JPH1045413A - Composite titanium compound powder and its production - Google Patents
Composite titanium compound powder and its productionInfo
- Publication number
- JPH1045413A JPH1045413A JP8201581A JP20158196A JPH1045413A JP H1045413 A JPH1045413 A JP H1045413A JP 8201581 A JP8201581 A JP 8201581A JP 20158196 A JP20158196 A JP 20158196A JP H1045413 A JPH1045413 A JP H1045413A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alkali metal
- compound
- compd
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 66
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 150000003609 titanium compounds Chemical class 0.000 title claims description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 36
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 34
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims abstract description 5
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 34
- -1 alkaline earth metal titanate Chemical class 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 25
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 23
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000011246 composite particle Substances 0.000 claims description 7
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- 238000010304 firing Methods 0.000 abstract description 14
- 239000002783 friction material Substances 0.000 abstract description 11
- 239000007858 starting material Substances 0.000 abstract description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 10
- 239000002585 base Substances 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- 229910052742 iron Inorganic materials 0.000 abstract description 5
- 239000003513 alkali Substances 0.000 abstract description 4
- 229910052733 gallium Inorganic materials 0.000 abstract description 3
- 229910052792 caesium Inorganic materials 0.000 abstract description 2
- 229910052700 potassium Inorganic materials 0.000 abstract description 2
- 229910052701 rubidium Inorganic materials 0.000 abstract description 2
- 229910052708 sodium Inorganic materials 0.000 abstract description 2
- 229910052744 lithium Inorganic materials 0.000 abstract 1
- 239000011369 resultant mixture Substances 0.000 abstract 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 abstract 1
- 229910052719 titanium Inorganic materials 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000003779 heat-resistant material Substances 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000016571 aggressive behavior Effects 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 240000001987 Pyrus communis Species 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007908 dry granulation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
Landscapes
- Braking Arrangements (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複合チタン化合物
系粉末、詳しくは六チタン酸アルカリ金属の結晶粒とチ
タン酸アルカリ土類金属の結晶粒とオクトチタン酸塩の
結晶粒とが結合してなる粒子構造を有する、摩擦材の構
成材料などとして有用なチタン酸化合物系複合化合物粉
末およびその製造方法に関する。TECHNICAL FIELD The present invention relates to a composite titanium compound-based powder, more particularly, a crystal of alkali metal hexatitanate, alkaline earth metal titanate and octotitanate. The present invention relates to a titanate compound-based composite compound powder having a particle structure and useful as a constituent material of a friction material and a method for producing the same.
【0002】[0002]
【従来の技術】六チタン酸アルカリ金属: A2 Ti6 O
13〔A: アルカリ金属〕は、耐熱性,強度,耐摩耗性,
化学的安定性等にすぐれた合成無機化合物であり、アス
ベスト繊維の代替品として各種分野での工学的応用が期
待され、耐熱材,断熱材,プラスチックの補強材とし
て、あるいは自動車用ブレーキ装置の摩擦材の基材成分
等のとしての実用化が試みられている。六チタン酸アル
カリ金属は、二酸化チタン,アルカリ金属化合物の混合
物を原料とし、溶融法,焼成法,水熱合成法,フラック
ス法等と称される方法により製造される(特公昭54-192
39号公報,特開昭58-158688 号,特開昭61-186600 号公
報,特開昭60-34617号公報等,特公平5-22651 号公報
等)。 2. Description of the Related Art Alkali metal hexatitanate: A 2 Ti 6 O
13 [A: Alkali metal] has heat resistance, strength, abrasion resistance,
It is a synthetic inorganic compound with excellent chemical stability, and is expected to be applied in various fields as a substitute for asbestos fiber, and as a heat-resistant material, heat-insulating material, reinforcing material for plastics, or friction of automobile brake equipment. Attempts have been made to put the material into practical use as a base material component or the like. The alkali metal hexatitanate is produced from a mixture of titanium dioxide and an alkali metal compound by a method called a melting method, a firing method, a hydrothermal synthesis method, a flux method, etc. (Japanese Patent Publication No. 54-192)
39, JP-A-58-158688, JP-A-61-186600, JP-A-60-34617, JP-B-5-26551, etc.).
【0003】チタン酸系合成無機化合物として、上記六
チタン酸アルカリ金属〔A2 Ti6O13〕のほかに、ペ
ロブスカイト型構造のチタン酸アルカリ土類金属: RT
iO 3 〔R: Mg,Ca,Sr等〕や、ホランダイト型
構造を有するオクトチタン酸塩: AX ( MY Ti8-Y )
8 O16〔M: Mg, Zn, Fe, Al等,A: アルカリ
金属, x=0.5〜3, Y = X / 2(Mが2価の場合)
又はY = X (Mが3価の場合)等が知られている。ペロ
ブスカイト型チタン酸アルカリ土類金属〔RTiO3 〕
は、耐熱性,強度,断熱性,耐摩耗性等を有するほか、
高誘電率の化合物であることから、誘電体・圧電体等の
エレクトロニクス分野の素材として実用されている。こ
の化合物の製造法として、チタン化合物とR元素化合物
との混合物を焼成処理する方法、チタン化合物にR元素
化合物およびアルカリ金属ハロゲン化合物系フラックス
成分を配合して焼成処理する方法等が知られている(特
開昭56-162403 号公報, 特公平5-27571 号公報等)。ホ
ランダイト型オクトチタン酸塩〔AX ( MY Ti8-Y )
8 O16〕は、高融点,低熱伝導率を有し、強度,化学的
安定性などにもすぐれ、耐熱材,断熱材,補強材などと
して有用な化合物であり、その製造法として、二酸化チ
タン,アルカリ金属酸化物,アルカリ土類金属酸化物の
混合物を焼成処理する焼成法、そのほかに溶融法, フラ
ックス法等が知られている(特公昭62-41176号公報,無
機材質研究所研究報告第57号第4-7 頁)。As the titanate-based synthetic inorganic compound,
Alkali metal titanate [ATwoTi6O13]
Alkaline earth metal titanate with lobskite structure: RT
iO Three[R: Mg, Ca, Sr, etc.] or hollandite type
Octo-titanate having structure: AX(MYTi8-Y)
8O16[M: Mg, Zn, Fe, Al, etc., A: Alkaline
Metal, x = 0.5-3, Y = X / 2 (when M is divalent)
Or, Y = X (when M is trivalent) is known. Pero
Alkaline earth metal titanate [RTiOThree]
Has heat resistance, strength, heat insulation, abrasion resistance, etc.
Since it is a compound with a high dielectric constant, it
It is used as a material in the electronics field. This
As a method for producing a compound of formula (I), a titanium compound and an R element compound
Of sintering a mixture with a titanium compound, and adding an R element to the titanium compound
Compound and alkali metal halide flux
There is known a method of blending components and performing a baking treatment.
JP-A-56-162403, JP-B-5-27571, etc.). E
Landite-type octotitanate [AX(MYTi8-Y)
8O16] Has high melting point, low thermal conductivity, strength, chemical
Excellent stability, heat-resistant materials, heat-insulating materials, reinforcing materials, etc.
Is a useful compound, and its production method is titanium dioxide.
Of tan, alkali metal oxides and alkaline earth metal oxides
A sintering method for sintering the mixture, as well as a melting method,
(Eg, Japanese Patent Publication No. Sho 62-41176,
Material Materials Research Laboratory Report No. 57, pp. 4-7).
【0004】[0004]
【発明が解決しようとする課題】上記のように六チタン
酸アルカリ金属,チタン酸アルカリ土類金属,およびオ
クトチタン酸塩の各化合物は、その化学組成と結晶構造
に基づく固有の物性を有するが、これを例えば自動車用
ブレーキ装置の摩擦材を形成するための、樹脂結合剤に
配合される基材成分として適用する場合、摩擦・摩耗特
性を十分に満足せしめることができない。すなわち、六
チタン酸アルカリ金属は、摩擦係数(μ)の安定化,耐
フェード性,耐摩耗性等の改善に著効を奏し、相手攻撃
性の点でもすぐれているが、摩擦係数(μ)は比較的低
いレベルにとどまる。チタン酸アルカリ土類金属は、六
チタン酸アルカリ金属に比べて高速・高負荷で比較的高
い摩擦係数(μ)を与えるが、安定性の点で十分とはい
えず、また六チタン酸アルカリ金属に比べ相手攻撃性も
やや悪い。オクトチタン酸塩は、高摩擦係数(μ)の確
保を可能とするが、相手攻撃性の点で問題がある。As described above, each compound of alkali metal hexatitanate, alkaline earth metal titanate, and octotitanate has inherent properties based on its chemical composition and crystal structure. However, when this is applied as a base component to be mixed with a resin binder for forming a friction material of an automobile brake device, for example, the friction and wear characteristics cannot be sufficiently satisfied. That is, the alkali metal hexatitanate is effective in stabilizing the coefficient of friction (μ), improving fade resistance, abrasion resistance and the like, and is excellent in the aggressiveness of the opponent. Stays at a relatively low level. Alkaline earth metal titanate provides a relatively high coefficient of friction (μ) at high speed and high load compared to alkali metal hexatitanate, but it is not sufficient in terms of stability. The opponent's aggression is somewhat worse than Although octotitanate can ensure a high coefficient of friction (μ), it has a problem in terms of aggression to a partner.
【0005】自動車用ブレーキ装置の小型化,軽量化、
耐久性・制動機能の安定性の向上等の要請に応えるに
は、摩擦係数(μ)、耐摩耗性,および相手攻撃性など
の摩擦特性を更に改善すること必要である。その手段と
して、上記3種の化合物粉末を混合使用することによ
り、それらの相補的効果として摩擦・摩耗特性の総合的
な改善効果を得ることが考えられる。しかし、各化合物
粉末のそれぞれを用意して混合物を調製することは煩瑣
であり、またコストが高く付くばかりか、その混合粉末
を樹脂中に分散混在させても、予期した程の効果を得る
ことはできない。本発明は、上記六チタン酸アルカリ金
属,チタン酸アルカリ土類金属およびオクトチタン酸塩
のそれぞれの特長を兼備し、自動車用ブレーキ装置の摩
擦材の構成材料等として有用な複合チタン化合物粉末お
よびその製造方法を提供するものである。[0005] Miniaturization and weight reduction of an automobile brake device,
In order to meet the demands for improving the durability and the stability of the braking function, it is necessary to further improve friction characteristics such as a coefficient of friction (μ), abrasion resistance, and aggressiveness to a partner. As a means for achieving this, it is conceivable to obtain an overall effect of improving the friction and wear characteristics as a complementary effect by mixing and using the above three types of compound powders. However, preparing a mixture by preparing each of the compound powders is complicated and not only costs high, but also achieves the expected effect even if the mixed powder is dispersed and mixed in the resin. Can not. The present invention provides a composite titanium compound powder which combines the features of the above-mentioned alkali metal hexatitanate, alkaline earth metal titanate and octotitanate, and is useful as a constituent material of a friction material of an automobile brake device, and the like. It is intended to provide a manufacturing method.
【0006】[0006]
【課題を解決するための手段】本発明のチタン酸系複合
化合物粉末は、 A2 Ti6 O13 … 〔1〕 〔式中,Aはアルカリ金属〕で表される六チタン酸アル
カリ金属の結晶粒と、 RTiO3 … 〔2〕 〔式中,Rは、Mg,CaまたはSr〕で表されるチタ
ン酸アルカリ土類金属の結晶粒と、 AX ( MY Ti8-Y )O16 … 〔3〕 〔式中,Mは、Mg,Zn,Fe,AlまたはGa Aはアルカリ金属 X =0.5〜3 Y = X / 2(Mが2価元素の場合) = X (Mが3価元素の場合) 〕で表されるオクト
チタン酸塩の結晶粒とが結合した複合粒子からなること
を特徴としている。Means for Solving the Problems The titanate-based composite compound powder of the present invention is a crystal of an alkali metal hexatitanate represented by A 2 Ti 6 O 13 (1) wherein A is an alkali metal. grain and, RTiO 3 ... (2) [wherein, R, Mg, Ca or Sr] and grain titanate alkaline earth metal represented by, a X (M Y Ti 8 -Y) O 16 ... [3] [where M is Mg, Zn, Fe, Al or Ga A is an alkali metal X = 0.5-3 Y = X / 2 (when M is a divalent element) = X (M is 3 (In the case of a valence element)].
【0007】[0007]
【発明の実施の形態】本発明の複合化合物粉末は、六チ
タン酸アルカリ金属〔1〕,チタン酸アルカリ土類金属
〔2〕、およびオクトチタン酸塩〔3〕の各粉末の単な
る混合物ではなく、これらの結晶粒が結合した粒子形態
を有し、その粒子構造の効果として、耐熱材,断熱材,
摩擦材,補強材等として適性が高められる。例えば自動
車用ブレーキ装置の摩擦材の基材成分として適用するこ
とにより、単なる混合粉末では得られない摩擦・摩耗特
性の改善効果を得ることを可能にする。本発明の複合化
合物粉末を構成する六チタン酸アルカリ金属〔1〕とチ
タン酸アルカリ土類金属〔2〕とオクトチタン酸塩
〔3〕の各結晶粒の量比は、用途・要求特性に応じて任
意に調整される。摩擦材に適用される場合は、高摩擦係
数(μ),高耐摩耗性,良好な対面損傷性等の諸特性を
バランスよく確保するために、六チタン酸アルカリ金属
〔1〕/チタン酸アルカリ土類金属〔2〕/オクトチタ
ン酸塩の結晶相〔3〕の量比(モル比)=1/0.2〜
20/0.1〜2、より好ましくは、1/0.5〜10
/0.1〜1、である組成が与えられる。また、本発明
の複合化合物粉末は用途に応じた粒径が与えられる。ブ
レーキ装置の摩擦材の基材成分として適用される場合
は、樹脂中への混合操作性,均一分散性を良好ならし
め、分散効果を十分に発現させるために、平均粒径10
〜100μmの粒径であるのが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The composite compound powder of the present invention is not a simple mixture of powders of alkali metal hexatitanate [1], alkaline earth metal titanate [2], and octotitanate [3]. , These grains have a combined particle morphology, and the effect of the particle structure is as follows:
Suitability is improved as a friction material, a reinforcing material, and the like. For example, by applying it as a base component of a friction material of an automobile brake device, it is possible to obtain an effect of improving friction and wear characteristics which cannot be obtained by a mere mixed powder. The amount ratio of each crystal grain of the alkali metal hexatitanate [1], the alkaline earth metal titanate [2] and the octotitanate [3] constituting the composite compound powder of the present invention depends on the use and required characteristics. Arbitrarily adjusted. When applied to friction materials, alkali metal hexatitanate [1] / alkali titanate should be used to ensure various properties such as high coefficient of friction (μ), high wear resistance, and good face-to-face damage. Quantitative ratio (molar ratio) of earth metal [2] / crystal phase of octotitanate [3] = 1 / 0.2-
20 / 0.1 to 2, more preferably 1 / 0.5 to 10
/0.1-1. Further, the composite compound powder of the present invention is given a particle size according to the use. When applied as a base material component of a friction material of a brake device, the average particle diameter is 10% in order to improve the mixing operability and uniform dispersibility in the resin and sufficiently exhibit the dispersing effect.
It is preferred that the particle size is 100100 μm.
【0008】本発明の複合化合物粉末は焼成プロセスに
より製造される。すなわち、二酸化チタン(TiO2 )
または加熱によりTiO2 を生成するチタン化合物と、
酸化アルカリ金属(A2 O)または加熱によりA2 Oを
生成するアルカリ金属化合物と、R元素酸化物(RO)
または加熱によりROを生成するR元素化合物と、M元
素酸化物(MO* )または加熱によりMO* 〔MO* は
MOもしくはM2 O3〕を生成するM元素化合物とを所
定の量比に配合した粉末混合物を出発原料とし、これを
適当な粒径に造粒して焼成処理する。焼成処理により、
反応生成物として、六チタン酸アルカリ金属,チタン酸
アルカリ土類金属およびオクトチタン酸塩の各結晶相が
複合的に析出生成する。各結晶相の生成量比は、原料粉
末混合物の配合組成比により制御される。焼成処理の
後、焼成物を解砕処理することにより、これらの結晶粒
の結合からなる複合粒子構造を有する粉末が収得され
る。[0008] The composite compound powder of the present invention is produced by a firing process. That is, titanium dioxide (TiO 2 )
Or a titanium compound that generates TiO 2 by heating;
An alkali metal oxide (A 2 O) or an alkali metal compound that generates A 2 O by heating, and an R element oxide (RO)
Alternatively, an R element compound that generates RO by heating and an M element oxide (MO * ) or an M element compound that generates MO * [MO * is MO or M 2 O 3 ] by heating are blended in a predetermined quantitative ratio. The obtained powder mixture is used as a starting material, which is granulated to an appropriate particle size and fired. By firing process,
As a reaction product, each crystal phase of alkali metal hexatitanate, alkaline earth metal titanate, and octotitanate precipitates and forms in a complex manner. The production ratio of each crystal phase is controlled by the composition ratio of the raw material powder mixture. After the calcination treatment, the calcination product is subjected to a crushing treatment to obtain a powder having a composite particle structure composed of a combination of these crystal grains.
【0009】出発原料に使用される上記チタン化合物
は、精製アナターゼ,精製ルチル,ハロゲン化物,水和
物などであり、アルカリ金属化合物は、Na,K,L
i,Rb,Cs等の酸化物,炭酸塩,ハロゲン化物,水
酸化物などが使用され、R元素化合物には、Mg,C
a,Sr等の酸化物,炭酸塩,ハロゲン化物,水酸化物
などが使用される。また、M元素化合物としては、M
g,Zn,Fe,Al,Ga等の酸化物,炭酸塩,ハロ
ゲン化合物,水酸化物等が使用される。The titanium compounds used as starting materials are purified anatase, purified rutile, halides, hydrates and the like, and the alkali metal compounds are Na, K, L
Oxides such as i, Rb, Cs, etc., carbonates, halides, hydroxides and the like are used.
Oxides such as a and Sr, carbonates, halides, hydroxides and the like are used. Further, as the M element compound, M
For example, oxides such as g, Zn, Fe, Al, and Ga, carbonates, halogen compounds, and hydroxides are used.
【0010】出発原料中のTiO2 は、六チタン酸アル
カリ金属〔1〕,チタン酸アルカリ土類金属〔2〕およ
びオクトチタン酸塩〔3〕の各結晶相の形成に関与する
成分であり、六チタン酸アルカリ金属〔1〕はTiO2
とA2 Oとを構成成分とし、ペロブスカイト型チタン酸
アルカリ土類金属〔2〕はTiO2 とROとを構成成分
として形成され、ホランダイト型オクトチタン酸塩
〔3〕は、TiO2 とA2OとMO* (MO又はM2 O
3 )を構成成分として形成される。六チタン酸アルカリ
金属〔1〕は、TiO2 : A2 O(モル比)=6: 1、
チタン酸アルカリ土類金属〔2〕は、TiO2 : RO
(モル比)=1: 1、オクトチタン酸塩〔3〕は、Mが
2価元素(Mg,Zn等)の場合、TiO2 : A2 O:
MO(モル比)=(8−X/2): (X/2): (X/
2)、Mが3価元素(Fe,Al,Ga等)の場合、T
iO2 : A2 O: M2 O3 (モル比)=(8−X):
(X/2): (X/2)、である組成をそれぞれ有して
いる。TiO 2 in the starting material is a component involved in the formation of each crystal phase of alkali metal hexatitanate [1], alkaline earth metal titanate [2] and octotitanate [3], The alkali metal hexatitanate [1] is TiO 2
And the A 2 O and constituents, perovskite alkali earth metal (2) is formed as a component of TiO 2 and RO, hollandite type oct titanate [3], TiO 2 and A 2 O and MO * (MO or M 2 O
3 ) is formed as a constituent. The alkali metal hexatitanate [1] is TiO 2 : A 2 O (molar ratio) = 6: 1,
The alkaline earth metal titanate [2] is TiO 2 : RO
(Molar ratio) = 1: 1, the octo titanate [3] is TiO 2 : A 2 O: M when the divalent element (Mg, Zn, etc.)
MO (molar ratio) = (8−X / 2): (X / 2): (X /
2) When M is a trivalent element (Fe, Al, Ga, etc.), T
iO 2 : A 2 O: M 2 O 3 (molar ratio) = (8−X):
(X / 2): (X / 2).
【0011】出発原料中の上記各化合物の配合量比は、
六チタン酸アルカリ金属〔1〕,チタン酸アルカリ金属
〔2〕およびオクトチタン酸塩〔3〕の各結晶相の形成
に関与するTiO2 ,A2 O,RO,およびMO* の量
比と、製造しようとする複合化合物粉末の相構成(各結
晶相の量比)に基づいて調整される。すなわち、製品粉
末として、六チタン酸アルカリ金属〔1〕/チタン酸ア
ルカリ土類金属〔2〕/オクトチタン酸塩〔3〕の量比
が、1 / a / b (モル比)である相構成を有する複合化
合物粉末を製造する場合における出発原料の成分配合
は、下記の式(イ)〔Mが2価元素の場合〕または式
(ロ)〔Mが3価元素の場合〕により与えられる組成比
に調整される。例えば、ブレーキ装置の摩擦材の基材成
分等として使用される複合化合物粉末として、六チタン
酸アルカリ金属〔1〕/チタン酸アルカリ土類金属
〔2〕/オクトチタン酸塩〔3〕の量比=1/0.2〜
20/0.1〜2(モル比)である複合粒子からなる粉
末を製造する場合の出発原料は、式(イ)または式
(ロ)におけるaを0.2〜20、bを0.1〜2とし
て、その組成配合を設定することができる。The compounding ratio of each of the above compounds in the starting material is as follows:
Quantitative ratios of TiO 2 , A 2 O, RO and MO * involved in the formation of each crystal phase of alkali metal hexatitanate [1], alkali metal titanate [2] and octotitanate [3]; It is adjusted based on the phase constitution (quantity ratio of each crystal phase) of the composite compound powder to be produced. That is, the product powder has a phase composition in which the amount ratio of alkali metal hexatitanate [1] / alkaline earth metal titanate [2] / octotitanate [3] is 1 / a / b (molar ratio). In the case of producing a composite compound powder having the following formula, the starting material has a composition given by the following formula (A) [when M is a divalent element] or (B) [when M is a trivalent element] Adjusted to the ratio. For example, as a composite compound powder used as a base component of a friction material of a brake device, a quantitative ratio of alkali metal hexatitanate [1] / alkaline earth metal titanate [2] / octotitanate [3] is used. = 1 / 0.2-
In the case of producing a powder composed of composite particles having a molar ratio of 20 / 0.1 to 2 (molar ratio), a in the formula (a) or (b) is 0.2 to 20, and b is 0.1 The composition of the composition can be set as (1) to (2).
【数1】 TiO2 /A2 O/RO/MO(モル比) = 6 +a + (8-X/2)×b/ 1 + (X/2)×b /a / (X/2)×b… (イ) TiO2 /A2 O/RO/M2 O3 (モル比) = 6 +a + (8-X)×b/ 1 + (X/2)×b /a / (X/2)×b … (ロ)TiO 2 / A 2 O / RO / MO (molar ratio) = 6 + a + (8-X / 2) × b / 1 + (X / 2) × b / a / (X / 2) × b (a) TiO 2 / A 2 O / RO / M 2 O 3 (molar ratio) = 6 + a + (8-X) × b / 1 + (X / 2) × b / a / (X / 2) × b… (b)
【0012】出発原料粉末は、焼成反応を効率的に行わ
せるために、平均粒径約10μm以下の微細粒径である
のが好ましい。所定の組成に調整された出発原料粉末
は、乾式または湿式造粒により、適当な粒径の造粒粉
(例えば、平均粒径約10〜100μm)に造粒されて
焼成処理に付される。造粒粉の粒形態は、焼成工程を経
て得られる製品複合化合物粉末の粒子形態を決定する。
製品粉末の複合粒子は、造粒粉とほぼ同じ球形状を呈
し、粒子径も造粒粉の粒径とほぼ同じであり、造粒粉の
粒形態により製品粉末の粒子形態を制御することができ
る。It is preferable that the starting material powder has a fine particle diameter of about 10 μm or less in order to efficiently carry out the firing reaction. The starting raw material powder adjusted to a predetermined composition is granulated by dry or wet granulation into granulated powder having an appropriate particle size (for example, an average particle size of about 10 to 100 μm) and subjected to a baking treatment. The particle morphology of the granulated powder determines the particle morphology of the product composite compound powder obtained through the firing step.
The composite particles of the product powder have almost the same spherical shape as the granulated powder, and the particle size is almost the same as the particle size of the granulated powder.The particle form of the product powder can control the particle form of the product powder. it can.
【0013】焼成処理は、温度約1000〜1300℃
に適当時間(例えば、1〜4Hr)保持することにより
行われ、反応生成物として、六チタン酸アルカリ金属
〔1〕とチタン酸アルカリ土類金属〔2〕とオクトチタ
ン酸塩〔3〕の各結晶が複合的に析出生成する。焼成温
度を1000℃以上とするのは、それより低温度では、
六チタン酸アルカリ金属結晶やチタン酸アルカリ土類金
属結晶を生成し得ても、オクトチタン酸塩の生成反応が
遅延しもしくは反応生成量の不足をきたし、結果とし
て、出発原料の成分配合比に対応した相構成を有する製
品複合化合物粉末を得ることが困難となるからである。
他方、処理温度の上限を1300℃とするのは、それを
超えると、生成した六チタン酸アルカリ金属結晶の溶融
を生じ、健全な複合粒子構造を得ることができなくから
である。好適な焼成温度は、出発原料に配合されたM元
素の種類により異なり、例えばMがFeの場合は、約1
000℃以上,Alの場合は約1100℃以上に調節す
ることにより、所期の焼成反応を効率的に達成すること
ができる。焼成処理の後、その焼成物に、振動ふるい等
の軽度の解砕処理を施すことにより、六チタン酸アルカ
リ金属とチタン酸アルカリ土類金属とオクトチタン酸塩
の各結晶粒が結合した粒子構造(粒子の形状および粒径
は造粒粉のそれとほぼ同じである)を有する複合粒子か
らなる複合化合物粉末が収得される。The firing process is performed at a temperature of about 1000 to 1300 ° C.
For an appropriate time (for example, 1 to 4 hours), and as reaction products, each of alkali metal hexatitanate [1], alkaline earth metal titanate [2], and octotitanate [3] Crystals precipitate and form in a complex manner. The sintering temperature of 1000 ° C. or higher is because at lower temperatures,
Even if alkali hexatitanate crystals or alkaline earth metal titanate crystals can be produced, the production reaction of octotitanate is delayed or the amount of the produced reaction is insufficient, and as a result, the mixing ratio of the starting raw materials is reduced. This is because it becomes difficult to obtain a product composite compound powder having a corresponding phase structure.
On the other hand, the reason why the upper limit of the treatment temperature is set to 1300 ° C. is that if it exceeds this, the generated alkali metal hexatitanate crystal is melted and a sound composite particle structure cannot be obtained. A suitable firing temperature depends on the type of the M element blended in the starting material. For example, when M is Fe, about 1
By adjusting the temperature to 000 ° C. or higher and Al to about 1100 ° C. or higher, the desired firing reaction can be efficiently achieved. After firing, the fired product is subjected to a light crushing process such as a vibrating sieve to form a particle structure in which crystal grains of alkali metal hexatitanate, alkaline earth metal titanate, and octotitanate are combined. (A composite compound powder comprising composite particles having the same shape and particle size as those of the granulated powder) is obtained.
【0014】[0014]
【実施例】TiO2 源として精製アナターゼ粉末,A2
O源としてアルカリ金属炭酸塩,RO源としてアルカリ
土類金属炭酸塩,およびMO* 源としてM元素酸化物か
らなる粉末混合物を出発原料とし、これに2倍量の水を
加えてスラリーを調製し、湿式噴霧乾燥機(スプレード
ライヤ)により、乾燥物として、造粒粉(平均粒径: 約
40μm)を得る。造粒粉をアルミナるつぼに入れ、電
気炉で焼成処理(処理時間: 約1Hr)する。焼成処理
後、焼成物を振動ふるいにかけ、解砕して粉末を得る。EXAMPLES Purified anatase powder, A 2 as a TiO 2 source
A powder mixture consisting of an alkali metal carbonate as an O source, an alkaline earth metal carbonate as an RO source, and an M element oxide as an MO * source was used as a starting material, and twice the amount of water was added thereto to prepare a slurry. A granulated powder (average particle size: about 40 μm) is obtained as a dried product by a wet spray dryer (spray dryer). The granulated powder is placed in an alumina crucible and fired in an electric furnace (processing time: about 1 hour). After the firing treatment, the fired product is sieved with a vibration sieve and crushed to obtain a powder.
【0015】表1に出発原料混合物の組成配合,焼成処
理条件、および焼成反応生成物として得られた複合化合
物粉末の相構成(結晶相とその量比)を示す。複合化合
物粉末は、出発原料混合物の組成配合に対応して、六チ
タン酸アルカリ金属〔1〕,チタン酸アルカリ土類金属
〔2〕およびオクトチタン酸塩〔3〕の各結晶相が複合
的に析出生成した相構成を有する複合粒子からなる。粒
子形態はいずれも球形状を呈し、平均粒径は約40μm
である。Table 1 shows the composition of the starting material mixture, the firing conditions, and the phase constitution (crystal phase and its ratio) of the composite compound powder obtained as the firing reaction product. In the composite compound powder, each crystal phase of the alkali metal hexatitanate [1], the alkaline earth metal titanate [2] and the octotitanate [3] corresponds to the composition of the starting material mixture. It is composed of composite particles having a phase structure formed by precipitation. Each of the particles has a spherical shape, and the average particle size is about 40 μm.
It is.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
〔自動車ブレーキ・ディスク・パッドの製作および摩擦
特性の評価〕 (1)ディスク・パッドの製作 表2に示す配合組成の組成物を調製し、常法に従って予
備成形(加圧力:15MPa,時間:1分)、および金
型による結着成形(加圧力:15MPa,温度:170
℃,時間:5分)を行い、離型後、熱処理(180℃に
3Hr保持)し、ついで研摩加工を施して供試ディスク
・パッドA〜Eを得る。ディスクパッドAおよびBは、
それぞれ基材粉末として前記実施例におけるNo.1および
No.3の複合化合物粉末(平均粒径: 40μm)を使用し、
ディスクパッドCは、六チタン酸アルカリ金属単相粉末
(球状粉末,平均粒径40μm)、ディスクパッドDは、
ペロブスカイト型チタン酸アルカリ土類金属単相粉末
(球状粉末,平均粒径40μm)、ディスクパッドEは、
六チタン酸アルカリ金属粉末とホランダイト型オクトチ
タン酸塩粉末の混合粉末(球状粉末,平均粒径40μm)
を使用した例である。[Production of Automobile Brake Disc Pad and Evaluation of Friction Characteristics] (1) Production of Disc Pad A composition having the composition shown in Table 2 was prepared and preformed according to a conventional method (pressing force: 15 MPa, time: 1). Minute) and binding with a mold (pressure: 15 MPa, temperature: 170)
C., time: 5 minutes). After releasing, heat treatment (holding at 180 ° C. for 3 hours) is performed, and then polishing is performed to obtain test disk pads A to E. Disk pads A and B are
No. 1 in the above examples as the base powder and
Using No. 3 composite compound powder (average particle size: 40 μm)
The disc pad C is a single-phase alkali metal hexatitanate powder (spherical powder, average particle size 40 μm), and the disc pad D is
The perovskite-type alkaline earth metal titanate single phase powder (spherical powder, average particle size 40 μm) and the disc pad E are
Mixed powder of alkali metal hexatitanate powder and hollandite-type octotitanate powder (spherical powder, average particle size 40 μm)
This is an example using.
【0018】(2)摩擦試験 各供試ディスク・パッドについて、JASO C 406「乗用車
ブレーキ装置ダイナモメータ試験方法」による第2効力
試験を行う。 制動初速度…50km/h,100km/h 減速度…0.3G 試験結果を表2の下段に示す。「対面損傷性」は、試験
後の相手材(材種:FC250)の肉眼観察による表面の摩耗
損傷の度合いを対比したものである(◎: 極めて軽微,
○: 軽微,△: やや多い,×: 顕著 )。本発明の複合
化合物粉末を基材成分として製造されたディスク・パッ
ドAおよびBは、他の供試ディスクパッドC〜Eに比
し、高い摩擦係数μを安定に維持している。また、相手
攻撃性も、ディスクパッドD(チタン酸アルカリ土類金
属単相粉末使用)やディスクパッドE(六チタン酸アル
カリ金属単相粉末とオクトチタン酸塩単相粉末との混合
物使用)に比し優れており、ディスクパッドC(六チタ
ン酸アルカリ金属単相粉末を使用)に準じた良好な特性
を有している。(2) Friction test A second efficacy test is performed on each test disk pad according to JASO C 406 "Test method for dynamometer of passenger car brake system". Initial braking speed: 50 km / h, 100 km / h Deceleration: 0.3 G The test results are shown in the lower part of Table 2. The “face-to-face damage” is a comparison of the degree of wear and tear on the surface of the mating material (material type: FC250) after the test by visual observation (◎: extremely slight,
○: slight, △: somewhat large, ×: remarkable). The disc pads A and B produced using the composite compound powder of the present invention as a base component stably maintain a high friction coefficient μ as compared with the other test disc pads C to E. Also, the opposing aggressiveness is lower than that of disk pad D (using an alkaline earth titanate single-phase powder) and disk pad E (using a mixture of alkali metal hexatitanate single-phase powder and octotitanate single-phase powder). And has good characteristics similar to those of disk pad C (using single-phase alkali metal hexatitanate powder).
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【発明の効果】本発明の複合チタン化合物粉末は、六チ
タン酸アルカリ金属結晶粒とチタン酸アルカリ土類金属
結晶粒とオクトチタン酸塩結晶粒の異種の結晶相が結合
した粒子構造を有する効果として、これらの化合物粉末
の単なる混合粉末では得られない複合的特性を有し、例
えば自動車等の制動装置を構成する摩擦材の基材成分と
して適用することにより、改良された摩擦摩耗特性を得
ることができる。本発明の複合化合物粉末は、成分配合
を調整した粉末混合物を焼成処理する簡素な工程によ
り、比較的安価に製造することがきる。本発明の複合化
合物粉末は、上記例示の摩擦材のほか、耐熱材,断熱
材,プラスチック補強材,塗料用充填材等として有用で
ある。The composite titanium compound powder of the present invention has a particle structure in which different crystal phases of alkali metal hexatitanate crystal grains, alkaline earth metal titanate crystal grains and octotitanate crystal grains are combined. As these compounds have complex properties that cannot be obtained by simply mixing powders of these compound powders, for example, improved friction and wear properties can be obtained by applying them as a base component of a friction material constituting a braking device of an automobile or the like. be able to. The composite compound powder of the present invention can be produced relatively inexpensively by a simple process of baking a powder mixture whose component composition has been adjusted. The composite compound powder of the present invention is useful as a heat-resistant material, a heat insulating material, a plastic reinforcing material, a filler for paint, and the like, in addition to the friction materials exemplified above.
Claims (2)
カリ金属の結晶粒と、 RTiO3 …〔2〕 〔式中,Rは、Mg,CaまたはSr〕で表されるチタ
ン酸アルカリ土類金属の結晶粒と、 AX ( MY Ti8-Y )O16 …〔3〕 〔式中,Mは、Mg,Zn,Fe,AlまたはGa Aはアルカリ金属 X =0.5〜3 Y = X / 2(Mが2価元素の場合) = X (Mが3価元素の場合) 〕で表されるオクト
チタン酸塩の結晶粒とが結合した複合粒子からなる複合
チタン化合物粉末。1. A crystal grain of an alkali metal hexatitanate represented by A 2 Ti 6 O 13 ... [1] wherein A is an alkali metal, and RTiO 3 . , Mg, Ca or Sr], and a crystal grain of an alkaline earth metal titanate represented by A x ( MY Ti 8-Y ) O 16 ... [3] [where M is Mg, Zn, Fe , Al or Ga A is an alkali metal X = 0.5 to 3 Y = X / 2 (when M is a divalent element) = X (when M is a trivalent element)] Composite titanium compound powder consisting of composite particles combined with crystal grains.
成するチタン化合物,A2 Oまたは加熱によりA2 Oを
生成するアルカリ金属化合物、ROまたは加熱によりR
Oを生成するR元素化合物、およびMO* または加熱に
よりMO* 〔MO* はMOもしくはM2 O3 〕を生成す
るM元素化合物を、TiO2 /A2 O/RO/MO* の
モル比が、製造しようとする複合化合物粉末の結晶相の
量比に対応する量比となるように混合し、その混合粉末
を造粒し、温度1000〜1300℃で焼成処理するこ
とを特徴とする請求項1に記載の複合チタン化合物粉末
の製造方法。2. TiO 2 or a titanium compound which forms TiO 2 by heating, A 2 O or an alkali metal compound which forms A 2 O by heating, RO or R by heating or
An R element compound that generates O and an M element compound that generates MO * or MO * [MO * is MO or M 2 O 3 ] by heating are mixed with a TiO 2 / A 2 O / RO / MO * molar ratio. The mixture is mixed so as to have an amount ratio corresponding to the amount ratio of the crystal phase of the composite compound powder to be produced, and the mixed powder is granulated and fired at a temperature of 1000 to 1300 ° C. 2. The method for producing a composite titanium compound powder according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20158196A JP3537066B2 (en) | 1996-07-31 | 1996-07-31 | Composite titanium compound powder and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20158196A JP3537066B2 (en) | 1996-07-31 | 1996-07-31 | Composite titanium compound powder and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1045413A true JPH1045413A (en) | 1998-02-17 |
JP3537066B2 JP3537066B2 (en) | 2004-06-14 |
Family
ID=16443436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20158196A Expired - Fee Related JP3537066B2 (en) | 1996-07-31 | 1996-07-31 | Composite titanium compound powder and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3537066B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432187B1 (en) * | 1999-02-09 | 2002-08-13 | Otsuka Chemical Co., Ltd. | Friction material |
JP2008094643A (en) * | 2006-10-06 | 2008-04-24 | Kubota Corp | Composite titanium oxide compound and friction material containing its powder |
JP2008171621A (en) * | 2007-01-10 | 2008-07-24 | Konica Minolta Holdings Inc | Photoelectric conversion element, and dye-sensitized solar cell |
WO2008108197A1 (en) * | 2007-03-02 | 2008-09-12 | Otsuka Chemical Co., Ltd. | Titanate having alkali metal titanate bonded thereto, process for producing the same, and resin composition containing titanate having alkali metal titanate bonded thereto |
WO2012022027A1 (en) * | 2010-08-17 | 2012-02-23 | 南京钛威科技有限公司 | Copper-free ceramic friction material and preparation method thereof |
EP3130816A1 (en) * | 2015-04-27 | 2017-02-15 | Akebono Brake Industry Co., Ltd. | Friction material composition, friction material and production method thereof |
KR20200087209A (en) * | 2017-12-26 | 2020-07-20 | 가부시끼 가이샤 구보다 | Composite titanium acid compound, manufacturing method of composite titanium acid compound and friction material |
CN111819155A (en) * | 2018-03-13 | 2020-10-23 | 东邦钛株式会社 | Alkali metal titanate, method for producing alkali metal titanate, and friction material |
-
1996
- 1996-07-31 JP JP20158196A patent/JP3537066B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432187B1 (en) * | 1999-02-09 | 2002-08-13 | Otsuka Chemical Co., Ltd. | Friction material |
JP2008094643A (en) * | 2006-10-06 | 2008-04-24 | Kubota Corp | Composite titanium oxide compound and friction material containing its powder |
JP2008171621A (en) * | 2007-01-10 | 2008-07-24 | Konica Minolta Holdings Inc | Photoelectric conversion element, and dye-sensitized solar cell |
WO2008108197A1 (en) * | 2007-03-02 | 2008-09-12 | Otsuka Chemical Co., Ltd. | Titanate having alkali metal titanate bonded thereto, process for producing the same, and resin composition containing titanate having alkali metal titanate bonded thereto |
JP2008214124A (en) * | 2007-03-02 | 2008-09-18 | Otsuka Chemical Co Ltd | Titanic acid alkali metal salt-stuck titanate, its production method, and resin composition containing titanic acid alkali metal salt-stuck titanate |
WO2012022027A1 (en) * | 2010-08-17 | 2012-02-23 | 南京钛威科技有限公司 | Copper-free ceramic friction material and preparation method thereof |
EP3130816A1 (en) * | 2015-04-27 | 2017-02-15 | Akebono Brake Industry Co., Ltd. | Friction material composition, friction material and production method thereof |
US10323708B2 (en) | 2015-04-27 | 2019-06-18 | Akebono Brake Industry Co., Ltd. | Friction material composition, friction material and production method thereof |
KR20200087209A (en) * | 2017-12-26 | 2020-07-20 | 가부시끼 가이샤 구보다 | Composite titanium acid compound, manufacturing method of composite titanium acid compound and friction material |
CN111479779A (en) * | 2017-12-26 | 2020-07-31 | 株式会社久保田 | Composite titanate compound, method for producing composite titanate compound, and friction material |
EP3733605A4 (en) * | 2017-12-26 | 2021-09-22 | Kubota Corporation | Composite titanium oxide compound, composite titanium oxide compound production method, and friction material |
US11846336B2 (en) | 2017-12-26 | 2023-12-19 | Kubota Corporation | Complex titanate compound, method of preparing same, and friction material |
CN111819155A (en) * | 2018-03-13 | 2020-10-23 | 东邦钛株式会社 | Alkali metal titanate, method for producing alkali metal titanate, and friction material |
CN111819155B (en) * | 2018-03-13 | 2023-07-11 | 东邦钛株式会社 | Alkali titanate, process for producing alkali titanate, and friction material |
Also Published As
Publication number | Publication date |
---|---|
JP3537066B2 (en) | 2004-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6906090B2 (en) | Potassium titanate powder, friction adjuster, resin composition, friction material, and friction member | |
JP6030277B2 (en) | Porous titanate compound particles and method for producing the same | |
EP0834469B1 (en) | Powder of titanium compounds | |
JP3537066B2 (en) | Composite titanium compound powder and method for producing the same | |
KR101136602B1 (en) | Method for producing alkali titanate compound | |
JP3768018B2 (en) | Composite titanium compound powder and method for producing the same | |
US5962551A (en) | Powder of titanium compounds | |
JP2000178536A (en) | Friction material | |
WO2019176166A1 (en) | Alkali metal titanate, method for producing alkali metal titanate, and friction material | |
JP6765987B2 (en) | Titanate compound particles and their manufacturing methods, friction modifiers, resin compositions, friction materials, and friction members | |
JP5073262B2 (en) | Friction material containing composite titanic acid compound and powder thereof | |
JP3467577B2 (en) | Alkali metal titanate composite compound powder and method for producing the same | |
JPH10287424A (en) | Production of composite titanium compound | |
JPH10279924A (en) | Friction material for non-asbestos brake | |
WO2000066497A1 (en) | Method for preparing potassium octatitanate in particulate form | |
JP4144817B2 (en) | Method for producing potassium hexatitanate single crystal fiber | |
JP3393277B2 (en) | Spherical alkali hexatitanate powder and method for producing the same | |
JP3511558B2 (en) | Composite titanium compound powder for friction material and method for producing the same | |
JP2000264692A (en) | Friction material | |
KR102401686B1 (en) | Complex titanic acid compound, manufacturing method of complex titanic acid compound, and friction material | |
KR100229289B1 (en) | Titanium compound powder | |
JP2946032B2 (en) | Titanate whisker and method for producing the same | |
JPH11246678A (en) | Frictional material | |
JPH0940423A (en) | Alkali metal hexatitanate double compound powder and its production | |
JP2022042350A (en) | Composite oxide powder for brake pad, friction material composition for brake pad, and friction material for brake pad |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040312 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040312 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090326 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100326 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110326 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120326 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130326 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140326 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |