.0Hz, the sensor output on downstream side largely varys toward the lean side. Thus even the slight deterioration of the catalyst can be accurately judged by paying attention to the above a large fluctuation to very the setting of the fluctuation frequency of the air-fuel ratio fluctuation on the upstream of the catalyst (in the above example, setting up as 2.0Hz).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの排気系
に配置された排気浄化用触媒の劣化を判定する触媒劣化
判定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst deterioration judging device for judging deterioration of an exhaust gas purifying catalyst disposed in an exhaust system of an engine.

【0002】[0002]

【従来の技術】従来、エンジン排気系の触媒の劣化を判
定する方法としては、触媒の上流側に空燃比センサを設
け、下流側にも空燃比センサを設けて、上流側の空燃比
センサの出力に基づいてエンジンの空燃比をフィードバ
ック制御し、その際、上流側センサの出力が一定周期で
反転してリッチ側とリーン側を繰り返すよう目標空燃比
を変動させ、下流側センサ出力の変動を測定し、例え
ば、上流側センサ出力の反転回数と下流側センサ出力の
反転回数を比較して、上流側センサ出力の反転回数に対
する下流側センサ出力の反転回数の比率が所定レベルを
越えたら触媒劣化と判定する方法が用いられている。特
開平7−259613号公報に記載されたものはこの方
法で触媒の劣化判定を行うものの一例である。
2. Description of the Related Art Conventionally, as a method for judging the deterioration of a catalyst in an engine exhaust system, an air-fuel ratio sensor is provided upstream of the catalyst, and an air-fuel ratio sensor is also provided downstream. The air-fuel ratio of the engine is feedback-controlled based on the output.At this time, the target air-fuel ratio is changed so that the output of the upstream sensor is inverted at a fixed cycle and repeats the rich side and the lean side, and the fluctuation of the output of the downstream sensor is reduced. Measure and, for example, compare the number of reversals of the upstream sensor output with the number of reversals of the downstream sensor output.If the ratio of the number of reversals of the downstream sensor output to the number of reversals of the upstream sensor output exceeds a predetermined level, the catalyst deteriorates. Is determined. Japanese Unexamined Patent Publication No. 7-259613 is an example of a method for determining the deterioration of a catalyst by this method.

【0003】排気浄化用触媒は、空燃比リーンの時の余
剰酸素を吸蔵し、その酸素を空燃比リッチ時に放出する
という所謂O2ストレージ効果があり、このO2ストレー
ジ効果により放出される酸素によってHC(炭化水素)
およびCO(一酸化炭素)を浄化するものであって、触
媒が劣化していないときにはO2ストレージ効果が大き
く酸素吸蔵容量が十分あるので、上流側センサ出力を反
転させても、供給される酸素量の変動が吸収されて、触
媒上の空燃比変動は小さくなり、下流側センサ出力はリ
ッチ側に張り付いたまま変動することはない。そして、
触媒が劣化し、O2ストレージ効果が減少して浄化性能
が落ちると、供給酸素量の変動を吸収しきれなくなっ
て、下流側センサ出力も変動し、周期的に反転するよう
になる。上記従来の触媒劣化判定の方法はこの現象を利
用したものである。
[0003] exhaust gas purifying catalyst occludes excess oxygen when the air-fuel ratio lean, there is a so-called O 2 storage effect of releasing the oxygen when the air-fuel ratio rich, the oxygen released by the O 2 storage effect HC (hydrocarbon)
And purifies CO (carbon monoxide). When the catalyst is not degraded, the O 2 storage effect is large and the oxygen storage capacity is sufficient. The fluctuation in the amount is absorbed, the fluctuation in the air-fuel ratio on the catalyst is reduced, and the output of the downstream sensor does not fluctuate while sticking to the rich side. And
When the catalyst is deteriorated and the O 2 storage effect is reduced and the purification performance is reduced, the fluctuation in the supplied oxygen amount cannot be absorbed, and the output of the downstream sensor also fluctuates and periodically reverses. The above-described conventional method for determining catalyst deterioration utilizes this phenomenon.

【0004】また、フィードバック制御の目標空燃比を
理論空燃比を中心として一定周期で変動させる制御は、
ディザ制御と呼ばれ、特開昭64−56936号公報に
示されているように排気ガス中に周期的に酸素成分を存
在させて触媒浄化を促進することができる。
[0004] Further, the control for changing the target air-fuel ratio of the feedback control at a constant cycle around the stoichiometric air-fuel ratio is as follows.
This is called dither control, and as shown in JP-A-64-56936, the purification of the catalyst can be promoted by causing an oxygen component to be periodically present in the exhaust gas.

【0005】また、それとは別に、特開平2−1365
38号公報には、減速燃料カット後に燃料供給が再開さ
れた時から触媒下流の酸素濃度センサの出力がリッチ側
の所定レベルに達するまでの時間によって触媒の劣化判
定を行うようにしたものが示されている。
[0005] Separately, Japanese Unexamined Patent Publication No. Hei.
Japanese Patent Publication No. 38 discloses that the catalyst deterioration is determined based on the time from when the fuel supply is restarted after the deceleration fuel cut to when the output of the oxygen concentration sensor downstream of the catalyst reaches a predetermined level on the rich side. Have been.

【0006】[0006]

【発明が解決しようとする課題】触媒の浄化率の正常レ
ベルが例えば83.3%(HC排出量:0.250g/
mile)という設定で、故障レベルをHC排出量1.
5倍相当の75.0%(HC排出量:0.375g/m
ile)とするときは、正常レベルと故障レベルの差が
大きいため、従来のように通常の空燃比フィードバック
制御の状態で下流側センサ出力の変動を見て触媒の劣化
を判定することは難しいことではなかった。しかしなが
ら、触媒の浄化率の正常レベルの設定を例えば97.3
%(HC排出量:0.040g/mile)と高くし、
故障レベルをやはりHC排出量1.5倍相当の96.0
%(HC排出量:0.060g/mile)とした場合
に、正常レベルと故障レベルの差は1.3%(HC排出
量にして0.020g/mile)と微小なものとな
り、このような微小な違いを通常の空燃比フィードバッ
ク制御の状態で検出することは困難となる。上記特開平
2−136538号公報記載の方法もこのような微小な
劣化の検出には向かない。
The normal level of the purification rate of the catalyst is, for example, 83.3% (HC emission: 0.250 g /
Mile), the failure level is set to HC emission 1.
75.0% equivalent to 5 times (HC emission: 0.375 g / m
ile), since the difference between the normal level and the failure level is large, it is difficult to determine the deterioration of the catalyst by monitoring the output of the downstream sensor under normal air-fuel ratio feedback control as in the past. Was not. However, the setting of the normal level of the purification rate of the catalyst is set to, for example, 97.3.
% (HC emission: 0.040 g / mile)
The failure level was 96.0, which is also equivalent to 1.5 times the HC emission.
% (HC emission: 0.060 g / mile), the difference between the normal level and the failure level is as small as 1.3% (0.020 g / mile HC emission). It is difficult to detect a small difference in a normal air-fuel ratio feedback control state. The method described in JP-A-2-136538 is not suitable for detecting such minute deterioration.

【0007】そこで、例えば、触媒装置を入口側と出口
側の2コンテナからなるものとし、入口側に劣化しやす
い触媒を配置して、その劣化しやすい方の触媒の劣化状
態を見て劣化判定をする方法や、温間時に比べて冷間時
には触媒の劣化による浄化率の差が大きくなることを利
用して、冷間始動後に触媒の温度が上がっていって活性
化する時の立ち上がり具合を見て劣化状態を判定する方
法が考えられている。しかし、入口側に劣化しやすい触
媒を配置する方法は、現状のシステムを変更するめ大幅
なコストアップを伴うだけでなく、検出性の面から入口
側の触媒は大きくできないため浄化性能が十分でなくな
り、また、ガスボリュームが多い高負荷域では検出でき
なくなるため検出の実効性が低下するという問題があ
る。また、冷間域で劣化検出する方法は、バラツキ要因
が多く、また、それを克服できたとしても、温度条件を
判定するための温度センサが必要であり、冷間域で触媒
より早く触媒下流のO2センサを活性させるためにヒー
タをパワーアップする必要があるなど、やはり大幅なコ
ストアップを伴うものである。
Therefore, for example, the catalyst device is made up of two containers, an inlet side and an outlet side, and a catalyst that easily deteriorates is arranged at the inlet side, and the deterioration determination is made by observing the state of deterioration of the more easily deteriorated catalyst. By taking advantage of the fact that the difference in purification rate due to deterioration of the catalyst is larger in cold conditions than in warm conditions, the degree of startup when the catalyst temperature rises and activates after cold start A method of visually judging the deterioration state has been considered. However, the method of arranging easily deteriorating catalysts on the inlet side not only involves a significant cost increase due to the change of the current system, but also the purification performance is not sufficient because the catalyst on the inlet side cannot be increased in terms of detectability. In addition, there is a problem that the detection cannot be performed in a high load region where the gas volume is large, so that the effectiveness of the detection is reduced. In addition, the method of detecting deterioration in the cold region has many variations, and even if it can be overcome, a temperature sensor for determining the temperature condition is required, and the downstream of the catalyst is faster than the catalyst in the cold region. etc. it is necessary to power up the heater to energize the O 2 sensor, in which also involves a significant cost.

【0008】したがって、コストアップを抑えつつ微小
な触媒劣化を正確に検出できるようにすることが課題で
ある。
Therefore, it is an object of the present invention to accurately detect minute catalyst deterioration while suppressing an increase in cost.

【0009】[0009]

【課題を解決するための手段】通常の空燃比フィードバ
ック制御状態若しくは空燃比フィードバック制御に通常
のディザ制御を加えた状態で触媒下流のセンサ出力の変
化を見て触媒の劣化を判定する従来の方法では、上述の
とおり微小な劣化を判定することは困難である。しか
し、微小な劣化の場合でも、ディザ制御による空燃比変
動の変動周期(あるいは変動幅)を上述のような通常の
空燃比フィードバック制御の状態での空燃比の変動周期
よりどんどん大きくしていくと、触媒上の酸素の変化が
触媒の酸素吸蔵容量より大きくなったところで触媒下流
のセンサ出力がリーン側に大きく変動する。本発明はこ
の事実を見いだし、それに着目したことにより、従来
の、通常の空燃比フィードバック制御時のディザ制御に
よる空燃比変動の状態で触媒劣化判定をするのではな
く、劣化判定用のセンサのセンサ出力に大きな変動が現
れるようになる変動周期(あるいは変動幅)を予め求
め、触媒の劣化判定をする時にはその予め求めた変動周
期(あるいは変動幅)の空燃比変動となるようディザ制
御を行うことにより、微小な劣化を判定できるようにし
たものである。
A conventional method for judging deterioration of a catalyst by monitoring a change in sensor output downstream of the catalyst in a normal air-fuel ratio feedback control state or a state in which normal dither control is added to the air-fuel ratio feedback control. Then, as described above, it is difficult to determine minute deterioration. However, even in the case of minute deterioration, if the fluctuation period (or fluctuation width) of the air-fuel ratio fluctuation by dither control is made larger and larger than the fluctuation period of the air-fuel ratio in the state of the normal air-fuel ratio feedback control as described above. When the change in oxygen on the catalyst becomes larger than the oxygen storage capacity of the catalyst, the sensor output downstream of the catalyst largely fluctuates to the lean side. The present invention has found this fact and has paid attention to it, so that instead of performing the catalyst deterioration determination in the state of the air-fuel ratio fluctuation due to the conventional dither control at the time of the normal air-fuel ratio feedback control, the sensor of the deterioration determination sensor is used. A fluctuation cycle (or fluctuation width) at which a large fluctuation appears in the output is obtained in advance, and when determining the deterioration of the catalyst, dither control is performed so that the air-fuel ratio fluctuation at the predetermined fluctuation cycle (or fluctuation width) is obtained. Thus, it is possible to determine a minute deterioration.

【0010】具体的には、触媒劣化判定時に空燃比に周
期的な変動(触媒に吸蔵される酸素量の変化を伴うも
の)を与え、触媒の酸素吸蔵容量に関連した状態量を好
ましくは触媒下流に配置した酸素濃度センサの出力によ
り検出し、空燃比変動の特性値の変化に応じた状態量の
変化特性に基づいて、状態量が一定レベル(好ましくは
空気過剰率1に相当する下流側センサ出力)を越えた変
化を示す時のディザ制御による空燃比変動の特性値(変
動幅および変動周期のうちの少なくとも一方)を判定時
変動特性値として設定するとともに、その一定レベルに
応じた判定しきい値を設定し、判定時変動特性値による
変動を与えた時の状態量の検出値を判定しきい値と比較
することによって触媒劣化を判定する。
Specifically, when the catalyst deterioration is determined, the air-fuel ratio is periodically changed (with a change in the amount of oxygen stored in the catalyst), and the state quantity related to the oxygen storage capacity of the catalyst is preferably changed. The state quantity is detected by the output of an oxygen concentration sensor disposed downstream, and based on the change characteristic of the state quantity according to the change of the characteristic value of the air-fuel ratio fluctuation, the state quantity is set to a certain level (preferably, the downstream side corresponding to an excess air ratio of 1). The characteristic value (at least one of the fluctuation width and the fluctuation period) of the air-fuel ratio fluctuation by the dither control when the fluctuation exceeds the sensor output) is set as the fluctuation characteristic value at the time of the judgment, and the judgment according to the certain level is made. A threshold value is set, and the deterioration of the catalyst is determined by comparing the detected value of the state quantity when the variation due to the variation characteristic value at the determination time is given with the determination threshold value.

【0011】その際、判定時変動特性値は、状態量が所
定期間に亙って一定レベルを越えた変化を示すことを条
件として設定するのがよく、そうすることにより劣化判
定の信頼性が高まる。
At this time, the fluctuation characteristic value at the time of judgment is preferably set on condition that the state quantity shows a change exceeding a certain level over a predetermined period, so that the reliability of the deterioration judgment is improved. Increase.

【0012】また、排気ガス量が変わり単位周期あたり
のガスボリュームが変わると、空燃比変動による触媒上
の酸素の変化が触媒の酸素吸蔵容量を超えて触媒下流の
センサ出力に変動が現れるようになる限界およびその変
動の大きさは変わるものであって、そのため、判定時変
動特性値および判定しきい値は排気ガス量に応じて補正
するのがよく、具体的には、排気ガス量(吸入空気量)
の増大に応じて劣化判定時の空燃比変動の変動幅を小さ
くし、変動周期を小さくし、あるいは変動幅および変動
周期を共に小さくし、また、判定しきい値をリーン側に
大きくするのがよい。
Further, when the amount of exhaust gas changes and the gas volume per unit cycle changes, the change in oxygen on the catalyst due to the air-fuel ratio fluctuation exceeds the oxygen storage capacity of the catalyst, causing fluctuations in the sensor output downstream of the catalyst. The limit and the magnitude of the variation vary, and therefore, the variation characteristic value at the time of determination and the determination threshold value should be corrected according to the exhaust gas amount. Air volume)
It is necessary to reduce the fluctuation width of the air-fuel ratio fluctuation at the time of the deterioration judgment, reduce the fluctuation period, or reduce both the fluctuation width and the fluctuation period, and increase the determination threshold value toward the lean side in accordance with the increase in the deterioration. Good.

【0013】また、触媒下流のセンサ出力に変動が現れ
る限界およびその変動の大きさは触媒温度によっても変
わるため、判定時変動特性値および前記判定しきい値は
触媒温度に応じて補正するのがよい。具体的には、触媒
温度が上昇すると、触媒の浄化能力が向上し、触媒下流
のセンサ出力の変動が出にくくなることから、触媒温度
の上昇に応じて劣化判定時の空燃比変動の変動幅を大き
くし、変動周期を大きくし、あるいは変動幅および変動
周期を共に大きくし、また、判定しきい値を小さくする
のがよい。
Since the limit at which the sensor output downstream of the catalyst fluctuates and the magnitude of the fluctuation also vary with the catalyst temperature, the fluctuation characteristic value at the time of judgment and the judgment threshold value should be corrected in accordance with the catalyst temperature. Good. Specifically, when the catalyst temperature rises, the purification performance of the catalyst improves, and it becomes difficult for the sensor output downstream of the catalyst to fluctuate. Therefore, the fluctuation width of the air-fuel ratio fluctuation at the time of the deterioration determination according to the catalyst temperature rises. , The fluctuation period is increased, or both the fluctuation width and the fluctuation period are increased, and the determination threshold value is preferably decreased.

【0014】また、触媒温度が大きく変化する過渡時に
は触媒の酸素吸蔵容量が不安定であって劣化誤判定を生
じ易いため、過渡後の所定期間は劣化判定を禁止するよ
うにするのがよい。
[0014] Further, at the time of transition when the catalyst temperature greatly changes, the oxygen storage capacity of the catalyst is unstable and erroneous determination of deterioration is likely to occur. Therefore, it is preferable to prohibit the deterioration determination for a predetermined period after the transition.

【0015】また、触媒上流にリニア空燃比センサを配
置して、このリニア空燃比センサの出力に基づいて空燃
比フィードバック制御を行うのがよく、その場合、リニ
ア空燃比センサにより検出された空燃比が理論空燃比を
挟んでリッチ側とリーン側を繰り返すよう判定時変動特
性値に相当する変動幅あるいは変動周期にて目標空燃比
を変動させることにより、劣化判定と同時に空燃比フィ
ードバック制御を行い、劣化判定中の排気ガス悪化を防
止するようにできる。
It is preferable to arrange a linear air-fuel ratio sensor upstream of the catalyst and perform air-fuel ratio feedback control based on the output of the linear air-fuel ratio sensor. In this case, the air-fuel ratio detected by the linear air-fuel ratio sensor is preferably used. The air-fuel ratio feedback control is performed simultaneously with the deterioration judgment by changing the target air-fuel ratio with a fluctuation width or a fluctuation cycle corresponding to the fluctuation characteristic value at the time of judgment so that the rich side and the lean side are repeated with the stoichiometric air-fuel ratio in between. Exhaust gas deterioration during the deterioration determination can be prevented.

【0016】リニア空燃比センサにより検出した空燃比
を理論空燃比を挟んでリッチ側とリーン側に所定周期お
よび所定振幅で変動する予め設定された目標空燃比と一
致させるよう空燃比をフィードバック制御するエンジン
の触媒劣化判定装置にあって、ディザ制御の状態で触媒
下流のセンサ出力に大きな変動が現れるようになる上流
側空燃比変動の変動周期は、通常の空燃比フィードバッ
ク制御におけるリッチ・リーンの反転が略定期的に行わ
れる定常走行状態の場合のリッチ・リーン反転の周期例
えば周波数が略16Hzのときの周期よりも長い周期と
なる。
The air-fuel ratio is feedback-controlled so that the air-fuel ratio detected by the linear air-fuel ratio sensor is made to coincide with a preset target air-fuel ratio which fluctuates at a predetermined cycle and a predetermined amplitude on a rich side and a lean side with respect to a stoichiometric air-fuel ratio. In the catalyst deterioration determination device of the engine, the fluctuation cycle of the upstream air-fuel ratio fluctuation that causes a large fluctuation in the sensor output downstream of the catalyst in the dither control state is the reverse of the rich / lean in the normal air-fuel ratio feedback control. Is substantially longer than the cycle of the rich / lean inversion in the steady running state, for example, the cycle when the frequency is about 16 Hz.

【0017】[0017]

【発明の実施の形態】図1に本発明を適用したエンジン
の全体システムを示す。図において、1は火花点火式エ
ンジンである。エンジン1の吸気通路2には、その上流
側から下流側へ向かってエアクリーナ3,吸入空気量を
検出するベーン型エアフローメータ4,スロットル弁
5,吸入空気の脈動を吸収するサージタンク6,吸気負
圧(ブースト)を検出するブーストセンサ7および燃料
噴射弁8が順に配置されている。そして、吸気弁9を介
して燃焼室10に混合気が供給される。また、エンジン
1の排気は排気弁11を介して排気通路12に排出され
る。そして、その排気通路12には、排気浄化用の触媒
コンバータ13が配設され、触媒コンバータ13の上流
側には排気ガス中の酸素濃度に応じてセンサ出力がリニ
アに変化するリニアO2センサ14が、また、触媒コン
バータ13の下流側にはλ(空気過剰率)=1を境に出
力が急変するλO2センサ15が配設されている。
FIG. 1 shows an overall engine system to which the present invention is applied. In the figure, reference numeral 1 denotes a spark ignition type engine. In the intake passage 2 of the engine 1, an air cleaner 3, a vane type air flow meter 4 for detecting the amount of intake air, a throttle valve 5, a surge tank 5 for absorbing the pulsation of intake air, and an intake vacuum A boost sensor 7 for detecting pressure (boost) and a fuel injection valve 8 are sequentially arranged. Then, the air-fuel mixture is supplied to the combustion chamber 10 via the intake valve 9. Further, exhaust gas of the engine 1 is discharged to an exhaust passage 12 via an exhaust valve 11. A catalytic converter 13 for purifying exhaust gas is disposed in the exhaust passage 12, and a linear O 2 sensor 14 whose sensor output changes linearly according to the oxygen concentration in the exhaust gas is provided upstream of the catalytic converter 13. However, on the downstream side of the catalytic converter 13, there is provided a λO 2 sensor 15 whose output changes suddenly when λ (excess air ratio) = 1.

【0018】また、吸気通路2には、アイドル運転時に
スロットル弁5を迂回してバイパエアを供給するための
バイパス通路16が設けられ、このバイパス通路16の
途中には、バイパスエア量を調整してアイドル時のエン
ジン回転数を制御するためのデューティソレノイド弁1
7が配設されている。
The intake passage 2 is provided with a bypass passage 16 for supplying bypass air bypassing the throttle valve 5 during idling operation. In the middle of the bypass passage 16, the bypass air amount is adjusted. Duty solenoid valve 1 for controlling engine speed during idling
7 are provided.

【0019】また、エンジン1には、気筒毎に点火プラ
グ18が配設され、また、点火に必要な高電圧を発生す
るイグナイタ19と、クランク軸(図示せず)に連動し
上記イグナイタ19が発生した高電圧を各気筒の点火プ
ラグ18に分配供給するディストリビュータ20が配設
されている。そして、ディストリビュータ20にはクラ
ンク軸の回転に応じたパルス信号を発生するエンジン回
転センサ21が付設されている。また、スロットルバル
ブ12にはスロットル全閉を検出するアイドルスイッチ
22が付設されている。また、吸入される空気の温度を
検出する吸気温センサ23が配設され、エンジン冷却水
の温度を検出する水温センサ24が配設されている。
The engine 1 is provided with a spark plug 18 for each cylinder. The igniter 19 generates a high voltage required for ignition, and the igniter 19 is linked to a crankshaft (not shown). A distributor 20 for distributing the generated high voltage to the spark plug 18 of each cylinder is provided. The distributor 20 is provided with an engine rotation sensor 21 that generates a pulse signal according to the rotation of the crankshaft. The throttle valve 12 is provided with an idle switch 22 for detecting that the throttle is fully closed. Further, an intake air temperature sensor 23 for detecting the temperature of the intake air is provided, and a water temperature sensor 24 for detecting the temperature of the engine cooling water is provided.

【0020】また、エンジン1は、マイクロコンピュー
タからなるコントロールユニット25を備えている。そ
して、コントロールユニット25には、エンジン回転セ
ンサ21,エアフローセンサ4,吸気温センサ23,ア
イドルスイッチ22,水温センサ24,リニアO2セン
サ14およびλO2センサ15のほか、車速センサ2
6,触媒温度センサ27等から出力された各種信号が入
力される。コントロールユニット25はこれら信号に基
づいて燃料噴射弁8を制御し、バイパス通路16のデュ
ーティソレノイド弁17を制御する。
The engine 1 has a control unit 25 composed of a microcomputer. The control unit 25 includes an engine rotation sensor 21, an air flow sensor 4, an intake air temperature sensor 23, an idle switch 22, a water temperature sensor 24, a linear O 2 sensor 14 and a λO 2 sensor 15, and a vehicle speed sensor 2.
6, various signals output from the catalyst temperature sensor 27 and the like are input. The control unit 25 controls the fuel injection valve 8 based on these signals, and controls the duty solenoid valve 17 in the bypass passage 16.

【0021】燃料噴射弁8の制御では、エンジン回転数
と吸入空気量を基に基本噴射量が演算され、それに水温
補正等の各種補正が加えられる。また、エンジン運転状
態により予め設定された空燃比フィードバック領域で
は、触媒上流のリニアO2センサ14により検出された
空燃比を目標空燃比と一致させるよう燃料噴射量に空燃
比フィードバック補正が加えられる。そして、設定され
た最終噴射量の相当する噴射パルスによって燃料噴射弁
8が駆動され、空燃比が制御される。その際、空燃比フ
ィードバック制御の目標空燃比を理論空燃比を中心とし
て周波数にして16Hz程度の一定周期でリッチ側とリ
ーン側とに変動させるディザ制御が加えらる。
In the control of the fuel injection valve 8, a basic injection amount is calculated based on the engine speed and the intake air amount, and various corrections such as a water temperature correction are added thereto. Further, in an air-fuel ratio feedback region set in advance according to the engine operating state, air-fuel ratio feedback correction is added to the fuel injection amount so that the air-fuel ratio detected by the linear O 2 sensor 14 upstream of the catalyst matches the target air-fuel ratio. Then, the fuel injection valve 8 is driven by the injection pulse corresponding to the set final injection amount, and the air-fuel ratio is controlled. At this time, dither control for changing the target air-fuel ratio of the air-fuel ratio feedback control between the rich side and the lean side at a constant cycle of about 16 Hz with the frequency centering on the stoichiometric air-fuel ratio is added.

【0022】また、コントロールユニット25は、エン
ジン暖機後、車速,エンジン回転数および負荷によって
予め規定された劣化判定領域において、エンジン回転数
および負荷の変動が小さく、かつ触媒が適温範囲にある
ときに、触媒劣化判定の制御を行うものである。
After the engine is warmed up, the control unit 25 operates when the fluctuations in the engine speed and the load are small and the catalyst is in an appropriate temperature range in a deterioration determination region predetermined by the vehicle speed, the engine speed and the load. Next, control of catalyst deterioration determination is performed.

【0023】触媒劣化判定の制御では、触媒上流のリニ
アO2センサ14による空燃比フィードバック制御を実
行しつつ、このリニアO2センサ14によって検出され
る空燃比変動が通常の空燃比フィードバック制御時のデ
ィザ制御に比べて大きな変動幅(振幅)および変動周期
となるようディザ制御に変更を加えることにより、触媒
の微小な劣化によっても触媒下流のλO2センサ15の
出力にリーン側への変動が現れるようにする。
In the control of the catalyst deterioration determination, while the air-fuel ratio feedback control by the linear O 2 sensor 14 upstream of the catalyst is being executed, the fluctuation of the air-fuel ratio detected by the linear O 2 sensor 14 is the same as the normal air-fuel ratio feedback control. By changing the dither control so that the fluctuation width (amplitude) and the fluctuation period are larger than those of the dither control, the output of the λO 2 sensor 15 downstream of the catalyst is changed to the lean side even if the catalyst is slightly deteriorated. To do.

【0024】デイザ制御の変更による触媒上流の空燃比
挙動の変化と触媒下流側のλO2センサ15のセンサ出
力との関係は例えば図2のようなものである。図2の例
は、正常レベルがHC排出量にして0.035g/mi
leで劣化判定レベルがHC排出量にして0.10g/
mileの触媒の場合である。(a)は、劣化判定レベ
ル(HC排出量:0.035g/mile)にある触媒
に対して触媒上流の空燃比変動の変動幅および変動周波
数を変えたときの触媒下流のセンサ出力の変化を示す。
また、(b)は、正常レベル(排出量:0.035g/
mile)にある触媒に対して触媒上流の空燃比変動の
変動幅および変動周波数を変えたときの触媒下流のセン
サ出力の変化を示す。この例の場合、劣化判定レベルの
触媒では、触媒上流の空燃比変動の変動周波数が4.0
Hzで変動幅が±0.5程度では触媒下流のセンサ出力
に目立った変動は現れないが、触媒上流の空燃比変動の
変動周波数が3.0Hzで変動幅が±1.0(A/F)
程度では触媒下流のセンサ出力がリーン側に変動し始め
ている。そして、変動周波数が2.0Hzあるいはそれ
以下では変動幅が±1.0程度で触媒下流のセンサ出力
はリーン側に大きく変動している。それに対し、正常レ
ベルの触媒の場合は、触媒下流のセンサ出力がリーン側
に変動し始めるのが1.0Hzのあたりで、触媒下流の
センサ出力が大きく変動するのは0.5Hzあるいはそ
れ以下のときである。したがって、この場合、触媒上流
の空燃比変動の変動周波数を2.0Hz程度に設定する
ことによって触媒の劣化を正確に判定できる。また、劣
化判定時の空燃比変動幅は±1.0程度でよく、走行性
との両立も可能である。
The relationship between the change in the air-fuel ratio behavior upstream of the catalyst due to the change in the dither control and the sensor output of the λO 2 sensor 15 downstream of the catalyst is, for example, as shown in FIG. In the example of FIG. 2, the normal level is 0.035 g / mi in terms of HC emission.
le, the deterioration determination level is 0.10 g / HC
Mile catalyst. (A) shows the change in the sensor output downstream of the catalyst when the fluctuation width and the fluctuation frequency of the air-fuel ratio fluctuation upstream of the catalyst are changed with respect to the catalyst at the deterioration determination level (HC emission amount: 0.035 g / mile). Show.
(B) indicates a normal level (discharge amount: 0.035 g /
7 shows changes in the sensor output downstream of the catalyst when the fluctuation width and the fluctuation frequency of the air-fuel ratio fluctuation upstream of the catalyst are changed with respect to the catalyst in the range of FIG. In the case of this example, the fluctuation frequency of the air-fuel ratio fluctuation upstream of the catalyst is 4.0 for the catalyst at the deterioration determination level.
When the fluctuation width is about ± 0.5 Hz, no noticeable fluctuation appears in the sensor output downstream of the catalyst, but the fluctuation frequency of the air-fuel ratio fluctuation upstream of the catalyst is 3.0 Hz and the fluctuation width is ± 1.0 (A / F). )
In the degree, the sensor output downstream of the catalyst has started to fluctuate to the lean side. When the fluctuation frequency is 2.0 Hz or less, the fluctuation width is about ± 1.0, and the sensor output downstream of the catalyst largely fluctuates to the lean side. On the other hand, in the case of a normal level catalyst, the sensor output downstream of the catalyst starts to fluctuate to the lean side at around 1.0 Hz, and the sensor output downstream of the catalyst fluctuates greatly at 0.5 Hz or lower. It is time. Therefore, in this case, the deterioration of the catalyst can be accurately determined by setting the fluctuation frequency of the air-fuel ratio fluctuation upstream of the catalyst to about 2.0 Hz. Further, the fluctuation range of the air-fuel ratio at the time of the deterioration determination may be about ± 1.0, and compatibility with the traveling performance is also possible.

【0025】コントロールユニット25は図3および図
4に示すルーチンによって次のとおり触媒劣化判定を実
行する。
The control unit 25 executes a catalyst deterioration determination as follows according to the routine shown in FIGS.

【0026】まず、図3に示すメインルーチンのステッ
プS1において、劣化判定完了かどうかをフラグによっ
て判定し、劣化判定完了であればそのまま後述のステッ
プS8へ進む。そして、劣化判定完了でないときは、ス
テップS2〜ステップS6で触媒劣化判定の条件が成立
しているかどうかを判定する。すなわち、ステップS2
では冷却水温が設定以上かどうかによって暖機後かどう
かを判定する。そして、暖機後であれば、次いでステッ
プS3で車速,エンジン回転数および負荷が設定範囲内
かどうかを判定し、車速,エンジン回転数および負荷が
いずれも設定範囲内であれば、更にステップS4でエン
ジン回転数および負荷の変動が設定以下かどうかを判定
する。そして、こられステップS2〜ステップS4の判
定がいずれもYESのときはステップS5へ進み、ステ
ップS5で触媒温度を計測して、ステップS6で触媒温
度が設定内かどうかを判定し、触媒温度が設定内であれ
ばステップS7へ進んで、図4に示すルーチンにより劣
化判定制御を行う。一方、ステップS2〜ステップS4
の判定のいずれかがNOのとき、あるいはステップS6
の判定がNOのときは、ステップS8で通常の空燃比フ
ィードバック制御を行う。また、ステップS9で図4の
フローのディザ回数カウンターをリセットする。
First, in step S1 of the main routine shown in FIG. 3, whether or not deterioration determination is completed is determined by a flag, and if deterioration determination is completed, the process directly proceeds to step S8 described later. If the deterioration determination is not completed, it is determined in steps S2 to S6 whether or not the condition for catalyst deterioration determination is satisfied. That is, step S2
Then, it is determined whether or not the engine has been warmed up based on whether or not the cooling water temperature is equal to or higher than a setting. Then, if it is after the warm-up, it is then determined in step S3 whether the vehicle speed, the engine speed and the load are within the set ranges. If the vehicle speed, the engine speed and the load are all within the set ranges, step S4 is further performed. It is determined whether the fluctuations in the engine speed and the load are equal to or less than the set values. If the determinations in steps S2 to S4 are all YES, the process proceeds to step S5, in which the catalyst temperature is measured in step S5, and it is determined in step S6 whether the catalyst temperature is within the setting. If it is within the setting, the process proceeds to step S7, and the deterioration determination control is performed by the routine shown in FIG. On the other hand, steps S2 to S4
If any of the determinations in step S6 is NO or step S6
If the determination is NO, normal air-fuel ratio feedback control is performed in step S8. In step S9, the dither counter of the flow in FIG. 4 is reset.

【0027】図4に示すルーチンでは、まず、ステップ
S11で、ディザ制御による空燃比変動の変動周期およ
び変動幅(振幅)を、予め設定したマップにより、エン
ジンの運転負荷と触媒温度に応じて設定する。この設定
は、エンジンの運転負荷(排気ガス量)が増大するにつ
れて変動周期および変動幅を共に小さくするものであ
り、触媒温度が上昇するにつれて変動周期および変動幅
を共に大きくするものである。そして、こうして設定し
た変動周期および変動幅によりステップS12でディザ
制御を実行し、ステップS13でディザ開始よりディザ
回数が設定回に達したかどうかを見る。そして、ディザ
制御を開始してしばらくは不安定であるため、設定回に
達するまでは何もせずそのままリターンし、設定回に達
したらステップS14で劣化検出のためのディザ回数を
計測し、次いで、ステップS15でリアO2センサ(λ
2センサ15)出力の反転回数を計測する。そして、
ステップS16でディザ回数が設定値に達したかどうか
を見て、設定値に達していないときはリターンし、設定
値に達したらステップS17へ進む。そして、ステップ
S17ではリアO2センサ出力の反転回数と設定値に達
した上記ディザ回数との比を劣化検出値として演算す
る。そして、ステップS18へ進み、演算した劣化検出
値がしきい値以上かどうかによって劣化判定を行う。そ
して、劣化検出値がしきい値以上のときは、劣化という
ことで、ステップS19へ進んで劣化判定時処理を行
い、劣化検出値がしきい値より小さいときは、正常とい
うことで、ステップS20で正常判定時処理を実行す
る。そして、最後にステップS21で劣化判定完了フラ
グをセットする。
In the routine shown in FIG. 4, first, in step S11, the fluctuation cycle and fluctuation width (amplitude) of the air-fuel ratio fluctuation by dither control are set in accordance with the operating load of the engine and the catalyst temperature using a preset map. I do. This setting is to decrease both the fluctuation cycle and the fluctuation width as the engine operating load (the amount of exhaust gas) increases, and to increase both the fluctuation cycle and the fluctuation width as the catalyst temperature increases. Then, dither control is executed in step S12 according to the thus set fluctuation period and fluctuation width, and it is checked in step S13 whether the number of dithers has reached the set number from the start of dithering. Then, since the dither control is started and is unstable for a while, the process returns without performing anything until the set number of times is reached, and when the set number is reached, the number of dithers for deterioration detection is measured in step S14. In step S15, the rear O 2 sensor (λ
O 2 sensor 15) Count the number of inversions of the output. And
In step S16, it is determined whether the dither count has reached the set value. If the dither count has not reached the set value, the process returns. If the dither count has reached the set value, the process proceeds to step S17. Then, it calculates the ratio between the dither count reaches a transition number and the set value of the rear O 2 sensor output at step S17 as the deterioration detection value. Then, the process proceeds to step S18, and a deterioration determination is made based on whether the calculated deterioration detection value is equal to or larger than a threshold value. If the deterioration detection value is equal to or larger than the threshold value, it means deterioration, and the process proceeds to step S19 to perform processing at the time of judgment of deterioration. To execute the normal judgment process. Then, finally, a deterioration determination completion flag is set in step S21.

【0028】以上は、本発明の実施の形態の一例であ
る。次に、その他の実施の形態をフローチャートによっ
て説明する。
The above is an example of the embodiment of the present invention. Next, other embodiments will be described with reference to flowcharts.

【0029】図5に示すフローチャートは、実施の形態
の他の例に係る劣化判定制御のルーチンを示している。
この例は、触媒上流のリニアO2センサ14の出力に基
づいて設定される空燃比のフィードバック補正量を触媒
下流のλO2センサ15の出力に基づいて補正し、そう
して補正したフィードバック補正量の平均値(cfba
v)を空燃比(A/F)のずれ量として検出して、その
ずれ量すなわちcfbavがしきい値より大きいかどう
かによって触媒劣化判定を行うものである。すなわち、
先に図4で説明したように、ステップS111で、ディ
ザ制御による空燃比変動の変動周期および変動幅(振
幅)を、予め設定したマップにより、エンジンの運転負
荷と触媒温度に応じて設定する。この設定はやはり、エ
ンジンの運転負荷(排気ガス量)が増大するにつれて変
動周期および変動幅を共に小さくするものであり、触媒
温度が上昇するにつれて変動周期および変動幅を共に大
きくするものである。そして、こうして設定した変動周
期および変動幅によりステップS112でディザ制御を
実行し、ステップS113でディザ開始よりディザ回数
が設定回に達したかどうかを見る。そして、ディザ制御
を開始してしばらくは不安定であるため、設定回に達す
るまでは何もせずそのままリターンし、設定回に達した
らステップS114で触媒上流のリニアO2センサ14
により検出される空燃比(A/F)のずれ量すなわちフ
ィードバック補正量の平均値(cfbav)を検出し、
次いで、その検出したcfbavがしきい値(x)より
大きいかどうかによって触媒劣化判定を行う。その際、
しきい値(x)は排気ガス量の増大に応じて小さくす
る。そして、cfbavがしきい値より大きいときは、
劣化ということで、ステップS116へ進んで劣化判定
時処理を行い、cfbavがしきい値以下のときは、正
常ということで、ステップS117で正常判定時処理を
実行する。そして、最後にステップS118で劣化判定
完了フラグをセットする。
The flowchart shown in FIG. 5 shows a routine of deterioration determination control according to another example of the embodiment.
In this example, the feedback correction amount of the air-fuel ratio set based on the output of the linear O 2 sensor 14 upstream of the catalyst is corrected based on the output of the λ O 2 sensor 15 downstream of the catalyst, and the feedback correction amount thus corrected Average value (cfba
v) is detected as a deviation amount of the air-fuel ratio (A / F), and catalyst deterioration determination is performed based on whether the deviation amount, ie, cfbav, is larger than a threshold value. That is,
As described above with reference to FIG. 4, in step S111, the fluctuation cycle and fluctuation width (amplitude) of the air-fuel ratio fluctuation due to the dither control are set according to the engine operating load and the catalyst temperature using a preset map. This setting also reduces both the fluctuation cycle and the fluctuation width as the engine operation load (the amount of exhaust gas) increases, and increases both the fluctuation cycle and the fluctuation width as the catalyst temperature increases. Then, dither control is executed in step S112 according to the fluctuation period and fluctuation width set in this way, and it is checked in step S113 whether the number of dithers has reached the set number from the start of dithering. Then, since the dither control is started and is unstable for a while, the process returns without performing anything until the set number of times is reached, and when the set number is reached, the linear O 2 sensor 14 upstream of the catalyst is determined in step S114.
The deviation amount of the air-fuel ratio (A / F), that is, the average value (cfbav) of the feedback correction amount, is detected.
Next, catalyst deterioration determination is performed based on whether the detected cfbav is greater than a threshold value (x). that time,
The threshold value (x) decreases as the amount of exhaust gas increases. And when cfbav is larger than the threshold value,
The process proceeds to step S116 for deterioration, and the process at the time of deterioration determination is performed. When cfbav is equal to or less than the threshold value, the process is normal and the process at the time of normal determination is executed in step S117. Then, finally, a deterioration determination completion flag is set in step S118.

【0030】なお、上記図5のルーチンでフィードバッ
ク補正量の平均値(cfbav)によって触媒劣化判定
を行う場合に、劣化判定のためのしきい値(x)は、触
媒温度の上昇に応じて小さくするのがよい。
When the catalyst deterioration is determined based on the average value (cfbav) of the feedback correction amounts in the routine of FIG. 5, the threshold value (x) for the deterioration determination becomes smaller as the catalyst temperature rises. Good to do.

【0031】また、図6に示すフローチャートは、実施
の形態の更に他の例に係る劣化判定のメインルーチンを
示している。この例は、触媒温度が大きく変化する過渡
時の劣化誤判定を防止するために過渡後所定期間は劣化
判定を禁止するようにしたものであって、ステップS2
01において、劣化判定完了かどうかをフラグによって
判定する。そして、劣化判定完了であればそのままステ
ップS209へ進み、劣化判定完了でないときは、ステ
ップS202で冷却水温が設定以上かどうかによって暖
機状態を判定し、暖機後であれば、ステップS203で
車速,エンジン回転数および負荷が設定範囲内かどうか
を判定し、車速,エンジン回転数および負荷がいずれも
設定範囲内であれば、更にステップS204でエンジン
回転数および負荷の変動が設定以下かどうかを判定す
る。そして、こられステップS202〜ステップS20
4の判定がいずれもYESのときはステップS205へ
進み、触媒温度が例えば500゜Cから700゜Cへ急
激に上昇する加速時や、逆に700゜Cから500゜C
へ急激に下降するような減速時を含む過渡状態を判定す
るため、吸入空気量変化が所定以上かどうかを見る。そ
して、吸入空気量変化が所定以上のときは、上記過渡状
態ということで、ステップS206でタイマ(T)をカ
ウントアップし、ステップS207で所定期間T1経過
したかどうかを見て、所定期間T1経過するまではステ
ップS209で通常のフィードバック制御を続け(劣化
判定禁止)、所定期間経過したらステップS208へ進
んで劣化判定制御を行う。一方、ステップS202〜ス
テップS204の判定のいずれかがNOのとき、あるい
はステップS207の判定がNOのときは、ステップS
209で通常の空燃比フィードバック制御を行う。ま
た、ステップS210でディザ回数カウンターをリセッ
トする。
A flowchart shown in FIG. 6 shows a main routine for determining deterioration according to still another example of the embodiment. In this example, the deterioration determination is prohibited for a predetermined period after the transition in order to prevent the erroneous deterioration determination during the transition when the catalyst temperature greatly changes.
At 01, it is determined by a flag whether or not the deterioration determination is completed. If the deterioration determination is completed, the process directly proceeds to step S209. If the deterioration determination is not completed, the warm-up state is determined in step S202 based on whether the cooling water temperature is equal to or higher than a set value. It is determined whether the engine speed and the load are within the set ranges. If the vehicle speed, the engine speed and the load are all within the set ranges, it is further determined in step S204 whether the fluctuations of the engine speed and the load are equal to or less than the set values. judge. Then, these steps S202 to S20
If the determinations in step 4 are both YES, the process proceeds to step S205, in which the catalyst temperature is rapidly increased, for example, from 500 ° C. to 700 ° C., or conversely, from 700 ° C. to 500 ° C.
In order to determine a transient state including a time of deceleration such as suddenly decreasing, it is determined whether or not a change in the intake air amount is equal to or more than a predetermined value. Then, when the amount of intake air change is equal to or greater than the predetermined, that the above transitional state, and counts up the timer (T) in step S206, to see if the predetermined time period T 1 has elapsed in step S207, the predetermined time period T Until 1 has elapsed, normal feedback control is continued in step S209 (deterioration determination is prohibited), and after a predetermined period has elapsed, the process proceeds to step S208 to perform deterioration determination control. On the other hand, when any of the determinations in steps S202 to S204 is NO, or when the determination in step S207 is NO, step S
At 209, normal air-fuel ratio feedback control is performed. In step S210, the dither counter is reset.

【0032】なお、上述の各例は、触媒劣化判定時には
通常の空燃比フィードバック制御時に対し空燃比変動の
変動周期および変動幅を共に変更することによって微小
な劣化を判定できるようにしたものであるが、空燃比変
動の変動周期あるいは変動幅のいずれか一方を変更して
もよいものである。
In each of the above-described examples, when the catalyst deterioration is determined, minute deterioration can be determined by changing both the fluctuation cycle and the fluctuation width of the air-fuel ratio fluctuation with respect to the normal air-fuel ratio feedback control. However, any one of the fluctuation cycle and the fluctuation width of the air-fuel ratio fluctuation may be changed.

【0033】また、上述の各例は、触媒下流側センサの
出力の反転回数で触媒劣化判定をするものであり、ある
いは空燃比のずれ量で触媒劣化判定をするものであった
が、他に、触媒上流側および下流側のセンサ出力の変動
の位相差で劣化判定をすることもでき、また、触媒下流
側センサの出力電圧の積分値で劣化判定をすることもで
きる。
In each of the above-described examples, the catalyst deterioration is determined based on the number of reversals of the output of the catalyst downstream sensor, or the catalyst deterioration is determined based on the deviation of the air-fuel ratio. The deterioration can also be determined based on the phase difference between the sensor output fluctuations on the upstream and downstream sides of the catalyst, and the deterioration can be determined on the basis of the integral value of the output voltage of the downstream sensor.

【0034】また、上述の各例は、触媒下流にλO2
ンサを配置したものであるが、触媒下流のセンサはリニ
アO2センサであってもよいものである。
In each of the above examples, the λO 2 sensor is arranged downstream of the catalyst, but the sensor downstream of the catalyst may be a linear O2 sensor.

【0035】また、本発明は触媒が1ベント(1コンテ
ナ)の場合だけでなく、2ベント(2コンテナ)の場合
に、2ベント触媒の上流と下流に配置したO2センサを
用いて劣化判定するようにしてもよいものである。
Further, the present invention not only when the catalyst is first vent (1 container), in the case of 2 the vent (2 container), the degradation determination by using the O 2 sensor disposed upstream and downstream of the two vent catalyst This may be done.

【0036】[0036]

【発明の効果】本発明によれば、触媒劣化時にセンサ出
力に大きな変動が現れるようになる空燃比変動の変動周
期あるいは変動幅(判定時変動特性値)を予め求め、触
媒劣化判定時には予め求めた判定時変動特性値の空燃比
変動となるよう制御することにより、微小な触媒劣化を
正確に検出でき、また、コストアップを抑えることがで
きる。
According to the present invention, the variation period or variation width (determination variation characteristic value) of the air-fuel ratio variation that causes a large variation in the sensor output when the catalyst is deteriorated is determined in advance, and is determined in advance when the catalyst degradation is determined. By controlling the variation characteristic value at the time of determination to be an air-fuel ratio variation, minute catalyst deterioration can be accurately detected, and an increase in cost can be suppressed.

【0037】また、本発明によれば、触媒上流にリニア
空燃比センサを配置することにより、触媒劣化判定と同
時に空燃比フィードバック制御を行って、劣化判定中の
排気ガス悪化を防止するようにできる。
Further, according to the present invention, by arranging the linear air-fuel ratio sensor upstream of the catalyst, the air-fuel ratio feedback control is performed simultaneously with the catalyst deterioration determination, so that the exhaust gas deterioration during the deterioration determination can be prevented. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したエンジンの全体システム図で
ある。
FIG. 1 is an overall system diagram of an engine to which the present invention is applied.

【図2】ディザ制御による上流側空燃比挙動と下流側セ
ンサ出力の特性図である。
FIG. 2 is a characteristic diagram of an upstream air-fuel ratio behavior and a downstream sensor output by dither control.

【図3】本発明による触媒劣化判定のメインルーチンを
示すフローチャートである。
FIG. 3 is a flowchart showing a main routine for determining catalyst deterioration according to the present invention.

【図4】劣化判定制御のサブルーチンを示すフローチャ
ートである。
FIG. 4 is a flowchart illustrating a subroutine of deterioration determination control.

【図5】他の例の劣化判定制御のサブルーチンを示すフ
ローチャートである。
FIG. 5 is a flowchart illustrating a subroutine of deterioration determination control of another example.

【図6】他の例の触媒劣化判定のメインルーチンを示す
フローチャートである。
FIG. 6 is a flowchart illustrating a main routine for determining catalyst deterioration in another example.

【符号の説明】[Explanation of symbols]

1 エンジン 4 エアフローメータ 7 ブーストセンサ 8 燃料噴射弁 13 触媒コンバータ 14 リニアO2センサ 15 λO2センサ 25 コントロールユニット 27 触媒温度センサDESCRIPTION OF SYMBOLS 1 Engine 4 Air flow meter 7 Boost sensor 8 Fuel injection valve 13 Catalytic converter 14 Linear O 2 sensor 15 λO 2 sensor 25 Control unit 27 Catalyst temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末次 元 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Gen Suetsugu 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 エンジンの排気系に配置された排気浄化
用触媒の劣化を判定する触媒劣化判定装置であって、 燃焼室に供給する混合気の空燃比に周期的な変動を与え
る空燃比変動制御手段と、 前記触媒の酸素吸蔵容量に関連した状態量を検出する状
態量検出手段と、 前記空燃比変動制御手段による空燃比変動の特性値の変
化に応じた前記状態量の変化特性に基づいて、前記状態
量が一定レベルを越えた変化を示す時の前記空燃比変動
の特性値を判定時変動特性値として設定するとともに、
前記一定レベルに応じた判定しきい値を設定する判定条
件設定手段と、 前記空燃比変動制御手段により空燃比に前記判定時変動
特性値による変動を与えた時の前記状態量検出手段の出
力を前記判定しきい値と比較することによって触媒劣化
判定を行う劣化判定手段を備えたことを特徴とするエン
ジンの触媒劣化判定装置。
1. A catalyst deterioration judging device for judging deterioration of an exhaust gas purification catalyst disposed in an exhaust system of an engine, wherein the air-fuel ratio fluctuation periodically varies the air-fuel ratio of an air-fuel mixture supplied to a combustion chamber. Control means; state quantity detection means for detecting a state quantity related to the oxygen storage capacity of the catalyst; and a state quantity change characteristic according to a change in a characteristic value of air-fuel ratio fluctuation by the air-fuel ratio fluctuation control means. Setting the characteristic value of the air-fuel ratio fluctuation when the state quantity shows a change exceeding a certain level as a fluctuation characteristic value at the time of determination;
A determination condition setting means for setting a determination threshold value according to the fixed level; and an output of the state quantity detection means when the air-fuel ratio is varied by the air-fuel ratio variation control means by the determination-time variation characteristic value. An engine catalyst deterioration determining device, comprising: a deterioration determining unit that performs a catalyst deterioration determination by comparing with a determination threshold value.
【請求項2】 前記空燃比変動の特性値は変動幅および
変動周期のうちの少なくとも一方である請求項1記載の
エンジンの触媒劣化判定装置。
2. The apparatus according to claim 1, wherein the characteristic value of the air-fuel ratio fluctuation is at least one of a fluctuation width and a fluctuation period.
【請求項3】 前記空燃比の周期的な変動は前記触媒に
吸蔵される酸素量の変化を伴うものであり、前記状態量
は触媒下流に配置した酸素濃度センサの出力により検出
するものである請求項1または2記載のエンジンの触媒
劣化判定装置。
3. The periodic change in the air-fuel ratio is accompanied by a change in the amount of oxygen stored in the catalyst, and the state quantity is detected by an output of an oxygen concentration sensor disposed downstream of the catalyst. The engine catalyst deterioration determination device according to claim 1 or 2.
【請求項4】 前記状態量が所定期間に亙って一定レベ
ルを越えた変化を示すことを条件として前記判定時変動
特性値を設定する請求項1,2または3記載のエンジン
の触媒劣化判定装置。
4. The catalyst deterioration determination for an engine according to claim 1, wherein the determination-time variation characteristic value is set on condition that the state quantity shows a change exceeding a certain level over a predetermined period. apparatus.
【請求項5】 前記酸素濃度センサの出力が空気過剰率
1を越える時の前記空燃比変動の特性値をもって前記判
定時変動特性値を設定する請求項3記載のエンジンの触
媒劣化判定装置。
5. The catalyst deterioration determination device according to claim 3, wherein the determination-time variation characteristic value is set based on the characteristic value of the air-fuel ratio variation when the output of the oxygen concentration sensor exceeds an excess air ratio of one.
【請求項6】 排気ガス量に応じて前記判定時変動特性
値および前記判定しきい値の少なくとも一方を補正する
請求項1,2,3,4または5記載のエンジンの触媒劣
化判定装置。
6. The catalyst deterioration determining device for an engine according to claim 1, wherein at least one of the determination-time variation characteristic value and the determination threshold value is corrected according to an exhaust gas amount.
【請求項7】 触媒温度に応じて前記判定時変動特性値
および前記判定しきい値の少なくとも一方を補正する請
求項1,2,3,4,5または6記載のエンジンの触媒
劣化判定装置。
7. The catalyst degradation determination device for an engine according to claim 1, wherein at least one of the variation characteristic value at the time of determination and the determination threshold value is corrected according to a catalyst temperature.
【請求項8】 触媒温度が大きく変化する過渡後の所定
期間は劣化判定を禁止する請求項1,2,3,4,5,
6または7記載のエンジンの触媒劣化判定装置。
8. The method according to claim 1, wherein the determination of deterioration is prohibited during a predetermined period after a transition in which the catalyst temperature greatly changes.
8. The device for judging catalyst deterioration of an engine according to 6 or 7.
【請求項9】 酸素濃度に応じて直線的に変化するセン
サ出力により空燃比をリニアに検出可能なリニア空燃比
センサを触媒上流に設け、該リニア空燃比センサにより
検出した空燃比を予め設定された目標空燃比と一致させ
るよう空燃比フィードバック制御手段によって空燃比を
フィードバック制御するとともに、前記リニア空燃比セ
ンサにより検出された空燃比が理論空燃比を挟んでリッ
チ側とリーン側を繰り返すよう前記空燃比変動制御手段
により前記空燃比フィードバック制御手段による制御の
目標空燃比を変動させることにより、劣化判定と同時に
空燃比フィードバック制御を行う請求項1,2,3,
4,5,6,7または8記載のエンジンの触媒劣化判定
装置。
9. A linear air-fuel ratio sensor capable of linearly detecting an air-fuel ratio by a sensor output that changes linearly according to the oxygen concentration is provided upstream of the catalyst, and the air-fuel ratio detected by the linear air-fuel ratio sensor is set in advance. The air-fuel ratio is feedback-controlled by the air-fuel ratio feedback control means so that the air-fuel ratio coincides with the target air-fuel ratio, and the air-fuel ratio detected by the linear air-fuel ratio sensor repeats a rich side and a lean side with respect to the stoichiometric air-fuel ratio. 4. The air-fuel ratio feedback control is performed simultaneously with the deterioration determination by changing the target air-fuel ratio of the control by the air-fuel ratio feedback control unit by the fuel ratio fluctuation control unit.
9. The apparatus for determining catalyst deterioration of an engine according to 4, 5, 6, 7 or 8.
【請求項10】 酸素濃度に応じて変化するセンサ出力
により空燃比を検出可能な空燃比センサを排気系に設
け、前記空燃比センサにより検出した空燃比を理論空燃
比を挟んでリッチ側とリーン側に変動する予め設定され
た目標空燃比と一致させるよう空燃比をフィードバック
制御するエンジンの排気系に配置された排気浄化用触媒
の劣化を判定する触媒劣化判定装置であって、 燃焼室に供給する混合気の空燃比に空燃比フィードバッ
ク制御のためのエンジンの運転状態の変化が小さい定常
運転時における前記目標空燃比の変動周期よりも長い周
期の変動を与える空燃比変動制御手段と、 前記触媒の酸素吸蔵容量に関連した状態量を検出する状
態量検出手段と、 前記状態量検出手段の出力を所定の判定しきい値と比較
することによって触媒劣化判定を行う劣化判定手段を備
えたことを特徴とするエンジンの触媒劣化判定装置。
10. An exhaust system having an air-fuel ratio sensor capable of detecting an air-fuel ratio based on a sensor output that changes in accordance with the oxygen concentration, wherein the air-fuel ratio detected by the air-fuel ratio sensor is defined as a rich side and a lean side with respect to a stoichiometric air-fuel ratio. A catalyst deterioration determination device that determines the deterioration of an exhaust purification catalyst disposed in an exhaust system of an engine that feedback-controls an air-fuel ratio so as to match a preset target air-fuel ratio that fluctuates to a side. An air-fuel ratio variation control means for giving a variation in the air-fuel ratio of the mixture to a variation cycle longer than the variation cycle of the target air-fuel ratio during a steady operation in which the change in the operating state of the engine for the air-fuel ratio feedback control is small; and A state quantity detecting means for detecting a state quantity related to the oxygen storage capacity of the catalyst, and comparing the output of the state quantity detecting means with a predetermined judgment threshold to determine An engine catalyst deterioration determining device, comprising: a deterioration determining means for performing a change determination.
【請求項11】 前記状態量検出手段は触媒下流に配置
した酸素濃度センサである請求項1,2,3,4,5,
6,7,8,9または10記載のエンジンの触媒劣化判
定装置。
11. The state quantity detecting means is an oxygen concentration sensor disposed downstream of a catalyst.
11. The apparatus for judging catalyst deterioration of an engine according to 6, 7, 8, 9 or 10.
JP21681196A 1996-07-29 1996-07-29 Engine catalyst deterioration judgment device Expired - Fee Related JP3823384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21681196A JP3823384B2 (en) 1996-07-29 1996-07-29 Engine catalyst deterioration judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21681196A JP3823384B2 (en) 1996-07-29 1996-07-29 Engine catalyst deterioration judgment device

Publications (2)

Publication Number Publication Date
JPH1047141A true JPH1047141A (en) 1998-02-17
JP3823384B2 JP3823384B2 (en) 2006-09-20

Family

ID=16694268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21681196A Expired - Fee Related JP3823384B2 (en) 1996-07-29 1996-07-29 Engine catalyst deterioration judgment device

Country Status (1)

Country Link
JP (1) JP3823384B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171979A (en) * 2003-11-21 2005-06-30 Denso Corp Controller for internal combustion engine
US7059115B2 (en) 2002-01-22 2006-06-13 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio control apparatus and method for internal combustion engine and engine control unit
JP2008106666A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2010180735A (en) * 2009-02-04 2010-08-19 Nissan Motor Co Ltd Catalyst deterioration diagnostic system
US7779620B2 (en) 2006-06-06 2010-08-24 Mitsubishi Electric Corporation Air-fuel ratio feedback control device
US8074441B2 (en) 2005-05-16 2011-12-13 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining catalyst degradation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7059115B2 (en) 2002-01-22 2006-06-13 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio control apparatus and method for internal combustion engine and engine control unit
JP2005171979A (en) * 2003-11-21 2005-06-30 Denso Corp Controller for internal combustion engine
US8074441B2 (en) 2005-05-16 2011-12-13 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining catalyst degradation
US7779620B2 (en) 2006-06-06 2010-08-24 Mitsubishi Electric Corporation Air-fuel ratio feedback control device
JP2008106666A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2010180735A (en) * 2009-02-04 2010-08-19 Nissan Motor Co Ltd Catalyst deterioration diagnostic system

Also Published As

Publication number Publication date
JP3823384B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US6679050B1 (en) Exhaust emission control device for internal combustion engine
JP3074975B2 (en) Catalyst deterioration determination device for internal combustion engine
JP3438298B2 (en) Air-fuel ratio sensor failure detection device
EP0823546B1 (en) A device for determining deterioration of a catalyst for an engine
JPH09310612A (en) Deterioration detection device for exhaust emission controlling catalyst
EP0796985B1 (en) An apparatus for detecting the deterioration of a three-way catalytic converter for an internal combustion engine
EP1184555B1 (en) Engine exhaust purification device
EP0743433B1 (en) A device for determining deterioration of a catalytic converter for an engine
US20030196428A1 (en) Exhaust gas purifying system for internal combustion engines
KR100204831B1 (en) Air fuel ratio control method and apparatus of internal combustion engine
JPH1047141A (en) Judging device for deterioration of catalyst for engine
JP2785707B2 (en) Exhaust gas purification device for internal combustion engine
JP3052642B2 (en) Air-fuel ratio control device for internal combustion engine
JP3221158B2 (en) Air-fuel ratio sensor deterioration determination control device
JP2842048B2 (en) Fuel cut control device for internal combustion engine
JP2737482B2 (en) Degradation diagnosis device for catalytic converter device in internal combustion engine
JP3491409B2 (en) Exhaust gas purification device for internal combustion engine
JP3342160B2 (en) Catalyst deterioration detection device
JP3156582B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH07224708A (en) Fuel injection control device of internal combustion engine
JP3147866B2 (en) Engine catalyst deterioration diagnosis device
JP3196602B2 (en) Exhaust gas purification device for internal combustion engine
JP2535859B2 (en) Overheat prevention device for in-vehicle engine
JP3067445B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH08291709A (en) Catalyst activation sensing device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees