[go: up one dir, main page]

JPH10341539A - Charging and discharging device for storage battery - Google Patents

Charging and discharging device for storage battery

Info

Publication number
JPH10341539A
JPH10341539A JP9149522A JP14952297A JPH10341539A JP H10341539 A JPH10341539 A JP H10341539A JP 9149522 A JP9149522 A JP 9149522A JP 14952297 A JP14952297 A JP 14952297A JP H10341539 A JPH10341539 A JP H10341539A
Authority
JP
Japan
Prior art keywords
phase
charging
storage battery
voltage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9149522A
Other languages
Japanese (ja)
Inventor
Tomotaka Kuromame
友孝 黒豆
Hajime Sato
肇 佐藤
Masao Wada
正雄 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Nissan Motor Co Ltd
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Kyosan Electric Manufacturing Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9149522A priority Critical patent/JPH10341539A/en
Publication of JPH10341539A publication Critical patent/JPH10341539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charging and discharging device for storage battery, which has a simple structure, and high charging and discharging efficiency for a storage battery. SOLUTION: The primary side of single-phase transformers 4a-4b of a three- phase transformer 4 is connected to the output terminals U-W of the respective phases of a three-phase AC system 5 respectively, and single-phase bidirectional converters 3a-3c are connected to its secondary side respectively. Storage batteries 2a-2c are connected to the single-phase bidirectional converters 3a-3c, so that the single-phase bidirectional converters 3a-3c conduct charging and discharging for the storage batteries 2a-2c.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電池の充放電装
置に係り、詳細には、3相交流系統を利用した蓄電池の
充放電装置に関する。
The present invention relates to a battery charging / discharging device, and more particularly, to a battery charging / discharging device using a three-phase AC system.

【0002】[0002]

【従来の技術】近時、蓄電池(2次電池)として、リチ
ウム・イオン2次電池が広く普及している。かかるリチ
ウム・イオン2次電池は、負極に従来のリチウム電池の
ような金属リチウムを用いる替わりに、リチウムイオン
が負極中で存在するカーボン材料や遷移金属カルゴケナ
イトを用いた電池システムである。このタイプの電池で
は、1989年に正極の五酸化バナジウム(V25)を
用い、負極にカーボン(C)を用いたコイン形電池が実
用化されたのを始め、円筒形電池では1991年にコバ
ルト酸リチウム(LiCoO2)/カーボン(C)の電池
が実用化され、現在事業展開とともに研究開発も盛んに
行われている。
2. Description of the Related Art In recent years, lithium ion secondary batteries have been widely used as storage batteries (secondary batteries). Such a lithium ion secondary battery is a battery system using a carbon material or a transition metal cargokenite in which lithium ions are present in the negative electrode, instead of using metallic lithium as in a conventional lithium battery for the negative electrode. In this type of battery, a coin-type battery using vanadium pentoxide (V 2 O 5 ) as a positive electrode and carbon (C) as a negative electrode was commercialized in 1989, and a cylindrical battery in 1991 was used. In recent years, lithium cobalt oxide (LiCoO 2 ) / carbon (C) batteries have been put into practical use, and research and development are being actively conducted along with business development.

【0003】また、リチウム・イオン2次電池は従来の
ポータブル電子機器の駆動用電源であるニカド電池やニ
ッケル水素蓄電池と比較し、約3倍の作動電圧を持ち、
体積エネルギー密度が大きく、また重量エネルギー密度
で約2倍のエネルギー密度を有する。すなわち、同一エ
ネルギーを有する電池で比較すると小型でしかも軽い電
池である。特に、この軽いという特徴を活かし、リチウ
ム・イオン2次電池は携帯電話を始めビデオカメラ、ノ
ートパソコンの駆動用電源として採用されている。
[0003] A lithium ion secondary battery has an operating voltage that is about three times that of a conventional NiCd battery or nickel-metal hydride battery, which is a power supply for driving portable electronic equipment.
It has high volumetric energy density and about twice the energy density by weight. That is, when compared with batteries having the same energy, the batteries are small and light. In particular, taking advantage of this light feature, lithium ion secondary batteries have been adopted as power supplies for driving cellular phones, video cameras, and notebook computers.

【0004】ところで、リチウム・イオン2次電池のよ
うに蓄電池バンクとして動作する蓄電池では、充放電す
る際に、蓄電池間を直接に並列接続することが出来な
い。蓄電池容量の増大のための並列接続は有効な手段で
あるが直接に並列接続が出来ないため、例えば、従来、
実用新案公告公報平5−37637において、図2の如
き、蓄電池バンクに変換器を介して並列運転を行う蓄電
池の充放電装置が開示されている。
[0004] In a storage battery such as a lithium ion secondary battery that operates as a storage battery bank, the storage batteries cannot be directly connected in parallel when charging and discharging. Parallel connection for increasing the storage battery capacity is an effective means, but cannot be directly connected in parallel.
Japanese Utility Model Publication No. Hei 5-37637 discloses a charge / discharge device for a storage battery that operates in parallel with a storage battery bank via a converter as shown in FIG.

【0005】図2に示す蓄電池の充放電装置おいては、
バッテリ(蓄電池)6を複数組6a〜6nに分けて各組
のバッテリに夫々接触器7a〜7nを接続し、各接触器
の可動片を接点A側に接続したときには、変換器8を通
じて充電、あるいは完全放電モードになり、接点B側に
接続したときにはインバータ9を通じて負荷への放電モ
ードとして充放電を行っている。しかしながら、かかる
装置にあっては、蓄電池の充放電に変換器の効率が加わ
るため、蓄電池の充電効率が低下する。
In the charging / discharging device for a storage battery shown in FIG.
When the battery (storage battery) 6 is divided into a plurality of sets 6a to 6n, contactors 7a to 7n are connected to each set of batteries, and when the movable piece of each contactor is connected to the contact A side, charging through the converter 8 Alternatively, a full discharge mode is set, and when connected to the contact B side, charging / discharging is performed as a discharge mode to a load through the inverter 9. However, in such a device, the charging efficiency of the storage battery is reduced because the efficiency of the converter is added to the charging and discharging of the storage battery.

【0006】また、上記公告公報では、図3の如き、蓄
電池バンクに並列用変換装置を接続し、その後段に系統
接続用の双方向変換装置を接続した蓄電池の充放電装置
が提案されている。図3に示す蓄電池の充放電装置おい
ては、バッテリ(蓄電池)6a〜6nは任意数の組に分
けられて各負極側は共通に接続され、各正極側には、夫
々個別にダイオードD1〜Dnのアノードが接続されて
いる。そして、電力変換装置PCは、各ダイオードD1
〜Dnが共通接続されたカソード側とバッテリ負極間に
接続され、直流を交流に変換する機能と、交流を直流に
変換するコンバータ機能を有している。Th1〜Thnは
夫々ダイオードD1〜Dnと逆並列に接続された充電用
半導体スイッチで、ここではサイリスタが使用されてい
る。T1〜Tnは例えばサイリスタよりなる完全放電用
半導体スイッチで、このスイッチT1〜Tnのアノード
は、夫々各バッテリ6a〜6nの正極側に接続され、カ
ソードは共通に接続されてコンバータCの負側に接続さ
れている。コンバータCの正側は、バッテリの負側に接
続されている。
Further, in the above-mentioned publication, a charging / discharging device for a storage battery in which a parallel conversion device is connected to a storage battery bank and a bidirectional conversion device for system connection is connected at a subsequent stage as shown in FIG. 3 is proposed. . In the battery charging / discharging device shown in FIG. 3, batteries (storage batteries) 6a to 6n are divided into an arbitrary number of sets, each negative electrode side is commonly connected, and each positive electrode side is individually connected to diodes D1 to D1. The anode of Dn is connected. The power conversion device PC is connected to each diode D1.
To Dn are connected between the commonly connected cathode side and the battery negative electrode, and have a function of converting DC to AC and a function of converting AC to DC. Th1 to Thn are charging semiconductor switches connected in anti-parallel to the diodes D1 to Dn, respectively, in which a thyristor is used. T1 to Tn are full-discharge semiconductor switches composed of, for example, thyristors. The anodes of the switches T1 to Tn are connected to the positive electrodes of the batteries 6a to 6n, respectively, and the cathodes are connected in common to the negative side of the converter C. It is connected. The positive side of converter C is connected to the negative side of the battery.

【0007】以上のように回路構成された装置では、バ
ッテリ6a〜6nの充電は、電力変換装置PCをコンバ
ータ機能となして各充電用半導体スイッチTh1〜Thn
をオンすることによって負荷側(充電側)→電力変換装
置PC→充電用半導体スイッチTh1〜Thn→バッテリ
6a〜6n→電力変換装置PCの閉ループが形成されて
各バッテリが充電される。しかしながら、かかる装置に
あっても変換装置を2組通過する為、装置全体の効率低
下するという問題がある。
In the device configured as described above, the charging of the batteries 6a to 6n is performed by using the power conversion device PC as a converter function and the charging semiconductor switches Th1 to Thn.
Is turned on, the load side (charging side) → the power converter PC → the charging semiconductor switches Th1 to Thn → the batteries 6a to 6n → the closed loop of the power converter PC is formed, and each battery is charged. However, even with such an apparatus, there is a problem that the efficiency of the entire apparatus is reduced because two sets of the conversion apparatus are passed.

【0008】[0008]

【発明が解決しようとする課題】すなわち、図2及び図
3に示した従来の蓄電池の充放電装置にあっては、上記
した如く、蓄電池の充放電に変換器の効率が加わり、蓄
電池の充電効率が低下するという問題がある。換言する
と、蓄電池の並列接続を直流母線で接続する場合、蓄電
池と並列接続変換装置間には損失が発生し、蓄電池の充
電効率と放電効率の両方が低下するといる問題がある。
That is, in the conventional battery charging / discharging device shown in FIGS. 2 and 3, the efficiency of the converter is added to the charging / discharging of the battery as described above, and the charging of the battery is performed. There is a problem that efficiency is reduced. In other words, when the parallel connection of the storage batteries is connected by a DC bus, there is a problem that a loss occurs between the storage battery and the parallel connection converter, and both the charging efficiency and the discharge efficiency of the storage battery decrease.

【0009】本発明は、前記した課題を解決すべくなさ
れたものであり、簡単な構成で、蓄電池に対して充電効
率及び放電効率の高い蓄電池の充放電装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to provide a storage battery charging / discharging device having a simple configuration and high charging efficiency and discharging efficiency for the storage battery.

【0010】[0010]

【課題を解決するための手段】本発明の蓄電池の充放電
装置は、3相交流系統の各相の電圧出力端子の各々とそ
の1次側が接続され、当該3相交流系統の各相の電圧出
力端子から入力される各相の交流電圧毎に夫々電圧変換
し、変換交流電圧として、その2次側から各々出力する
3相変圧手段と、前記3相変圧手段の2次側と各々接続
されると共に、複数組みの蓄電池の各々に接続され、当
該3相変圧手段から入力される各相の変換交流電圧を各
々直流電圧に変換して、当該直流電圧を当該蓄電池に各
々供給して充電若しくは放電を行う複数組みの単相方向
変換装置からなる単相双方向変換手段と、を備えたこと
により上記課題を解決する。
According to the charging / discharging apparatus for a storage battery of the present invention, a voltage output terminal of each phase of a three-phase AC system is connected to a primary side thereof, and a voltage of each phase of the three-phase AC system is connected. The three-phase transformer is connected to the three-phase transformer, which converts the voltage for each of the AC voltages of the respective phases input from the output terminals and outputs the converted AC voltage from the secondary side thereof, and the secondary side of the three-phase transformer. Connected to each of the plurality of sets of storage batteries, converts the converted AC voltage of each phase input from the three-phase transformer into DC voltages, and supplies and supplies the DC voltages to the storage batteries. The above object is attained by providing a single-phase bidirectional conversion means comprising a plurality of sets of single-phase direction conversion devices for performing discharge.

【0011】即ち、本発明の蓄電池の充放電装置によれ
ば、3相変圧手段は、3相交流系統の各相の電圧出力端
子から入力される各相の交流電圧毎に夫々電圧変換し変
換交流電圧として、その2次側から各々出力し、単相双
方向変換手段は複数組みの単相方向変換装置からなり、
3相変圧手段から入力される各相の変換交流電圧を各々
直流電圧に変換して、当該直流電圧を複数組みの蓄電池
に各々供給して充電若しくは放電を行う。
That is, according to the battery charging / discharging device of the present invention, the three-phase transformer converts the voltage for each AC voltage of each phase input from the voltage output terminal of each phase of the three-phase AC system. Each of them is output from its secondary side as an AC voltage, and the single-phase bidirectional conversion means comprises a plurality of sets of single-phase direction conversion devices
The conversion AC voltage of each phase input from the three-phase transformer is converted into a DC voltage, and the DC voltage is supplied to a plurality of sets of storage batteries to charge or discharge.

【0012】従って、本発明による蓄電池の充放電装置
によれば、簡単な構成で、装置効率の良い(充電効率及
び放電効率の高い)蓄電池の充放電装置を提供すること
が可能となる。付言すると、複数の単相双方向変換装置
を用いて、3相交流電圧の出力により蓄電池の充放電を
行う構成であるので、単相双方向変換装置毎に蓄電池に
対して独立して充電若しくは放電動作を実行することが
できる。また、複数組の蓄電池は、複数の単相双方向変
換器を介して、3相交流系統と接続する構成であるの
で、3相交流系統に対して3組の蓄電池が並列接続され
た場合と同じ容量が蓄電池の各々に充放電される。さら
に、本発明によれば、3相交流の欠点である不平衡時の
充電若しくは放電動作も安定した動作となる。
Therefore, according to the storage battery charging / discharging device of the present invention, it is possible to provide a storage battery charging / discharging device with a simple configuration and high device efficiency (high charging efficiency and discharging efficiency). In addition, since a plurality of single-phase bidirectional converters are used to charge and discharge a storage battery by outputting a three-phase AC voltage, each single-phase bidirectional converter independently charges or discharges a storage battery. A discharging operation can be performed. Further, a plurality of sets of storage batteries are configured to be connected to a three-phase AC system via a plurality of single-phase bidirectional converters, so that three sets of storage batteries are connected in parallel to the three-phase AC system. The same capacity is charged and discharged to each of the storage batteries. Further, according to the present invention, the charging or discharging operation at the time of imbalance, which is a drawback of three-phase alternating current, is also a stable operation.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、本発明を適用した蓄電池
の充放電装置の実施の形態を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a storage battery charge / discharge device to which the present invention is applied.

【0014】より具体的には、図1は、本実施の形態の
蓄電池の充放電装置の回路構成を示す図である。
More specifically, FIG. 1 is a diagram showing a circuit configuration of a battery charging / discharging device according to the present embodiment.

【0015】蓄電池の充放電装置1は、3組の蓄電池
(蓄電池バンク)2a〜2cと、3組の単相双方向変換
装置3a〜3cと、3相変圧器4と、及び3相交流系統
5とから構成されている。
The battery charging / discharging device 1 includes three sets of storage batteries (battery banks) 2a to 2c, three sets of single-phase bidirectional converters 3a to 3c, a three-phase transformer 4, and a three-phase AC system. And 5.

【0016】3相交流系統5は、3相交流電圧の各相の
出力端子U〜Wが、3相変圧器4の各単相変圧器4a〜
4cにぞれぞれ接続されており、3相交流電圧の各相の
交流電圧を夫々出力端子U〜Wから3相変圧器4の各単
相変圧器4a〜4cの一次側に出力する。
In the three-phase AC system 5, the output terminals U to W of each phase of the three-phase AC voltage are connected to the single-phase transformers 4a to 4a of the three-phase transformer 4.
4c, and outputs the AC voltage of each phase of the three-phase AC voltage from the output terminals U to W to the primary sides of the single-phase transformers 4a to 4c of the three-phase transformer 4, respectively.

【0017】3相変圧器4は、単相変圧器4a〜4bか
ら構成されており、これら各単相変圧器4a〜4bの一
次側は、3相交流系統5の各出力端子U〜Wに接続さ
れ、その2次側は単相双方向変換装置3a〜3cに接続
されている。そして、各単相変圧器4a〜4bは、3相
交流系統5の出力端子U〜Wから入力される交流電圧
を、夫々コイルの巻き線比に応じた交流電圧に変換し
て、得られる変換交流電圧を、単相双方向変換装置3a
〜3cに出力する。
The three-phase transformer 4 comprises single-phase transformers 4a to 4b, and the primary sides of the single-phase transformers 4a to 4b are connected to output terminals U to W of a three-phase AC system 5. The secondary side is connected to the single-phase bidirectional converters 3a to 3c. Each of the single-phase transformers 4a to 4b converts the AC voltage input from the output terminals U to W of the three-phase AC system 5 into an AC voltage corresponding to the winding ratio of the coil, and obtains a conversion. The AC voltage is converted to a single-phase bidirectional converter 3a.
To 3c.

【0018】単相双方向変換装置3a〜3cは、夫々、
その一方側が蓄電池2a〜2cに接続され、他方側が3
相変圧器4の各単相変圧器4a〜4cの2次側に接続さ
れている。そして、単相方向変換装置3a〜3cは、3
相変圧器4の各単相変圧器4a〜4cの2次側から入力
される変換交流電圧を夫々直流電圧に変換して、かかる
直流電圧を蓄電池2a〜2cの各々に供給し、これら蓄
電池2a〜2bの充電若しくは放電を行う。充電若しく
は放電動作は、不図示の充放電切替スイッチにより切り
替えられる。
The single-phase bidirectional converters 3a to 3c are respectively
One side is connected to the storage batteries 2a to 2c, and the other side
It is connected to the secondary side of each single-phase transformer 4a to 4c of the phase transformer 4. Then, the single-phase direction change devices 3a to 3c
The conversion AC voltage input from the secondary side of each of the single-phase transformers 4a to 4c of the phase transformer 4 is converted into a DC voltage, and the DC voltage is supplied to each of the storage batteries 2a to 2c. 2b is charged or discharged. The charge or discharge operation is switched by a charge / discharge switch (not shown).

【0019】蓄電池2a〜2cは、例えば、リチウム・
イオン2次電池からなり、各蓄電池2a〜2cは夫々単
相双方向変換回路3a〜3cに接続されている。
The storage batteries 2a to 2c are, for example, lithium-ion batteries.
The storage batteries 2a to 2c are connected to single-phase bidirectional conversion circuits 3a to 3c, respectively.

【0020】次に、以上のように構成された蓄電池の充
放電装置1の充放電動作を説明する。
Next, the charging / discharging operation of the charging / discharging device 1 for a storage battery configured as described above will be described.

【0021】先ず、3相交流系統5からは、3相交流電
圧が各相毎に夫々出力端子U〜Wから3相変圧器4の各
単相変圧器4a〜4cの1次側に出力される。
First, from the three-phase AC system 5, three-phase AC voltages are output from output terminals U to W for each phase to the primary side of each of the single-phase transformers 4a to 4c of the three-phase transformer 4. You.

【0022】3相変圧器4の各単相変圧器4a〜4bで
は、夫々、3相交流系統5の各出力端子5a〜5cから
入力される交流電圧が、コイルの巻き線比に応じた交流
電圧に変換されて、得られる変換交流電圧がその2次側
から夫々単相双方向変換装置3a〜3cに出力される。
In each of the single-phase transformers 4a to 4b of the three-phase transformer 4, an AC voltage input from each of the output terminals 5a to 5c of the three-phase AC system 5 is supplied with an AC voltage corresponding to the winding ratio of the coil. The converted AC voltage is converted into a voltage, and the obtained converted AC voltage is output from the secondary side to each of the single-phase bidirectional converters 3a to 3c.

【0023】単相双方向変換装置3a〜3cでは、夫々
3相変圧器4の各単相変圧器4a〜4bの2次側から入
力される変換交流電圧が直流電圧に変換され、そして、
不図示の充放電切替スイッチで、充電モードが選択され
た場合には、変換した直流電圧が蓄電池2a〜2cの正
極側に出力されて、蓄電池2a〜2bの充電動作が行わ
れる一方、上記充放電切替スイッチで、放電モードが選
択された場合には、変換した直流電圧が蓄電池2a〜2
cの負極側に出力されて放電動作が行われる。
In the single-phase bidirectional converters 3a to 3c, converted AC voltages input from the secondary sides of the single-phase transformers 4a to 4b of the three-phase transformer 4 are converted into DC voltages, respectively.
When the charging mode is selected by a charging / discharging changeover switch (not shown), the converted DC voltage is output to the positive electrodes of the storage batteries 2a to 2c, and the charging operation of the storage batteries 2a to 2b is performed. When the discharge mode is selected by the discharge changeover switch, the converted DC voltage is applied to the storage batteries 2a to 2a.
The signal is output to the negative electrode side of c to perform a discharging operation.

【0024】以上説明したように、本実施の形態では、
3相交流系統5の各相の出力端子U〜Wのそれぞれに3
相変圧器4の単相変圧器4a〜4bの一次側を接続し、
その2次側にそれぞれ単相双方向変換装置3a〜3cを
接続し、これら単相双方向変換装置3a〜3cに蓄電池
2a〜2cを接続し、そして、単相双方向変換装置3a
〜3cが蓄電地2a〜2cの充放電を行う構成であるの
で、蓄電池バンクの並列接続を可能とし、また、並列接
続をする為の変換装置を使用しないで済むため、簡単な
構成で、装置効率の良い(充電効率及び放電効率の高
い)蓄電池の充放電装置を提供することが可能となる。
As described above, in this embodiment,
Each of the output terminals U to W of each phase of the three-phase AC system 5 has three terminals.
Connect the primary sides of the single-phase transformers 4a to 4b of the phase transformer 4,
Single-phase bidirectional converters 3a to 3c are connected to the secondary sides thereof, storage batteries 2a to 2c are connected to these single-phase bidirectional converters 3a to 3c.
3c are configured to charge and discharge the power storage locations 2a to 2c, so that the storage battery banks can be connected in parallel, and there is no need to use a conversion device for performing the parallel connection. It is possible to provide a storage battery charge / discharge device with high efficiency (high charge efficiency and high discharge efficiency).

【0025】また、3個の単相双方向変換装置を用い
て、3相交流出力の蓄電池の充放電を行う構成であるの
で、直流部を絶縁した3組の蓄電池部に分割することが
できる。その結果、各単相双方向変換装置毎に蓄電池に
対して独立して充電若しくは放電動作を実行することが
できるので使い勝手が良くなる。
Further, since the storage battery of the three-phase AC output is charged and discharged using three single-phase bidirectional converters, the DC part can be divided into three sets of storage battery parts insulated. . As a result, the charging or discharging operation can be independently performed on the storage battery for each single-phase bidirectional converter, thereby improving the usability.

【0026】また、3組の蓄電池バンクは3組の単相双
方向変換器を介して、3相系統交流と接続する構成であ
るので、3相交流系統に対して3組の蓄電池が並列接続
された場合と同じ容量が蓄電池の各々に充放電される。
Since the three sets of storage battery banks are connected to the three-phase system AC via three sets of single-phase bidirectional converters, three sets of storage batteries are connected in parallel to the three-phase AC system. The same capacity is charged / discharged in each of the storage batteries.

【0027】また、本実施の形態においては、3相交流
の欠点である不平衡時の充電若しくは放電動作も安定し
た動作となる。
In this embodiment, the charging or discharging operation at the time of imbalance, which is a drawback of three-phase alternating current, is also a stable operation.

【0028】[0028]

【発明の効果】本発明による蓄電池の充放電装置によれ
ば、簡単な構成で、装置効率の良い(充電効率及び放電
効率の高い)蓄電池の充放電装置を提供することが可能
となる。付言すると、複数の単相双方向変換装置を用い
て、3相交流電圧の出力によりの蓄電池の充放電を行う
構成であるので、単相双方向変換装置毎に蓄電池に対し
て独立して充電若しくは放電動作を実行することができ
る。また、複数組の蓄電池は、複数の単相双方向変換器
を介して、3相交流系統と接続する構成であるので、3
相交流系統に対して3組の蓄電池が並列接続された場合
と同じ容量が蓄電池の各々に充放電される。さらに、本
発明によれば、3相交流の欠点である不平衡時の充電若
しくは放電動作も安定した動作となる。
According to the storage battery charge / discharge device of the present invention, it is possible to provide a storage battery charge / discharge device with a simple configuration and high device efficiency (high charge efficiency and discharge efficiency). In addition, since the storage battery is charged and discharged by outputting a three-phase AC voltage by using a plurality of single-phase bidirectional converters, the storage battery is independently charged for each single-phase bidirectional converter. Alternatively, a discharging operation can be performed. Also, since a plurality of sets of storage batteries are configured to be connected to a three-phase AC system via a plurality of single-phase bidirectional converters,
Each storage battery is charged and discharged with the same capacity as when three sets of storage batteries are connected in parallel to the phase AC system. Further, according to the present invention, the charging or discharging operation at the time of imbalance, which is a drawback of three-phase alternating current, is also a stable operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態に係る蓄電池の充放電装置の回路
構成を示す図。
FIG. 1 is a diagram showing a circuit configuration of a storage battery charge / discharge device according to an embodiment.

【図2】従来の蓄電池の充放電装置を示す第1の図。FIG. 2 is a first diagram showing a conventional battery charging / discharging device.

【図3】従来の蓄電池の充放電装置を示す第2の図。FIG. 3 is a second diagram showing a conventional battery charging / discharging device.

【符号の説明】[Explanation of symbols]

1 蓄電池の充放電装置 2 蓄電池 3 単相双方向変換装置 4 3相変圧器 5 3相交流系統 REFERENCE SIGNS LIST 1 charging / discharging device for storage battery 2 storage battery 3 single-phase bidirectional converter 4 three-phase transformer 5 three-phase AC system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 肇 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 和田 正雄 神奈川県横浜市鶴見区平安町2丁目29番地 の1 株式会社京三製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hajime Sato 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Masao Wada 2-29, Heian-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 1 share Inside the KYOSAN MFG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】3相交流系統の各相の電圧出力端子の各々
とその1次側が接続され、当該3相交流系統の各相の電
圧出力端子から入力される各相の交流電圧毎に夫々電圧
変換し、変換交流電圧として、その2次側から各々出力
する3相変圧手段と、 前記3相変圧手段の2次側と各々接続されると共に、複
数組みの蓄電池の各々に接続され、当該3相変圧手段か
ら入力される各相の変換交流電圧を各々直流電圧に変換
して、当該直流電圧を当該蓄電池に各々供給して充電若
しくは放電を行う複数組みの単相方向変換装置からなる
単相双方向変換手段と、 を備えたことを特徴とする蓄電池の充放電装置。
1. A voltage output terminal of each phase of a three-phase AC system and its primary side are connected, and each of the AC voltages of each phase input from a voltage output terminal of each phase of the three-phase AC system. A three-phase transformer for converting the voltage and outputting the converted AC voltage from the secondary side thereof, respectively connected to the secondary side of the three-phase transformer, and connected to each of a plurality of sets of storage batteries; A single unit comprising a plurality of sets of single-phase direction converters for converting the converted AC voltage of each phase input from the three-phase transformer into DC voltage and supplying the DC voltage to the storage battery for charging or discharging. A charge / discharge device for a storage battery, comprising:
JP9149522A 1997-06-06 1997-06-06 Charging and discharging device for storage battery Pending JPH10341539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9149522A JPH10341539A (en) 1997-06-06 1997-06-06 Charging and discharging device for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149522A JPH10341539A (en) 1997-06-06 1997-06-06 Charging and discharging device for storage battery

Publications (1)

Publication Number Publication Date
JPH10341539A true JPH10341539A (en) 1998-12-22

Family

ID=15476985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149522A Pending JPH10341539A (en) 1997-06-06 1997-06-06 Charging and discharging device for storage battery

Country Status (1)

Country Link
JP (1) JPH10341539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020384A (en) * 2005-06-08 2007-01-25 Tokyo Electric Power Co Inc:The Power conversion apparatus and control method
EP2784899A4 (en) * 2011-11-21 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Power converter
CN109301912A (en) * 2018-10-12 2019-02-01 苏州唯控汽车科技有限公司 Electric vehicle plugs in the single-phase three-phase matrix form that turns of voltage matches and switches switch
CN110679054A (en) * 2017-06-02 2020-01-10 松下知识产权经营株式会社 Power storage system
CN111034002A (en) * 2017-08-04 2020-04-17 松下知识产权经营株式会社 Power converter and power conversion system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020384A (en) * 2005-06-08 2007-01-25 Tokyo Electric Power Co Inc:The Power conversion apparatus and control method
EP2784899A4 (en) * 2011-11-21 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Power converter
CN110679054A (en) * 2017-06-02 2020-01-10 松下知识产权经营株式会社 Power storage system
CN111034002A (en) * 2017-08-04 2020-04-17 松下知识产权经营株式会社 Power converter and power conversion system
CN111034002B (en) * 2017-08-04 2023-11-24 松下知识产权经营株式会社 Power converter and power conversion system
CN109301912A (en) * 2018-10-12 2019-02-01 苏州唯控汽车科技有限公司 Electric vehicle plugs in the single-phase three-phase matrix form that turns of voltage matches and switches switch
CN109301912B (en) * 2018-10-12 2024-02-20 苏州唯控汽车科技有限公司 Electric vehicle direct charging voltage matching single-phase to three-phase matrix switch

Similar Documents

Publication Publication Date Title
EP3922504A1 (en) Vehicle-mounted charging/discharging apparatus and system
US7061207B2 (en) Cell equalizing circuit
JP3214044B2 (en) Charging device
JP2001186668A (en) Battery pack, power supply and charging and discharging method
KR102822114B1 (en) Charging method, charging device and charging system for power battery
US11780342B2 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
CN117013680A (en) Uninterruptible power supply and power supply system
CN109088462B (en) Active equalization device for battery containing alternating current module
EP4207569A1 (en) Dc/dc converter, and voltage gain changeover method and system
Chuang et al. Battery float charge technique using parallel-loaded resonant converter for discontinuous conduction operation
CN118744659A (en) A battery control circuit, a control method, a control device and an electric device
JPH10341539A (en) Charging and discharging device for storage battery
JPH05137265A (en) Secondary battery system and charger
US7230353B2 (en) Charging circuit in uninterruptible power supply system
KR102817220B1 (en) Charging method, charging device and charging system for power battery
JP2003070255A (en) Three-level power converter
JP6618184B2 (en) High voltage generator
CN210350838U (en) Vehicle-mounted charging and discharging system
Huang et al. A Modular and Integrated Reconfigurable Design for Battery Energy Storage System
JP2001025169A (en) Power storage method and power storage device
JP2003169424A (en) Secondary battery charging method and charging device
JP2021083145A (en) DC power supply
US20250167584A1 (en) Power converters and uninterruptible power suppy (ups) including the same
JP2020191770A (en) Charging system
JPH0750850Y2 (en) Power storage battery power converter