[go: up one dir, main page]

JPH1041262A - Cleaning method and method for manufacturing semiconductor device - Google Patents

Cleaning method and method for manufacturing semiconductor device

Info

Publication number
JPH1041262A
JPH1041262A JP19443496A JP19443496A JPH1041262A JP H1041262 A JPH1041262 A JP H1041262A JP 19443496 A JP19443496 A JP 19443496A JP 19443496 A JP19443496 A JP 19443496A JP H1041262 A JPH1041262 A JP H1041262A
Authority
JP
Japan
Prior art keywords
cleaning
solution
metal
dissolved
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19443496A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sugita
義博 杉田
Satoru Watanabe
渡辺  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19443496A priority Critical patent/JPH1041262A/en
Publication of JPH1041262A publication Critical patent/JPH1041262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

(57)【要約】 【課題】 金属配線を損傷することなく金属及び金属酸
化物・水酸化物からなる汚染を除去する。また,廃液処
理を容易にする。 【解決手段】 水素ガスを溶かした水又は水素ガスを溶
かした電解質水溶液を洗浄液とする。電解質水溶液とし
て,電界イオン水又は水素ガスを溶かした炭酸水溶液を
用いる。さらに,これらの洗浄液に酸素又は過酸化水素
を添加する。金属及びその化合物の溶解速度の比を,洗
浄液の酸化還元電位の調整により洗浄に最適に制御す
る。また中性又は弱酸の洗浄液でも効果的に洗浄できる
から,廃液処理が不要である。
(57) [Problem] To remove contamination composed of metal and metal oxide / hydroxide without damaging metal wiring. It also facilitates waste liquid treatment. SOLUTION: The cleaning solution is water in which hydrogen gas is dissolved or an aqueous electrolyte solution in which hydrogen gas is dissolved. As the electrolyte aqueous solution, a field ionized water or a carbonic acid aqueous solution in which hydrogen gas is dissolved is used. Further, oxygen or hydrogen peroxide is added to these cleaning solutions. The ratio of the dissolution rate of the metal and its compound is optimally controlled for cleaning by adjusting the oxidation-reduction potential of the cleaning solution. In addition, since a neutral or weak acid cleaning solution can be effectively cleaned, waste liquid treatment is unnecessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は被洗浄物表面に付着
した金属及びその化合物を除去する洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning method for removing metals and their compounds attached to the surface of an object to be cleaned.

【0002】被洗浄物表面に付着した金属及びその化合
物を含む汚染物質,例えば鉄,鉄酸化物及び鉄水酸化物
を含む汚染物質を洗浄して除去する工程は,半導体装置
の製造工程又は磁気ヘッドの製造,保守工程においてし
ばしば必要となる。
[0002] The step of cleaning and removing contaminants including metals and their compounds, for example, contaminants including iron, iron oxides and iron hydroxides, adhered to the surface of an object to be cleaned is performed by a semiconductor device manufacturing process or a magnetic process. It is often required in head manufacturing and maintenance processes.

【0003】かかる洗浄工程では,被洗浄物表面に形成
された微細配線又は金属薄膜を腐蝕して損傷することな
く,被洗浄物表面に付着する金属及び金属化合物を除去
する必要がある。また,洗浄液は容易に廃液処理できる
ことが望まれる。
In such a cleaning step, it is necessary to remove metals and metal compounds adhering to the surface of the object to be cleaned without corroding and damaging the fine wiring or metal thin film formed on the surface of the object to be cleaned. Further, it is desired that the cleaning liquid can be easily treated for waste liquid.

【0004】このため,汚染金属及び汚染金属酸化物を
除去する洗浄方法において,金属薄膜の腐蝕が小さくか
つ洗浄液の廃液処理が容易な方法が要望されている。
[0004] Therefore, in a cleaning method for removing contaminating metals and contaminant metal oxides, there is a demand for a method in which the corrosion of the metal thin film is small and the treatment of the waste liquid of the cleaning liquid is easy.

【0005】[0005]

【従来の技術】半導体装置の製造工程では,被洗浄物表
面,例えば半導体基板の表面をアンモニア・過酸化水素
混液等の酸化剤により洗浄する工程が広く用いられてい
る。ところが,酸化剤によって金属汚染物質,例えば鉄
及びその化合物による汚染を除去することはできない。
このため,従来は金属汚染を除去するために強酸を用い
た酸洗浄工程を追加することが一般的である。
2. Description of the Related Art In a semiconductor device manufacturing process, a process of cleaning a surface of an object to be cleaned, for example, a surface of a semiconductor substrate, with an oxidizing agent such as a mixed solution of ammonia and hydrogen peroxide is widely used. However, oxidizing agents cannot remove metal contaminants such as iron and its compounds.
For this reason, conventionally, it is common to add an acid cleaning step using a strong acid in order to remove metal contamination.

【0006】しかし,被洗浄物表面に金属配線又は金属
薄膜が形成されている場合,配線及び薄膜が酸洗浄によ
り腐蝕され損傷するため,かかる金属配線又は金属薄膜
が形成されている被洗浄物を酸洗浄することはできな
い。また,強酸による洗浄方法では,酸性洗浄液の廃液
処理に高価な設備を要する。さらに,酸洗浄後の水洗に
おいて金属配線及び金属薄膜の表面が酸化し,その後の
処理に支障をきたす場合があった。酸洗浄を用いる他
に,電気分解により金属汚染を除去する手段もあるが,
電極上にない汚染物質は除去されないため利用分野は著
しく制限されてしまう。
However, when a metal wiring or a metal thin film is formed on the surface of an object to be cleaned, the wiring and the thin film are corroded and damaged by acid cleaning, and the object to be cleaned on which the metal wiring or the metal thin film is formed is removed. It cannot be acid washed. Further, in the cleaning method using a strong acid, expensive equipment is required for treating the waste liquid of the acidic cleaning liquid. In addition, the surface of the metal wiring and the metal thin film is oxidized in the water washing after the acid washing, which may hinder the subsequent processing. In addition to using acid cleaning, there is also a means to remove metal contamination by electrolysis.
The field of application is severely limited because contaminants not on the electrodes are not removed.

【0007】同様の問題は,磁気ヘッドの金属薄膜の表
面に生成した金属酸化物を除去する場合にも生ずる。磁
気ヘッドでは鉄又は鉄合金の薄膜が大気中に暴露されて
いるため,その表面に形成された金属酸化物を除去する
必要がある。このとき,強酸による酸洗浄は金属薄膜を
エッチングするため用いることができないので,効果的
に磁気ヘッドの金属酸化物を洗浄して除去することは困
難であった。
[0007] A similar problem also occurs when removing the metal oxide generated on the surface of the metal thin film of the magnetic head. In a magnetic head, since a thin film of iron or an iron alloy is exposed to the atmosphere, it is necessary to remove metal oxides formed on the surface. At this time, acid cleaning with a strong acid cannot be used because the metal thin film is etched, so that it has been difficult to effectively clean and remove the metal oxide of the magnetic head.

【0008】[0008]

【発明が解決しようとする課題】上述したように,従来
の強酸を用いて金属汚染を除去する洗浄方法では,被洗
浄物表面に形成された金属配線又は金属薄膜が腐蝕され
損傷するという問題があった。また,酸洗浄後の水洗工
程で金属配線又は金属薄膜の表面が酸化するという問題
がある。さらに,強酸からなる酸洗浄液の廃液処理を要
するという欠点がある。
As described above, the conventional cleaning method for removing metal contamination by using a strong acid has a problem that a metal wiring or a metal thin film formed on the surface of an object to be cleaned is corroded and damaged. there were. In addition, there is a problem that the surface of the metal wiring or the metal thin film is oxidized in the water washing step after the acid washing. Further, there is a disadvantage that it is necessary to treat an acid cleaning solution composed of a strong acid as a waste liquid.

【0009】本発明は,純水又は電解質水容液に水素ガ
スを溶かすことにより,酸化還元電位を金属の腐蝕が生
ずる電位に保持することで金属,金属酸化物及び金属水
酸化物を水に可溶として除去するもので,金属配線及び
金属薄膜の腐蝕が少なく,かつ金属汚染,金属酸化物汚
染及び金属水酸化物汚染を効果的に除去する洗浄方法を
提供することを目的とする。さらに加えて洗浄液の廃液
処理が容易な洗浄方法を提供することを目的とする。
The present invention maintains a redox potential at a potential at which metal corrosion occurs by dissolving hydrogen gas in pure water or an aqueous electrolyte solution to convert metals, metal oxides and metal hydroxides into water. It is an object of the present invention to provide a cleaning method that removes as soluble, reduces corrosion of metal wiring and metal thin film, and effectively removes metal contamination, metal oxide contamination and metal hydroxide contamination. It is still another object of the present invention to provide a cleaning method that facilitates waste liquid treatment of a cleaning liquid.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明の第一の構成の洗浄方法は,水素ガスを溶かし
た水又は水素ガスを溶かした電解質水溶液を洗浄液とし
て構成し,及び,第二の構成は,第一の構成の洗浄方法
において,該水溶液のPHを9以下としたことを特徴と
して構成し,及び,第三の構成の洗浄方法は,水素ガス
を溶かした電界イオン水又は水素ガスを溶かした炭酸水
溶液を洗浄液として構成し,及び,第四の構成は,第
一,第二又は第三の構成の洗浄方法において,該洗浄液
に過酸化水素を添加したことを特徴として構成し,及
び,第五の構成は,第一,第二又は第三の構成の洗浄方
法において,該洗浄液に酸素ガスを溶かしたことを特徴
として構成し,及び,第六の構成の半導体装置の製造方
法は,第一,第二,第三,第四又は第五の構成の洗浄方
法を用いて半導体基板を洗浄する工程を有することを特
徴として構成する。
According to a first aspect of the present invention, there is provided a cleaning method comprising the steps of: forming a cleaning solution using water in which hydrogen gas is dissolved or an aqueous electrolyte solution in which hydrogen gas is dissolved; The second configuration is characterized in that the pH of the aqueous solution is set to 9 or less in the cleaning method of the first configuration, and the cleaning method of the third configuration is characterized in that a hydrogen gas-dissolved electric field ionized water is used. Alternatively, a cleaning solution is constituted by an aqueous solution of carbon dioxide in which hydrogen gas is dissolved, and a fourth configuration is characterized in that hydrogen peroxide is added to the cleaning solution in the cleaning method of the first, second or third configuration. A fifth aspect of the present invention is the cleaning method according to the first, second, or third aspect, characterized in that oxygen gas is dissolved in the cleaning solution, and the semiconductor device has a sixth aspect. The manufacturing methods of , Configured as further comprising a step of cleaning the semiconductor substrate using the cleaning method of the fourth or fifth configuration.

【0011】本発明の発明者は,金属元素を含む表面汚
染物質の洗浄方法について鋭意研究を続けた結果,水又
は電解質水溶液に水素ガスを溶かした洗浄液が,金属配
線及び金属薄膜の腐蝕が小さい一方,金属汚染,金属酸
化物及び金属水酸化物汚染を効果的に除去することを実
験により明らかにした。本発明はかかる事実に基づいて
なされた。なお,水素ガスを溶かした水溶液が,汚染金
属及び汚染酸化物を効果的に除去する理由は,酸化還元
電位の見地から次のように説明される。
The inventor of the present invention has conducted intensive research on a method for cleaning surface contaminants including metal elements. As a result, the cleaning solution obtained by dissolving hydrogen gas in water or an aqueous electrolyte solution has a low corrosion of metal wiring and metal thin films. On the other hand, it was clarified by experiments that metal contamination, metal oxide and metal hydroxide contamination were effectively removed. The present invention has been made based on this fact. The reason why the aqueous solution in which hydrogen gas is dissolved effectively removes polluting metals and polluting oxides is explained as follows from the viewpoint of oxidation-reduction potential.

【0012】図1は鉄─鉄酸化物のPH─酸化還元電位
図であり,図1(a)はFe2 3からなる不動態膜を
含む系を, 図1(b)はFe2 3 及びFe3 4 から
なる不動態膜を含む系を表している。図2は鉄─鉄水酸
化物のPH─酸化還元電位図であり,Fe(OH)3
びFe(OH)2 を含む系を表している。なお,酸化還
元電位は標準水素電極に対する電位で表示している。ま
た,水の電気分解による酸素発生反応及び水素発生反応
を起こす電位を,それぞれ図1中に点線a及び点線bで
表している。これらのPH─酸化還元電位図は,プール
ベダイアグラムとして周知のものである。
[0012] Figure 1 is a PH─ redox potential diagram of iron ─ iron oxide, the system comprising a passivation film consisting of 1 (a) is Fe 2 O 3, FIG. 1 (b) Fe 2 O 3 shows a system including a passivation film made of 3 and Fe 3 O 4 . FIG. 2 is a diagram showing the PH-oxidation-reduction potential of iron-iron hydroxide, and shows a system containing Fe (OH) 3 and Fe (OH) 2 . Note that the oxidation-reduction potential is represented by a potential with respect to a standard hydrogen electrode. The potentials at which the oxygen generation reaction and the hydrogen generation reaction by water electrolysis occur are indicated by dotted lines a and b in FIG. 1, respectively. These PH─ redox potential diagrams are well known as Pourbaix diagrams.

【0013】図1及び図2を参照して,鉄の酸化・還元
反応はPHと酸化還元電位により,不溶(immunity) 領
域イ,不動態(passivation)領域ロ及び腐蝕(corrosio
n) 領域ハに分類される。なお,Fe3 4 が存在する
系では,不動態領域ロの不溶領域イに接する領域が一部
Fe3 4 が形成される領域ニとなる。同様に, Fe
(OH)3 とFe(OH)2 とが存在する系では, 不動
態領域ロの不溶領域イに接する領域が一部Fe(OH)
2 が形成される領域ホとなる。鉄の腐蝕領域ハは,鉄─
鉄酸化鉄系ではPH10〜PH14の範囲で又鉄─鉄水
酸化物系ではPH9〜PH12の範囲で存在せず,その
両側の低PH及び高PHの領域に,水素発生反応を起こ
す電位aに沿う狭い酸化還元電位の範囲で楔形の領域と
して存在する。なお,PH2以下では広い酸化還元電位
の範囲において腐蝕領域が存在するため,強酸により鉄
又は鉄酸化物若しくは鉄水酸化物は溶解される。周知の
ように鉄が溶解するには,PH及び酸化還元電位が腐蝕
領域になければならず,また,不溶領域イ及び不動態領
域ロとの境界から離れるほど,それぞれ鉄酸化物,鉄水
酸化物及び鉄の溶解が容易になる。
Referring to FIGS. 1 and 2, the iron oxidation / reduction reaction depends on the pH and the redox potential depending on the immunity region (a), the passivation region (b) and the corrosion (corrosio) region.
n) Classified as region c. In the system where Fe 3 O 4 is present, a region in contact with the insoluble region A of the passive region B is a region D in which a part of Fe 3 O 4 is formed. Similarly , Fe
(OH) 3 and Fe (OH) in a system 2 and is present, the area in contact with the insoluble region Lee passivation region Russia some Fe (OH)
The area e where 2 is formed. The corrosion area of iron is iron.
In the iron iron oxide system, it does not exist in the range of PH10 to PH14, and in the iron-iron hydroxide system, it does not exist in the range of PH9 to PH12. It exists as a wedge-shaped region in a narrow range of oxidation-reduction potential along. At PH2 or less, since a corrosion region exists in a wide range of oxidation-reduction potential, iron, iron oxide or iron hydroxide is dissolved by the strong acid. As is well known, in order for iron to dissolve, the pH and redox potential must be in the corrosive region, and the further away from the boundary between the insoluble region a and the passive region b, iron oxide and iron hydroxide Dissolution of the material and iron is facilitated.

【0014】本発明の第一の構成では,水素ガスを溶か
した水又は水素ガスを溶かした電解質水溶液を洗浄液と
して使用する。水素ガスを溶かすことにより,洗浄液
は,図1を参照して,酸化還元電位は水素発生反応を起
こす電位aに近くなる。このため,この洗浄液はPHが
中性に近い範囲でも容易に鉄の腐蝕領域ハに入る。従っ
て,水素ガスを溶かした水又は水溶液は,中性に近くか
つ鉄及び鉄酸化物を溶解する洗浄液となる。かかる洗浄
液は中性に近くかつ不溶領域イに近いため,金属の溶解
速度は遅く,洗浄により被洗浄物表面に形成された金属
配線及び金属薄膜を損傷するには至らない。しかし,表
面積の大きな鉄微粒子は容易に溶解され,除去される。
なお,鉄酸化物及び鉄水酸化物を除去するには,不動態
領域ロから離れる条件が好ましく,この観点から水素ガ
スは飽和に近いことが望ましい。
In the first configuration of the present invention, water in which hydrogen gas is dissolved or an aqueous electrolyte solution in which hydrogen gas is dissolved is used as a cleaning liquid. By dissolving the hydrogen gas, the oxidation-reduction potential of the cleaning liquid becomes close to the potential a at which the hydrogen generation reaction occurs, referring to FIG. For this reason, this cleaning solution easily enters the corroded area of iron even when the pH is near neutral. Therefore, water or an aqueous solution in which hydrogen gas is dissolved becomes a cleaning solution which is nearly neutral and dissolves iron and iron oxides. Since such a cleaning solution is close to neutral and close to the insoluble region, the metal dissolution rate is low, and the metal wiring and the metal thin film formed on the surface of the object to be cleaned by the cleaning are not damaged. However, iron fine particles having a large surface area are easily dissolved and removed.
In order to remove iron oxides and iron hydroxides, it is preferable that the conditions be away from the passive region b. From this viewpoint, it is desirable that the hydrogen gas is close to saturation.

【0015】本構成では,汚染除去のエッチング作用と
エッチング後の水洗工程とは,同一の洗浄液でなされ
る。従って,水洗中も酸化還元電位は腐蝕領域ハ内にあ
り,被洗浄物表面の金属配線及び金属薄膜の表面に酸化
物又は水酸化物が形成されない。このため,通常の水洗
による場合のように,金属配線,薄膜の表面に不動態膜
が形成されるという事態は起こらない。
In this configuration, the etching action for removing contamination and the washing step after etching are performed with the same cleaning liquid. Therefore, even during the washing with water, the oxidation-reduction potential is in the corroded region C, and no oxide or hydroxide is formed on the surface of the metal wiring and the metal thin film on the surface of the object to be washed. For this reason, a situation in which a passivation film is formed on the surface of a metal wiring or a thin film as in the case of ordinary water washing does not occur.

【0016】勿論,被洗浄物表面の配線又は薄膜の損傷
が問題にされない場合は,本発明に係る洗浄液を,強酸
又は強アルカリとすることもできる。この場合でも,水
素ガスの溶解により,酸化物及び水酸化物と鉄との溶解
速度の比を制御することで,金属配線を損傷することな
く鉄,鉄酸化物及び鉄水酸化物からなる汚染を除去する
に最適な洗浄条件を選択することができる。また,酸洗
浄後の水洗工程に水素ガスをとかした水又は水溶液を使
用して,水洗時の不動態膜の形成を防止することもでき
る。
Of course, if the damage of the wiring or thin film on the surface of the object to be cleaned is not a problem, the cleaning solution according to the present invention can be a strong acid or strong alkali. Even in this case, by controlling the dissolution rate ratio of oxides and hydroxides to iron by dissolving hydrogen gas, contamination of iron, iron oxides and iron hydroxides without damaging metal wiring Optimum washing conditions can be selected to remove the water. In addition, the use of water or an aqueous solution in which hydrogen gas is dissolved in the water washing step after the acid washing can prevent the formation of a passive film during the water washing.

【0017】本発明において,水は,半導体工業に使用
される高純度,高電気抵抗のいわゆる純水を用いること
ができる。また,洗浄に支障がなければ中性の非電解質
水溶液を使用することもできる。また,電解質水溶液
は,廃液処理が容易でかつ金属配線及び金属薄膜の損傷
が小さな弱酸,例えば炭酸水溶液,電解イオン水とする
ことが好ましい。かかる構成では,強酸又は強アルカリ
を使用することなく金属汚染を洗浄,除去することがで
きるから,洗浄液の廃液処理は不要又は容易である。ま
た,中性の水よりも酸性になるから,汚染の溶解がより
容易である。
In the present invention, so-called pure water having high purity and high electric resistance used in the semiconductor industry can be used. In addition, a neutral non-electrolyte aqueous solution can be used if it does not hinder the cleaning. The electrolyte aqueous solution is preferably a weak acid which is easy to treat waste liquid and has little damage to the metal wiring and the metal thin film, for example, a carbonic acid aqueous solution and electrolytic ion water. In such a configuration, metal contamination can be washed and removed without using a strong acid or strong alkali, so that waste liquid treatment of the washing liquid is unnecessary or easy. Also, because it is more acidic than neutral water, it is easier to dissolve the contamination.

【0018】本発明の第二の構成では,第一の構成の洗
浄方法において,水溶液即ち洗浄液のPHを9以下とす
る。かかる範囲では,水素ガスを飽和させることで確実
に鉄汚染を洗浄,除去することができる。なお,以上の
説明は鉄についてのものであるが,上記の構成の洗浄液
は,PH─酸化還元電位図の中で鉄と同様の領域を有す
るニッケル,コバルト及びマンガンについても鉄につい
ての効果と同様の効果を奏する。
According to a second aspect of the present invention, in the cleaning method of the first aspect, the pH of the aqueous solution, ie, the cleaning liquid, is 9 or less. In this range, iron contamination can be reliably washed and removed by saturating the hydrogen gas. Although the above description is for iron, the cleaning liquid having the above-described structure has the same effect on nickel, cobalt, and manganese having the same region as iron in the PH─ redox potential diagram. Has the effect of

【0019】図3はニッケル−酸化物・水酸化物のPH
─酸化還元電位図である。図4は鉛─酸化物のPH─還
元電位図である。図3及び図4中のイ,ロ及びハは,そ
れぞれ図1の不溶領域イ,不動態領域ロ及び腐蝕領域ハ
に対応している。なお,不動態領域ロは不溶領域イに接
する領域へ,トにおいて,ニッケル水酸化物及び一酸化
鉛が安定に存在し,その他の不動態領域ロでは酸化ニッ
ケル及び二酸化鉛が安定に存在する。
FIG. 3 shows the pH of nickel oxide / hydroxide.
─ It is an oxidation-reduction potential diagram. FIG. 4 is a diagram showing a PH reduction potential of lead oxide. A, B, and C in FIGS. 3 and 4 correspond to the insoluble region A, the passive region B, and the corrosion region C in FIG. 1, respectively. In the passivation region (b), nickel hydroxide and lead monoxide are stably present in the region in contact with the insoluble region (a), and in the other passive region (b), nickel oxide and lead dioxide are stably present.

【0020】図2を参照して,この種の金属では,鉄と
同様に中性域で楔状に酸化還元電位の範囲が楔状に狭く
なる腐蝕領域ハを形成するが,その酸化還元電位の中心
は水素発生反応を起こす電位aと酸素分解反応を起こす
電位bとの中間にある。従って,かかる金属及び酸化物
の汚染を効果的に洗浄するには,水素濃度を制御して酸
化還元電位を適切に保持する必要がある。即ち,水素濃
度が高く酸化還元電位が低くては金属が溶解せず,他
方,水素濃度が低くては酸化還元電位が高くなり不動態
領域ロで安定な酸化物間又は水酸化物が溶解しない。
Referring to FIG. 2, in the case of this type of metal, similarly to iron, a corrosion region C in which the range of the oxidation-reduction potential is narrowed like a wedge in a neutral region is formed. Is between a potential a for causing a hydrogen generation reaction and a potential b for causing an oxygen decomposition reaction. Therefore, in order to effectively clean such metal and oxide contaminations, it is necessary to control the hydrogen concentration and appropriately maintain the oxidation-reduction potential. That is, if the hydrogen concentration is high and the oxidation-reduction potential is low, the metal will not be dissolved, while if the hydrogen concentration is low, the oxidation-reduction potential will be high and the stable oxides or hydroxides will not be dissolved in the passive region b. .

【0021】本発明の第四及び第五の構成では,上述し
た水素ガスを溶かした水又は水溶液に,さらに過酸化水
素を添加し又は酸素ガスを溶かす。過酸化水素又は酸素
ガスを溶解することにより,水素ガスが溶けて−側に変
化した酸化還元電位が+側に引き戻される。水素ガスは
容易に飽和するため水素濃度を制御して酸化還元電位を
調整することは難しい。しかし,水素ガスを多量に溶か
した洗浄液に酸化剤を添加して酸化還元電位を調整する
ことは容易である。従って,酸化還元電位を洗浄液のP
Hに応じて容易に調整できるから,図3及び図4に示す
ような腐蝕領域ハが水素発生反応を起こす電位aと酸素
分解反応を起こす電位bとの中間にあり,水素ガスを飽
和した洗浄液では適切な酸化還元電位が得られない金属
に対しても,適切な洗浄がなされる。なお,溶液として
安定に存在する過酸化水素を用いる方が,制御がより確
実である。
In the fourth and fifth configurations of the present invention, hydrogen peroxide is added to the above-mentioned water or aqueous solution in which hydrogen gas is dissolved, or oxygen gas is dissolved. By dissolving the hydrogen peroxide or the oxygen gas, the redox potential changed to the negative side by dissolving the hydrogen gas is returned to the positive side. Since hydrogen gas is easily saturated, it is difficult to adjust the oxidation-reduction potential by controlling the hydrogen concentration. However, it is easy to adjust the oxidation-reduction potential by adding an oxidizing agent to a cleaning solution in which a large amount of hydrogen gas is dissolved. Therefore, the oxidation-reduction potential is set to P
Since it can be easily adjusted according to H, the corrosive region C as shown in FIGS. 3 and 4 is located between the potential a for causing the hydrogen generation reaction and the potential b for causing the oxygen decomposition reaction, and the cleaning solution saturated with hydrogen gas. In this case, appropriate cleaning is performed even for metals for which an appropriate oxidation-reduction potential cannot be obtained. Note that control is more reliable when using hydrogen peroxide that is stably present as a solution.

【0022】上述した第一〜第五の構成の洗浄方法を,
金属の配線又は薄膜が形成された半導体ウエーハの洗浄
に利用することで,半導体装置を損傷することなく金属
汚染を除去することができる。従って信頼性の高い半導
体装置の製造方法が提供される。
The above-described cleaning methods of the first to fifth constitutions are
By utilizing the present invention for cleaning a semiconductor wafer on which metal wiring or a thin film is formed, metal contamination can be removed without damaging the semiconductor device. Therefore, a highly reliable method for manufacturing a semiconductor device is provided.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1)洗浄装置 図5は本発明の実施形態例洗浄装置概念図であり,本発
明の実施形態例で使用された洗浄装置を表している。こ
の洗浄装置は,図5を参照して,洗浄液を製造する部分
とスピン洗浄装置とを含む。洗浄液を製造する部分は,
混合装置1,水素注入装置2及び加熱装置3とを配水管
6で接続して構成される。
(1) Cleaning Device FIG. 5 is a conceptual diagram of a cleaning device according to an embodiment of the present invention, and shows the cleaning device used in the embodiment of the present invention. Referring to FIG. 5, the cleaning apparatus includes a part for producing a cleaning liquid and a spin cleaning apparatus. The part that produces the cleaning solution
The mixer 1, the hydrogen injector 2, and the heater 3 are connected by a water pipe 6.

【0024】配水管6の先端に設けられた給水口6aか
ら供給された純水又は電解質水溶液は,バルブV1,V
1a及びV1bの開閉操作により混合装置1を通るか否
かが選択される。同様に,バルブV2,V2a及びV2
bの開閉操作により水素注入装置2を通るか否かが選択
され,また,バルブV3,V3a及びV3bの開閉操作
により加熱装置3を通るか否かが選択される。混合装置
1は,純水又は電解質水溶液に過酸化水素水を加え,攪
拌混合する。水素注入装置2は,タンク内に満たした純
粋又は電解質水溶液に水素ガスをバブリングして水素ガ
スを溶かす。通常はバブリングにより純粋又は電解質水
溶液の水素濃度は飽和する。加熱装置3は,純粋又は電
解質水溶液を加熱し所定の温度とする。給水口6aから
供給された純水又は電解質水溶液は,水素注入装置2,
並びに必要により混合装置1又は加熱装置3の何れか又
は双方を通り,洗浄液へと変換される。
Pure water or an aqueous electrolyte solution supplied from a water supply port 6a provided at the end of the water distribution pipe 6 is supplied to the valves V1 and V1.
Whether to pass through the mixing device 1 is selected by opening and closing operations of 1a and V1b. Similarly, valves V2, V2a and V2
Whether or not to pass through the hydrogen injector 2 is selected by the opening and closing operation of b, and whether or not to pass through the heating device 3 is selected by opening and closing of the valves V3, V3a and V3b. The mixing device 1 adds a hydrogen peroxide solution to pure water or an aqueous electrolyte solution, and mixes with stirring. The hydrogen injector 2 dissolves the hydrogen gas by bubbling the hydrogen gas into the pure or electrolyte aqueous solution filled in the tank. Usually, the hydrogen concentration of the pure or aqueous electrolyte solution is saturated by bubbling. The heating device 3 heats the pure or electrolyte aqueous solution to a predetermined temperature. The pure water or the aqueous electrolyte solution supplied from the water supply port 6a is supplied to the hydrogen injection device 2,
In addition, it is converted into a cleaning liquid through one or both of the mixing device 1 and the heating device 3 as necessary.

【0025】スピン洗浄装置4は,水平面内で回転する
支持台上に被洗浄物であるウエーハ7を支持し,配水管
6後端に設けられウエーハ7上に開口する吐出口6bか
ら洗浄液を吐出し,ウエーハ7表面を洗浄する。かかる
スピン洗浄装置は従来の洗浄装置と同様である。 (2)洗浄効果確認試験 (実施例1)実施例1は,純水に水素を溶かした洗浄液
を用いた例である。流量10リットル/分の純水に, 水
素注入装置を用いて水素ガスを溶かして洗浄液とした。
水素ガスの流量を10〜100sccmとしたとき, 洗浄液
のPHは7,標準水素電極に対する洗浄液の酸化還元電
位は−300mV〜−400mVであった。
The spin cleaning device 4 supports a wafer 7 to be cleaned on a support table rotating in a horizontal plane, and discharges a cleaning liquid from a discharge port 6b provided at the rear end of the water distribution pipe 6 and opening on the wafer 7. Then, the surface of the wafer 7 is cleaned. Such a spin cleaning device is the same as a conventional cleaning device. (2) Cleaning Effect Confirmation Test (Example 1) Example 1 is an example using a cleaning solution in which hydrogen is dissolved in pure water. Hydrogen gas was dissolved in pure water at a flow rate of 10 liters / minute using a hydrogen injection device to obtain a cleaning solution.
When the flow rate of the hydrogen gas was 10 to 100 sccm, the pH of the cleaning solution was 7, and the oxidation-reduction potential of the cleaning solution with respect to the standard hydrogen electrode was -300 mV to -400 mV.

【0026】この洗浄液によりスピン洗浄装置4を用い
て10分間シリコンウエーハを洗浄し,洗浄前後のFe
汚染のウエーハ表面濃度の変化を測定した。その結果,
ウエーハ表面の鉄汚染は,洗浄前の2×1013原子/cm
2 から測定限界である1×1010原子/cm2 以下まで除
去された。この鉄汚染の測定は,全反射蛍光X線装置に
よりなされた。別に,表面に鉄薄膜,Al薄膜及び銅薄
膜から成るパターンが形成されたシリコンウエーハを同
一条件で洗浄した結果,薄膜表面の不動態膜の形成は顕
微鏡下で観測されず,また薄膜の膜厚の変化も観測され
なかった。
The silicon wafer is cleaned with the cleaning liquid for 10 minutes using the spin cleaning apparatus 4 and the Fe wafer before and after cleaning is cleaned.
The change in wafer surface concentration of contamination was measured. as a result,
Iron contamination on the wafer surface is 2 × 10 13 atoms / cm before cleaning.
2 to a measurement limit of 1 × 10 10 atoms / cm 2 or less. The measurement of the iron contamination was performed by a total reflection X-ray fluorescence apparatus. Separately, as a result of cleaning a silicon wafer on the surface of which a pattern composed of an iron thin film, an Al thin film and a copper thin film was formed under the same conditions, the formation of a passivation film on the thin film surface was not observed under a microscope, and the thickness of the thin film was No change was observed.

【0027】さらに,上記の実施例1の洗浄液を加熱装
置で60℃に加熱してシリコンウエーハを洗浄した。こ
のときの洗浄液中の水素濃度は30ppb であった。洗浄
結果は, 上述の実施例1と同様であった。 (実施例2)実施例2は,電解質水溶液を用いた例であ
る。純水に炭酸ガスをバブリングして炭酸ガスを溶解
し,略PH5.5の電解質水溶液とした。この電解質水
溶液を実施例1の純水に代えて用い,水素ガスをバブリ
ングさせて洗浄液とし,この洗浄液によりシリコンウエ
ーハを洗浄した。バブリング,洗浄の条件は実施例1と
同様である。その結果は実施例1と同様であった。 (実施例3)実施例3は,過酸化水素水を添加した例で
ある。流量10リットル/分の純粋に混合装置1を用い
て30%過酸化水素水を混合し,H2 2 濃度が0.0
1〜1.0g/リットルの過酸化水素水溶液を製造す
る。次いで,水素ガスをバブリングして飽和させ洗浄液
とし,スピン洗浄装置4を用いてシリコンウエーハを洗
浄した。その結果,Fe及びNi汚染の残留表面濃度は
測定限界以下であった。 (実施例4)実施例3の過酸化水素水に代えて酸素ガス
を溶かした例である。予め抜気して溶存酸素濃度を下げ
た純水に,水素ガスをバブリングして飽和近くまで溶か
す。次いで,酸化還元電位を測定しつつ,酸化還元電位
が0.2Vになるまで酸素を溶かして洗浄液とした。実
施例3と同様にシリコンウエーハを洗浄したところ,F
e及びNi汚染について実施例3と同様の結果を得た。
Further, the cleaning liquid of Example 1 was heated to 60 ° C. by a heating device to clean the silicon wafer. At this time, the hydrogen concentration in the cleaning solution was 30 ppb. The cleaning results were the same as in Example 1 described above. (Embodiment 2) Embodiment 2 is an example using an aqueous electrolyte solution. Carbon dioxide was bubbled into pure water to dissolve the carbon dioxide, thereby obtaining an aqueous electrolyte solution having a pH of about 5.5. This aqueous electrolyte solution was used in place of the pure water of Example 1, and hydrogen gas was bubbled into a cleaning solution to clean the silicon wafer with the cleaning solution. The conditions of bubbling and washing are the same as in the first embodiment. The results were the same as in Example 1. (Embodiment 3) Embodiment 3 is an example in which a hydrogen peroxide solution is added. A 30% hydrogen peroxide solution was mixed using a pure mixing apparatus 1 at a flow rate of 10 liter / min, and the H 2 O 2 concentration was 0.0
An aqueous hydrogen peroxide solution of 1 to 1.0 g / liter is produced. Next, hydrogen gas was bubbled and saturated to obtain a cleaning solution, and the silicon wafer was cleaned using the spin cleaning device 4. As a result, the residual surface concentration of Fe and Ni contamination was below the measurement limit. (Embodiment 4) This is an example in which oxygen gas is dissolved in place of the hydrogen peroxide solution of Embodiment 3. Hydrogen gas is bubbled into pure water that has been previously degassed to reduce the dissolved oxygen concentration, and is dissolved to near saturation. Next, while measuring the oxidation-reduction potential, oxygen was dissolved until the oxidation-reduction potential reached 0.2 V to obtain a cleaning solution. When the silicon wafer was cleaned in the same manner as in Example 3, F
The same results as in Example 3 were obtained for e and Ni contamination.

【0028】[0028]

【発明の効果】本発明によれば,洗浄液に水素ガスを溶
かすことにより洗浄液の酸化還元電位を洗浄に適した電
位に調整することができるので,金属配線及び金属薄膜
を損傷することなく金属,金属水酸化物及び金属酸化物
からなる汚染を効果的に除去する洗浄方法を提供するこ
とができる。
According to the present invention, the oxidation-reduction potential of the cleaning solution can be adjusted to a potential suitable for cleaning by dissolving hydrogen gas in the cleaning solution. It is possible to provide a cleaning method for effectively removing metal hydroxide and metal oxide contamination.

【0029】さらに,水又は弱酸の水溶液に水素ガスを
溶かした洗浄液を用いることで,配水処理が容易な金
属,金属水酸化物及び金属酸化物からなる汚染の洗浄方
法を提供することができる。
Further, by using a cleaning solution obtained by dissolving hydrogen gas in water or an aqueous solution of a weak acid, it is possible to provide a method for cleaning contamination of metals, metal hydroxides and metal oxides, which is easy to distribute water.

【0030】このため,半導体装置の製造及び電子機器
の製造,保守において信頼性の向上及び設備の削減に寄
与するところがおおきい。
For this reason, it greatly contributes to the improvement of reliability and the reduction of equipment in the manufacture of semiconductor devices and the manufacture and maintenance of electronic equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鉄─鉄酸化物のPH−酸化還元電位図FIG. 1 PH-redox potential diagram of iron-iron oxide

【図2】 鉄─鉄水酸化物のPH−酸化還元電位図FIG. 2 PH-redox potential diagram of iron-iron hydroxide

【図3】 ニッケル─酸化物・水酸化物のPH−酸化還
元電位図
FIG. 3 PH-redox potential diagram of nickel oxide / hydroxide

【図4】 鉛─酸化物のPH−酸化還元電位図FIG. 4 PH-redox potential diagram of lead oxide

【図5】 本発明の実施形態例洗浄装置概念図FIG. 5 is a conceptual diagram of a cleaning apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 混合装置 2 水素注入装置 3 加熱装置 4 スピン洗浄装置 6 配水管 7 ウエーハ 8 支持台 DESCRIPTION OF SYMBOLS 1 Mixing device 2 Hydrogen injection device 3 Heating device 4 Spin washing device 6 Water distribution pipe 7 Wafer 8 Support base

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素ガスを溶かした水又は水素ガスを溶
かした電解質水溶液を洗浄液とする洗浄方法。
1. A cleaning method using water in which hydrogen gas is dissolved or an aqueous electrolyte solution in which hydrogen gas is dissolved as a cleaning liquid.
【請求項2】 請求項1記載の洗浄方法において,該水
溶液のPHを9以下としたことを特徴とする洗浄方法。
2. The cleaning method according to claim 1, wherein the pH of the aqueous solution is 9 or less.
【請求項3】 水素ガスを溶かした電界イオン水又は水
素ガスを溶かした炭酸水溶液を洗浄液とする洗浄方法。
3. A cleaning method using a field ionized water in which hydrogen gas is dissolved or an aqueous solution of carbonic acid in which hydrogen gas is dissolved as a cleaning liquid.
【請求項4】 請求項1,2又は3記載の洗浄方法にお
いて,該洗浄液に過酸化水素を添加したことを特徴とす
る洗浄方法。
4. The cleaning method according to claim 1, wherein hydrogen peroxide is added to said cleaning liquid.
【請求項5】 請求項1,2又は3記載の洗浄方法にお
いて,該洗浄液に酸素ガスを溶かしたことを特徴とする
洗浄方法。
5. The cleaning method according to claim 1, wherein oxygen gas is dissolved in said cleaning liquid.
【請求項6】 請求項1,2,3,4又は5記載の洗浄
方法を用いて半導体基板を洗浄する工程を有することを
特徴とする半導体装置の製造方法。
6. A method for manufacturing a semiconductor device, comprising a step of cleaning a semiconductor substrate using the cleaning method according to claim 1, 2, 3, 4, or 5.
JP19443496A 1996-07-24 1996-07-24 Cleaning method and method for manufacturing semiconductor device Pending JPH1041262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19443496A JPH1041262A (en) 1996-07-24 1996-07-24 Cleaning method and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19443496A JPH1041262A (en) 1996-07-24 1996-07-24 Cleaning method and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH1041262A true JPH1041262A (en) 1998-02-13

Family

ID=16324542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19443496A Pending JPH1041262A (en) 1996-07-24 1996-07-24 Cleaning method and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH1041262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064867A (en) 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
JP2000306868A (en) * 1999-02-17 2000-11-02 Kurita Water Ind Ltd Method for planarizing electronic material surface oxide film
US6901685B2 (en) 2002-03-05 2005-06-07 Kaijo Corporation Method for drying washed objects
US6998352B2 (en) 2001-11-02 2006-02-14 Nec Electronics Corporation Cleaning method, method for fabricating semiconductor device and cleaning solution
JP2012074525A (en) * 2010-09-28 2012-04-12 Sharp Corp Etching method and etching device
JP2013254898A (en) * 2012-06-08 2013-12-19 Sony Corp Substrate processing method, substrate processing apparatus, and recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064867A (en) 1996-08-20 1998-03-06 Japan Organo Co Ltd Method and device for cleaning a variety of electronic component members
JP2000306868A (en) * 1999-02-17 2000-11-02 Kurita Water Ind Ltd Method for planarizing electronic material surface oxide film
US6998352B2 (en) 2001-11-02 2006-02-14 Nec Electronics Corporation Cleaning method, method for fabricating semiconductor device and cleaning solution
US6901685B2 (en) 2002-03-05 2005-06-07 Kaijo Corporation Method for drying washed objects
JP2012074525A (en) * 2010-09-28 2012-04-12 Sharp Corp Etching method and etching device
JP2013254898A (en) * 2012-06-08 2013-12-19 Sony Corp Substrate processing method, substrate processing apparatus, and recording medium
US9362106B2 (en) 2012-06-08 2016-06-07 Sony Corporation Substrate processing method, substrate processing apparatus, and storage medium

Similar Documents

Publication Publication Date Title
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP3409849B2 (en) Manufacturing equipment for cleaning liquid for cleaning electronic components
TW424274B (en) Cleaning method of semiconductor substrate
US5783790A (en) Wet treatment method
KR100303933B1 (en) Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
US20030094610A1 (en) Wash water or immersion water used during semiconductor manufacturing
CN103210476B (en) Silicon wafer cleaning method and silicon wafer cleaning device
WO2010113587A1 (en) Method for cleaning electronic material and device for cleaning electronic material
JP3296405B2 (en) Cleaning method and cleaning device for electronic component members
JP2859081B2 (en) Wet processing method and processing apparatus
JP3313263B2 (en) Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus
JP4367587B2 (en) Cleaning method
JP2003119494A (en) Washing composition, and washing method and washing device using the same
JPH1041262A (en) Cleaning method and method for manufacturing semiconductor device
JP7700504B2 (en) Process solution supply device for semiconductor manufacturing and method for processing semiconductor material
JP2000183015A (en) Method and device for cleaning semiconductor substrate
US20030085177A1 (en) Method of treating an electroless plating waste
JP3507590B2 (en) Wet processing method and processing apparatus
JP6020658B2 (en) Silicon wafer cleaning method and silicon wafer cleaning apparatus
KR20010079831A (en) Polishing liquid for polishing components, preferably wafers, especially for chemically-mechanically polishing components of this type
JP7480594B2 (en) Electronic component cleaning water manufacturing equipment
KR100424541B1 (en) Method and device for washing electronic parts member, or the like
JP2004342841A (en) Cleaning method and cleaning equipment
JP3432754B2 (en) Method for manufacturing semiconductor device
JP2001185521A (en) Method of cleaning semiconductor substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A02