JPH10339555A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH10339555A JPH10339555A JP15061697A JP15061697A JPH10339555A JP H10339555 A JPH10339555 A JP H10339555A JP 15061697 A JP15061697 A JP 15061697A JP 15061697 A JP15061697 A JP 15061697A JP H10339555 A JPH10339555 A JP H10339555A
- Authority
- JP
- Japan
- Prior art keywords
- door
- outside air
- surface temperature
- dew
- dew condensation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009833 condensation Methods 0.000 claims abstract description 55
- 230000005494 condensation Effects 0.000 claims abstract description 55
- 230000002265 prevention Effects 0.000 claims abstract description 39
- 238000005192 partition Methods 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000005057 refrigeration Methods 0.000 claims description 36
- 238000005265 energy consumption Methods 0.000 abstract description 9
- 230000005855 radiation Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 3
- 230000003449 preventive effect Effects 0.000 abstract 3
- 230000008021 deposition Effects 0.000 abstract 1
- 230000001276 controlling effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000428 dust Substances 0.000 description 6
- 230000005611 electricity Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/02—Humidity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/40—Refrigerating devices characterised by electrical wiring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
- F25D29/005—Mounting of control devices
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷蔵庫における露
付き防止技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing dew condensation in a refrigerator.
【0002】[0002]
【従来の技術】従来の冷蔵庫における露付き防止技術と
しては特開平8−166184号公報に示されているも
のがある。2. Description of the Related Art As a technique for preventing dew condensation in a conventional refrigerator, there is one disclosed in Japanese Patent Application Laid-Open No. 8-166184.
【0003】以下、図15、及び図16に従い上記従来
の冷蔵庫の一例について説明する。図14は従来の冷蔵
庫の概略構成図、図15は同冷蔵庫の動作を説明するフ
ローチャートである。Hereinafter, an example of the above-mentioned conventional refrigerator will be described with reference to FIGS. 15 and 16. FIG. 14 is a schematic configuration diagram of a conventional refrigerator, and FIG. 15 is a flowchart for explaining the operation of the refrigerator.
【0004】冷蔵庫は庫内が冷却されるため、特にその
扉が当接する冷蔵庫本体側のガスケット近傍で結露し易
い。これに対し、この従来例では冷蔵庫本体25側の扉
当接面に冷凍サイクルにおける高圧(高温)側の一部の
パイプ26を引回し、冷凍サイクルの稼働時にその扉当
接面周辺を加温して防露を行うようにしている。このと
き、周囲の環境、特に温度、湿度についての把握を行っ
ているもので、結露し易い表面温度を数カ所に設けた温
度センサ27〜31で測定し、図15に示しているよう
に外気温度と湿度から結露防止温度(露点+α)を算出
し(step1)、扉当接面温度と結露防止温度との比
較で、防露の必要のないときは(step2をY側に分
岐)、冷凍サイクルの高温側パイプを扉当接面周辺以外
の、外箱の側面への迂回パイプ33に電磁弁34で冷媒
の切り替えを行い(step3)、防露の必要のあると
きは、パイプ26へ冷媒を流す(step4)ようにし
ている。[0004] Since the inside of the refrigerator is cooled, dew condensation tends to occur particularly near the gasket on the refrigerator main body side where the door contacts. On the other hand, in this conventional example, a part of the pipe 26 on the high pressure (high temperature) side in the refrigeration cycle is routed around the door contact surface on the side of the refrigerator body 25, and the periphery of the door contact surface is heated during operation of the refrigeration cycle. To prevent dew. At this time, the surrounding environment, in particular, the temperature and humidity are grasped, and the surface temperature at which dew condensation easily occurs is measured by temperature sensors 27 to 31 provided at several places, and as shown in FIG. The dew condensation temperature (dew point + α) is calculated from the temperature and the humidity (dew point + α) (step 1). When the door contact surface temperature and the dew condensation prevention temperature are not required (step 2 is branched to the Y side), the refrigeration cycle is performed. The refrigerant is switched by the solenoid valve 34 to the bypass pipe 33 to the side surface of the outer box other than the vicinity of the door contact surface with the high temperature side pipe (step 3), and when the dew prevention is necessary, the refrigerant is transferred to the pipe 26. It is made to flow (step 4).
【0005】[0005]
【発明が解決しようとする課題】従来は、周囲の環境、
特に温度、湿度についての把握は行いながらも、防露手
段としては、防露部の表面温度と、室温と湿度からの結
露防止温度との比較で、電磁弁を使用し、冷凍サイクル
の冷媒経路を切り替えたり、扉開閉時の庫内温度上昇防
止に主目的をおいたり(図示せず)、結露部に設けた湿
度センサーの出力のみで防露制御を行ったり(図示せ
ず)、といった方法が考えられているが、第一番目の方
法は、表面温度の最も低い部分に合わせて、扉当接面周
辺のほぼ全面を迂回するパイプの冷媒を同時に切り替え
る必要があり、表面温度の高い部分の発熱不要な部分ま
でも発熱させるという課題等があり、又第二番目の方法
は、扉開閉を伴ったときに最少エネルギー消費にするこ
とであるし、又第三番目の方法は、結露部に湿度センサ
ーを設置するものであり、ヒータ、湿度センサの数が増
えてコスト高になったり、湿度センサの汚れ等による精
度、信頼性面等に不安を残していたり、いずれの方法も
何らかの欠点を有していた。Conventionally, the surrounding environment,
In particular, while grasping the temperature and humidity, the dew prevention means uses a solenoid valve by comparing the surface temperature of the dew prevention part with the dew condensation prevention temperature from room temperature and humidity. Switching, or the main purpose is to prevent the internal temperature from rising when the door is opened or closed (not shown), or the dew prevention control is performed only by the output of the humidity sensor provided in the condensation part (not shown). However, in the first method, it is necessary to simultaneously switch the refrigerant in the pipe that bypasses almost the entire surface around the door contact surface in accordance with the lowest surface temperature, The second method is to minimize the energy consumption when opening and closing the door, and the third method is to reduce the condensation With a humidity sensor Ri, heater, or greater cost increase in the number of humidity sensors, the accuracy due to contamination or the like of the humidity sensor, or leaving anxiety reliable surface or the like, either method had some drawbacks.
【0006】本発明は上記課題に鑑み、防露を行うの
に、より少ないエネルギー消費ですむ冷蔵庫を提供する
ことを目的とする。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a refrigerator that requires less energy to perform dew prevention.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、請求項1記載の発明は、筐体の上部の扉ヒンジカバ
ー部または基板収納部の近傍に配置された外気湿度セン
サと筐体表面温度センサの出力に応じて扉と扉の仕切り
部分に設けた結露防止ヒータへの通電を制御する制御手
段とを有するのである。According to a first aspect of the present invention, there is provided an external air humidity sensor and a housing disposed near a door hinge cover or a board storage at an upper portion of the housing. There is provided a control means for controlling energization to the dew condensation prevention heater provided at the door and the partition of the door in accordance with the output of the surface temperature sensor.
【0008】請求項2記載の発明は、上記請求項1記載
の冷蔵庫において、筐体表面温度センサを扉の当接する
ガスケット周辺の結露しやすい冷蔵庫本体表面以外の所
に取り付けているのである。According to a second aspect of the present invention, in the refrigerator according to the first aspect, the housing surface temperature sensor is attached to a portion other than the surface of the refrigerator body around the gasket where the door comes into contact, where dew condensation is likely to occur.
【0009】請求項3記載の発明は、上記請求項1記載
の冷蔵庫における筐体表面温度センサの代わりに、冷凍
サイクルの高圧側の配管表面温度センサを用いるのであ
る。According to a third aspect of the present invention, a high temperature side pipe surface temperature sensor of a refrigeration cycle is used in place of the housing surface temperature sensor in the refrigerator of the first aspect.
【0010】請求項4記載の発明は、上記請求項1記載
の冷蔵庫における筐体表面温度センサの代わりに、冷凍
サイクルの低圧側の配管表面温度センサを用いるのであ
る。[0010] According to a fourth aspect of the present invention, a low temperature side piping surface temperature sensor of a refrigeration cycle is used in place of the housing surface temperature sensor in the refrigerator of the first aspect.
【0011】請求項5記載の発明は、上記請求項1記載
の冷蔵庫における筐体表面温度センサの代わりに、冷凍
サイクルの圧縮機の運転率を算出する運転率算出手段を
用いるのである。According to a fifth aspect of the present invention, an operation rate calculating means for calculating an operation rate of a compressor of a refrigeration cycle is used instead of the housing surface temperature sensor in the refrigerator of the first aspect.
【0012】これにより、防露を行うのにより少ないエ
ネルギー消費ですむ冷蔵庫を提供することができる。As a result, it is possible to provide a refrigerator that requires less energy to perform dew prevention.
【0013】[0013]
【発明の実施の形態】請求項1記載の発明は、筐体の上
部の扉ヒンジカバー部または基板収納部の近傍に配置さ
れた外気湿度センサと、筐体表面温度センサと、扉と扉
の仕切り部分に設けた結露防止ヒータと、前記筐体表面
温度センサと前記外気湿度センサの出力に応じて前記結
露防止ヒータへの通電を制御する制御手段とを有するも
のであり、外気湿度センサを扉開閉による冷気の流出に
よる温度、湿度変化影響、機械室周辺の凝縮器用ファン
による放熱、ホコリの影響が少なく、又、露付きの生じ
にくい冷蔵庫の筐体の上部の扉ヒンジカバー部、又は、
基板収納部の近傍に配置することにより、外気の湿度が
精度よく検知され、筐体表面温度と外気湿度から予め算
定された各々の結露防止ヒータ通電量で、各結露防止ヒ
ータを加温制御することで、より少ないエネルギー消費
で防露を行うことが可能となる。湿度センサは冷蔵庫自
身の出す放熱,冷却,結露,ほこりの影響を受けにく
く、センサの感度劣化ないし誤動作が防止される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to a first aspect of the present invention is directed to an outside air humidity sensor, a housing surface temperature sensor, and a door and a door. A dew condensation prevention heater provided in a partition portion, and control means for controlling energization to the dew condensation prevention heater in accordance with outputs of the housing surface temperature sensor and the outside air humidity sensor. Effect of temperature and humidity changes due to the outflow of cold air due to opening and closing, heat radiation by the condenser fan around the machine room, less influence of dust, and the door hinge cover part on the upper part of the refrigerator housing that is hardly dewed, or
By arranging in the vicinity of the substrate storage unit, the humidity of the outside air is accurately detected, and the heating of each of the condensation prevention heaters is controlled by each of the condensation prevention heater currents calculated in advance from the housing surface temperature and the outside air humidity. This makes it possible to perform dew prevention with less energy consumption. The humidity sensor is less susceptible to heat radiation, cooling, dew condensation, and dust generated by the refrigerator itself, thereby preventing sensitivity deterioration or malfunction of the sensor.
【0014】請求項2記載の発明は、上記請求項1に記
載の発明において筐体表面温度センサを扉の当接するガ
スケット周辺の結露しやすい冷蔵庫本体表面以外の所の
筐体の表面に取り付けるものであり、冷蔵庫内の冷気の
影響、又、扉開閉の冷気影響、機械室の放熱影響等の比
較的短い周期の外気温度の変化の影響を受けにくく、外
気温度を代表する筐体表面温度と外気湿度とから、精度
良く結露防止ヒータ通電量を算出でき、バラツキを考慮
する余分な通電量を減らせ、その分エネルギー消費が少
なくなる。According to a second aspect of the present invention, in the first aspect of the present invention, the housing surface temperature sensor is attached to a surface of the housing other than the surface of the refrigerator body around the gasket where the door comes into contact, where condensation is likely to occur. It is hardly affected by the change of the outside air temperature in a relatively short cycle such as the influence of the cool air in the refrigerator, the cool air of opening and closing the door, and the heat radiation of the machine room. The amount of electricity to be supplied to the dew condensation prevention heater can be accurately calculated from the outside air humidity, and the amount of extra electricity to be supplied in consideration of variations can be reduced, thereby reducing energy consumption.
【0015】請求項3記載の発明は、筐体の上部の扉ヒ
ンジカバー部または基板収納部の近傍に配置された外気
湿度センサと、冷凍サイクルの高圧側の配管表面温度セ
ンサと、扉と扉の仕切り部分に設けた結露防止ヒータ
と、前記冷凍サイクルの高圧側の配管表面温度センサと
前記外気湿度センサの出力に応じて前記結露防止ヒータ
への通電を制御する制御手段とを有するものであり、上
記請求項1に記載の発明における筐体表面温度センサの
代わりに、冷凍サイクルの高圧側の配管表面温度センサ
を用いても、外気温度と冷凍サイクル高圧側温度は相関
があるため、請求項1記載の発明と同等の結露防止ヒー
タの制御ができ、同様の作用が得られる。According to a third aspect of the present invention, there is provided an outside air humidity sensor disposed in the vicinity of a door hinge cover portion or a substrate storage portion on an upper portion of a housing, a piping surface temperature sensor on a high pressure side of a refrigeration cycle, a door and a door. And a control means for controlling energization to the dew condensation prevention heater in accordance with the output of the piping surface temperature sensor on the high pressure side of the refrigeration cycle and the outside air humidity sensor. However, even if a piping surface temperature sensor on the high-pressure side of the refrigeration cycle is used instead of the housing surface temperature sensor in the first aspect of the present invention, the outside air temperature and the refrigeration cycle high-side temperature are correlated. The same dew condensation prevention heater as that of the invention described in the first aspect can be controlled, and the same operation can be obtained.
【0016】請求項4記載の発明は、筐体の上部の扉ヒ
ンジカバー部または基板収納部の近傍に配置された外気
湿度センサと、冷凍サイクルの低圧側の配管表面温度セ
ンサと、扉と扉の仕切り部分に設けた結露防止ヒータ
と、前記冷凍サイクルの低圧側の配管表面温度センサと
前記外気湿度センサの出力に応じて前記結露防止ヒータ
への通電を制御する制御手段とを有するものであり、上
記請求項1に記載の発明における筐体表面温度センサの
代わりに、冷凍サイクルの低圧側の配管表面温度センサ
を用いても、外気温度と冷凍サイクル低圧側温度は相関
があるため、請求項1記載の発明と同等の結露防止ヒー
タの制御ができ、同様の作用が得られる。According to a fourth aspect of the present invention, there is provided an outside air humidity sensor disposed in the vicinity of a door hinge cover portion or a substrate storage portion in an upper portion of a housing, a piping surface temperature sensor on a low pressure side of a refrigeration cycle, a door and a door. And a control means for controlling energization of the dew condensation prevention heater in accordance with the output of the low pressure side pipe surface temperature sensor and the outside air humidity sensor of the refrigeration cycle. Even if a piping surface temperature sensor on the low pressure side of the refrigeration cycle is used in place of the housing surface temperature sensor in the first aspect of the present invention, the outside air temperature and the refrigeration cycle low pressure side temperature have a correlation. The same dew condensation prevention heater as that of the invention described in the first aspect can be controlled, and the same operation can be obtained.
【0017】請求項5記載の発明において、筐体の上部
の扉ヒンジカバー部または基板収納部の近傍に配置され
た外気湿度センサと、冷凍サイクルの圧縮機の運転率を
算出する運転率算出手段と、扉と扉の仕切り部分に設け
た結露防止ヒータと、前記運転率算出手段と前記外気湿
度センサの出力に応じて前記結露防止ヒータへの通電を
制御する制御手段とを有するものであり、上記請求項1
に記載の発明における筐体表面温度センサの代わりに、
圧縮機の運転率を算出する運転率算出手段を用いても、
外気温度と圧縮機運転率は相関があるため、請求項1記
載の発明と同等の結露防止ヒータの制御ができ、同様の
作用が得られる。According to a fifth aspect of the present invention, there is provided an outside air humidity sensor disposed near a door hinge cover portion or a substrate storage portion at an upper portion of a housing, and an operation rate calculating means for calculating an operation rate of a compressor of a refrigeration cycle. And a control unit for controlling energization to the dew condensation prevention heater according to the output of the operation rate calculation unit and the outside air humidity sensor, Claim 1
Instead of the housing surface temperature sensor in the invention described in the above,
Even when using the operation rate calculation means for calculating the operation rate of the compressor,
Since there is a correlation between the outside air temperature and the operating rate of the compressor, it is possible to control the dew condensation prevention heater equivalent to the first aspect of the invention, and to obtain the same operation.
【0018】[0018]
【実施例】以下、本発明の冷蔵庫の実施例を図面に基づ
いて説明する。図1,図2,図3,図4,図5,図6
は、本発明の一実施例を示す図である。なお、この実施
例を、各請求項に対応させて実施例1,2,3,4,5
として順に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the refrigerator according to the present invention will be described below with reference to the drawings. 1, 2, 3, 4, 5, and 6
FIG. 1 is a diagram showing an embodiment of the present invention. It should be noted that this embodiment corresponds to the embodiments 1, 2, 3, 4, 5 according to each claim.
Will be described in order.
【0019】(実施例1)図1ないし図5を用いて説明
する。図1において、1は筐体、2は扉であり、筐体1
は大きく分けて4室に仕切られ、上から冷蔵室3(平均
温度は約+3℃)、切換室4(同、冷凍室に切換えたと
き;約−20℃、冷蔵室に切換えたとき;約+3℃)、
冷凍室5(同、約−20℃)、野菜室6(同、約+5
℃)で構成されている。冷蔵庫は庫内が冷却されるた
め、特に温度が低くなる冷凍室5に隣接した筐体1の横
仕切り板1a、壁面又は扉2の部分に結露し易い。(Embodiment 1) A description will be given with reference to FIGS. In FIG. 1, 1 is a housing, 2 is a door, and a housing 1
Is roughly divided into four compartments, and from the top, a refrigerator compartment 3 (average temperature is about + 3 ° C.), a switching compartment 4 (when switched to a freezing compartment; about -20 ° C., when switched to a refrigerator compartment; about) + 3 ° C),
Freezer compartment 5 (approx. -20 ° C), Vegetable compartment 6 (approx.
° C). Since the inside of the refrigerator is cooled, dew condensation tends to occur on the horizontal partition plate 1a, the wall surface, or the door 2 of the housing 1 adjacent to the freezing compartment 5 where the temperature is particularly low.
【0020】本実施例では、この結露し易い横仕切り板
には、防露を行うための加温手段として防露ヒータ7a
〜7cが設置されている。以下、防露ヒータ7a〜7c
を含めて防露ヒータ7と言う。筐体1の上部にある扉2
を支えるヒンジのカバー8内には、筐体表面温度センサ
9,外気湿度センサ10が設置されている(図2)。こ
のように図では筐体表面温度センサ9,外気湿度センサ
10は1個づつ設けられているが、筐体1の下部、又
は、扉の部分に組み込んで複数個設けてもよい。In this embodiment, a dew-proof heater 7a is provided on the horizontal partition plate where dew condensation is likely to occur as a heating means for performing dew-proof.
To 7c. Hereinafter, the dew-proof heaters 7a to 7c
Is referred to as the dew-proof heater 7. Door 2 at the top of case 1
A housing surface temperature sensor 9 and an outside air humidity sensor 10 are installed in a hinge cover 8 for supporting the housing (FIG. 2). In this way, in the figure, the housing surface temperature sensor 9 and the outside air humidity sensor 10 are provided one by one, but a plurality of housing surface temperature sensors 9 and outside air humidity sensors 10 may be provided by being incorporated in the lower part of the housing 1 or the door portion.
【0021】図4は、防露ヒータ7の制御系を示してい
る。筐体表面温度センサ9,外気湿度センサ10の検知
信号が制御手段として制御部13に入力され、その検知
信号に基づく制御部13からの各防露ヒータ7の通電量
を制御する制御信号によりオンオフ素子11a〜11c
にて防露ヒータ7へ所要の電力が入力できるようになっ
ている。以下、オンオフ素子11a〜11cを含めてオ
ンオフ素子11と言う。なお、制御部13における各防
露ヒータ7の通電量を制御するフローチャートを図5に
示す。ある一定時間をT0 とすると、T0 毎に(ste
p5をY側に分岐)冷蔵庫の外気温度を代表する環境湿
度である筐体表面温度、外気湿度を測定し(step
6)、あらかじめ冷蔵庫の横仕切り板の構造、横仕切り
板の上部、下部の冷蔵庫内温度設定値等により算出され
た、筐体表面温度、外気湿度に応じた横仕切り板が結露
しない各防露ヒータ7の通電量の算出式により、各防露
ヒータ7の通電量を算出し(step7)、各防露ヒー
タ7の通電量の変更を行う(step8)。FIG. 4 shows a control system of the dew-proof heater 7. Detection signals from the housing surface temperature sensor 9 and the outside air humidity sensor 10 are input to the control unit 13 as control means, and are turned on and off by a control signal from the control unit 13 that controls the amount of electricity to each dew-proof heater 7 based on the detection signals. Elements 11a to 11c
, The required electric power can be input to the dew-proof heater 7. Hereinafter, the on / off elements 11 are referred to as the on / off elements 11a to 11c. FIG. 5 shows a flowchart for controlling the amount of current supplied to each of the dew-proof heaters 7 in the control unit 13. When a certain time and T 0, for every T 0 (ste
(p5 is branched to Y side) The housing surface temperature and the outside air humidity, which are the environmental humidity representing the outside air temperature of the refrigerator, were measured (step
6) Each type of dew-prevention that does not cause dew condensation on the horizontal partition plate according to the surface temperature of the housing and the outside air humidity, which is calculated in advance based on the structure of the horizontal partition plate of the refrigerator, the upper and lower refrigerator temperature setting values of the horizontal partition plate The energization amount of each dew-proof heater 7 is calculated by a formula for calculating the energization amount of the heater 7 (step 7), and the energization amount of each dew-proof heater 7 is changed (step 8).
【0022】次に本実施例の作用を説明する。扉開閉に
よる冷気の流出による温度、湿度変化影響、機械室周辺
の凝縮器用ファンによる放熱、ホコリの影響が少なく、
又、露付きの生じにくい冷蔵庫の筐体1の上部の扉2の
ヒンジカバー8部、又は、基板収納部の近傍等に筐体表
面温度センサ9,外気湿度センサ10を配置することに
より、外気の湿度が精度よく検知され、筐体表面温度と
外気湿度から制御部13で予め算定された各々の結露防
止ヒータ7への制御信号で、各結露防止ヒータを通電す
ることで、より少ないエネルギー消費で防露を行うこと
が可能となる。Next, the operation of this embodiment will be described. The influence of temperature and humidity changes due to the outflow of cool air due to opening and closing of the door, heat radiation by the condenser fan around the machine room, and the effect of dust are small.
In addition, by arranging the housing surface temperature sensor 9 and the outside air humidity sensor 10 near the hinge cover 8 of the door 2 at the upper part of the housing 1 of the refrigerator 1 where the dew is hardly formed, or near the substrate storage unit, the outside air Is detected with high accuracy, and a control signal to each of the dew condensation preventing heaters 7 calculated in advance by the control unit 13 from the housing surface temperature and the outside air humidity is supplied to each of the dew condensation preventing heaters, thereby reducing energy consumption. It is possible to perform dew prevention.
【0023】上述したように、本実施例によれば、外気
湿度センサは冷蔵庫自身の出す高温の凝縮熱,低温の冷
気,筐体外表面結露,凝縮器ファンの運ぶほこりの影響
を受けにくく、センサの感度劣化ないし誤動作が防止さ
れる。As described above, according to this embodiment, the outside air humidity sensor is hardly affected by the high temperature condensation heat, the low temperature cold air, the condensation on the outer surface of the housing, and the dust carried by the condenser fan. Is prevented from deteriorating in sensitivity or malfunctioning.
【0024】(実施例2)図6を用いて説明する。冷蔵
庫筐体の表面温度分布は、外気温度30℃では、扉の当
接するガスケット周辺の結露しやすい冷蔵庫筐体表面、
例えば、図3のB点では、それ以外の冷蔵庫筐体の表
面、例えば、図2のA点と比べ、約6℃も低くなり、外
気温度を代表する値としては大きくかけ離れ、外気温度
を代表する値としての筐体の表面温度と外気湿度とから
の結露防止ヒータ通電量の算出値としては約1W少なめ
になり結露する温度となる。従って、結露しやすい冷蔵
庫筐体表面以外の筐体表面温度と外気湿度とからである
と結露防止ヒータ通電量を精度よく算出でき、誤って結
露させるということがない。又、バラツキを考慮し、高
めに通電量を設定し、その分エネルギー消費が増えると
いうことはない。(Embodiment 2) A description will be given with reference to FIG. The surface temperature distribution of the refrigerator housing is such that when the outside air temperature is 30 ° C., the surface of the refrigerator housing around the gasket where the door comes into contact is easily condensed,
For example, at point B in FIG. 3, the surface is approximately 6 ° C. lower than the surface of the other refrigerator housing, for example, point A in FIG. The calculated value of the amount of electricity supplied to the dew condensation prevention heater from the surface temperature of the housing and the outside air humidity as the value to be reduced is about 1 W less, which is the temperature at which dew condensation occurs. Therefore, if the temperature is outside the temperature of the housing surface other than the surface of the refrigerator housing where dew condensation is likely to occur and the humidity of the outside air, the amount of electricity to be supplied to the dew condensation prevention heater can be calculated with high accuracy, thereby preventing erroneous dew condensation. In addition, the amount of energization is set higher in consideration of the variation, and the energy consumption does not increase accordingly.
【0025】上述したように、本実施例によれば、筐体
表面温度センサを結露しやすい、外気温度とかけ離れた
筐体表面部分に設置しない為、外気温度と略連動した近
い値となり、その結果、精度の高い露点温度が算出で
き、それを基準にして各々の結露防止ヒータ通電量が算
出されるから、バラツキを考慮する余分な上乗せ通電量
を減らせ、その分エネルギー消費が少なくなる。As described above, according to the present embodiment, since the housing surface temperature sensor is not installed on the housing surface portion which is easy to dew and is far from the outside air temperature, the sensor has a close value substantially linked to the outside air temperature. As a result, a highly accurate dew point temperature can be calculated, and the amount of power to be supplied to each of the dew condensation preventing heaters is calculated on the basis of the calculated temperature.
【0026】(実施例3)図7,図8,図9を用いて説
明する。図7において、冷凍サイクルの高圧側の配管表
面温度、例えば、凝縮器出口パイプ17cを冷凍サイク
ルの高圧側の配管表面温度センサ9aで検知し、図9の
フローチャートで示すように制御を行えば、外気温度と
冷凍サイクル高圧側配管温度は相関があるため、請求項
1と同様の作用を得ることができる。(Embodiment 3) A description will be given with reference to FIGS. 7, 8, and 9. FIG. In FIG. 7, if the pipe surface temperature on the high pressure side of the refrigeration cycle, for example, the condenser outlet pipe 17c is detected by the pipe surface temperature sensor 9a on the high pressure side of the refrigeration cycle, and control is performed as shown in the flowchart of FIG. Since there is a correlation between the outside air temperature and the refrigeration cycle high-pressure side pipe temperature, the same operation as in claim 1 can be obtained.
【0027】(実施例4)図10,図11,図12を用
いて説明する。図8において、冷凍サイクルの低圧側の
配管表面温度、例えば、サクションパイプ17dを冷凍
サイクルの低圧側の配管表面温度センサ9bで検知し、
図12のフローチャートで示すように制御を行えば、外
気温度と冷凍サイクル低圧側配管温度は相関があるた
め、請求項1と同様の作用を得ることができる。(Embodiment 4) A description will be given with reference to FIGS. 10, 11, and 12. FIG. In FIG. 8, the pipe surface temperature on the low pressure side of the refrigeration cycle, for example, the suction pipe 17d is detected by the pipe surface temperature sensor 9b on the low pressure side of the refrigeration cycle,
If the control is performed as shown in the flowchart of FIG. 12, since the outside air temperature and the refrigeration cycle low-pressure side pipe temperature have a correlation, the same operation as the first aspect can be obtained.
【0028】(実施例5)図13,図14を用いて説明
する。図13において、冷凍サイクルの圧縮機の運転率
を算出する手段を制御部13に設けて、スイッチング電
源15で圧縮機モータ16の制御信号を送ると共に、前
記運転率算出手段14で運転率を算出し、図14で示す
フローチャートにてヒータ通電量を決定すれば、請求項
1と同様の作用を得ることができる。(Embodiment 5) A description will be given with reference to FIGS. In FIG. 13, means for calculating the operation rate of the compressor of the refrigeration cycle is provided in the control unit 13, a control signal for the compressor motor 16 is sent from the switching power supply 15, and the operation rate is calculated by the operation rate calculation means 14. However, if the heater energization amount is determined according to the flowchart shown in FIG. 14, the same operation as the first aspect can be obtained.
【0029】[0029]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、扉開閉による冷気の流出による温度、湿度
変化影響、機械室周辺の凝縮器用ファンによる放熱、ホ
コリの影響が少なく、又、露付きの生じにくい冷蔵庫の
筐体の上部の扉ヒンジカバー部、又は、基板収納部の近
傍に湿度センサを配置することにより、外気の湿度が精
度よく検知され、筐体表面温度と外気湿度から予め算定
された各々の結露防止ヒータ通電量で、各結露防止ヒー
タを加温制御することで、より少ないエネルギー消費で
防露を行うことができる。又、湿度センサは冷蔵庫自身
の出す放熱、冷却、結露、ほこりの影響を受けにくく、
センサの感度劣化ないし誤動作を防止することができ
る。As described above, according to the first aspect of the present invention, the influence of temperature and humidity changes due to the outflow of cool air due to the opening and closing of the door, the heat radiation by the condenser fan around the machine room, and the influence of dust are small. In addition, by arranging a humidity sensor in the vicinity of the door hinge cover portion of the refrigerator housing or the substrate housing portion where dew is hard to occur, the humidity of the outside air is accurately detected, and the temperature of the housing surface and the outside air are detected. By controlling the heating of each dew condensation prevention heater with each of the dew condensation prevention heater energization amounts calculated in advance from the humidity, dew prevention can be performed with less energy consumption. In addition, the humidity sensor is hardly affected by heat radiation, cooling, condensation, and dust emitted by the refrigerator itself,
Sensor sensitivity deterioration or malfunction can be prevented.
【0030】請求項2記載の発明によれば、筐体表面温
度センサを扉の当接するガスケット周辺の結露しやすい
冷蔵庫本体表面以外の所に取り付けているため、発露し
やすい冷蔵庫筐体表面以外の筐体表面温度と外気湿度と
からであると結露防止ヒータ通電量を精度よく算出で
き、誤って結露させるということがない。又、バラツキ
を考慮し、高めに通電量を設定し、その分エネルギー消
費が増えるということはない。According to the second aspect of the present invention, since the housing surface temperature sensor is attached to a portion other than the surface of the refrigerator body around the gasket where the door is in contact, the surface of the refrigerator body is easily exposed to dew. When the temperature is based on the surface temperature of the housing and the humidity of the outside air, the amount of electricity to be supplied to the dew condensation prevention heater can be calculated with high accuracy, thereby preventing erroneous dew condensation. In addition, the amount of energization is set higher in consideration of the variation, and the energy consumption does not increase accordingly.
【0031】請求項3記載の発明によれば、筐体表面温
度センサの代わりに、冷凍サイクルの高圧側の配管表面
温度センサを用いても、外気温度と冷凍サイクル高圧側
温度は相関があるため、請求項1記載の発明と同等の結
露防止ヒータの制御ができ、同様の効果が得られる。According to the third aspect of the present invention, even if a piping surface temperature sensor on the high pressure side of the refrigeration cycle is used in place of the housing surface temperature sensor, there is a correlation between the outside air temperature and the refrigeration cycle high pressure side temperature. Accordingly, the same dew condensation prevention heater as that of the first aspect can be controlled, and the same effect can be obtained.
【0032】請求項4記載の発明によれば、筐体表面温
度センサの代わりに、冷凍サイクルの低圧側の配管表面
温度センサを用いても、外気温度と冷凍サイクル低圧側
温度は相関があるため、請求項1記載の発明と同等の結
露防止ヒータの制御ができ、同様の効果が得られる。According to the fourth aspect of the present invention, even if a piping surface temperature sensor on the low pressure side of the refrigeration cycle is used instead of the housing surface temperature sensor, there is a correlation between the outside air temperature and the refrigeration cycle low pressure side temperature. Accordingly, the same dew condensation prevention heater as that of the first aspect can be controlled, and the same effect can be obtained.
【0033】請求項5記載の発明によれば、表面温度セ
ンサの代わりに、冷凍サイクルの圧縮機の運転率を算出
する運転率算出手段を用いても、外気温度と運転率は相
関があるため、請求項1記載の発明と同等の結露防止ヒ
ータの制御ができ、同様の効果が得られる。According to the fifth aspect of the present invention, the outside air temperature and the operating rate are correlated even when the operating rate calculating means for calculating the operating rate of the compressor of the refrigeration cycle is used instead of the surface temperature sensor. Accordingly, the same dew condensation prevention heater as that of the first aspect can be controlled, and the same effect can be obtained.
【図1】本発明に係わる冷蔵庫の第1実施例において扉
を開いた状態を示す正面図FIG. 1 is a front view showing a state in which a door is opened in a first embodiment of a refrigerator according to the present invention.
【図2】上記第1実施例において筐体表面温度センサ,
湿度センサ及び通電手段の設置例を示す斜視図FIG. 2 shows a housing surface temperature sensor according to the first embodiment;
A perspective view showing an example of installation of a humidity sensor and an energization means.
【図3】上記第1実施例において扉が当接するガスケッ
ト周辺の概略拡大図FIG. 3 is a schematic enlarged view around a gasket where a door comes into contact in the first embodiment.
【図4】上記第1実施例において通電手段の制御系を示
す回路図FIG. 4 is a circuit diagram showing a control system of an energizing means in the first embodiment.
【図5】上記第1実施例において通電手段の制御を説明
するフローチャートFIG. 5 is a flowchart illustrating control of an energizing unit in the first embodiment.
【図6】上記第1実施例において外気湿度85%時の筐
体表面温度差による露点温度と防露ヒータ通電量差を説
明する防露ヒータ通電量の筐体表面温度特性を示す特性
図FIG. 6 is a characteristic diagram showing a housing surface temperature characteristic of a dew-proof heater energizing amount for explaining a dew point temperature and a dew-proof heater energizing amount difference due to a housing surface temperature difference at an outside air humidity of 85% in the first embodiment.
【図7】第3実施例において冷凍サイクル高圧配管表面
温度センサの設置例を示す概略斜視図FIG. 7 is a schematic perspective view showing an installation example of a refrigeration cycle high-pressure pipe surface temperature sensor in a third embodiment.
【図8】上記第3実施例において通電手段の制御系を示
す回路図FIG. 8 is a circuit diagram showing a control system of an energizing means in the third embodiment.
【図9】上記第3実施例において通電手段の制御を説明
するフローチャートFIG. 9 is a flowchart illustrating control of an energizing unit in the third embodiment.
【図10】第4実施例において冷凍サイクル低圧配管表
面温度センサの設置例を示す概略斜視図FIG. 10 is a schematic perspective view showing an installation example of a refrigeration cycle low-pressure pipe surface temperature sensor in a fourth embodiment.
【図11】上記第4実施例において通電手段の制御系を
示す回路図FIG. 11 is a circuit diagram showing a control system of an energizing means in the fourth embodiment.
【図12】上記第4実施例において通電手段の制御を説
明するフローチャートFIG. 12 is a flowchart illustrating control of a current supply unit in the fourth embodiment.
【図13】第5実施例において通電手段の制御系を示す
回路図FIG. 13 is a circuit diagram showing a control system of an energizing means in a fifth embodiment.
【図14】上記第5実施例において通電手段の制御を説
明するフローチャートFIG. 14 is a flowchart illustrating control of an energizing unit in the fifth embodiment.
【図15】従来の冷蔵庫における防露構造を示す概略斜
視図FIG. 15 is a schematic perspective view showing a dew-proof structure in a conventional refrigerator.
【図16】上記従来例における防露制御を説明するフロ
ーチャートFIG. 16 is a flowchart illustrating dew prevention control in the above-described conventional example.
1 筐体 1a 横仕切り板 2 扉 5 冷凍室 7,7a,7b,7c 防露ヒータ 8 ヒンジカバー 9,27,28,29,30 筐体表面温度センサ 9a 冷凍サイクルの高圧側の配管表面温度センサ 9b 冷凍サイクルの低圧側の配管表面温度センサ 10 外気湿度センサ 11,11a,11b,11c オンオフ素子 25 冷蔵庫本体 26 扉当接面パイプ 33 外箱側面迂回パイプ 34 電磁弁 Reference Signs List 1 housing 1a horizontal partition plate 2 door 5 freezer compartment 7, 7a, 7b, 7c dew-proof heater 8 hinge cover 9, 27, 28, 29, 30 housing surface temperature sensor 9a piping surface temperature sensor on high pressure side of refrigeration cycle 9b Low temperature side piping surface temperature sensor of refrigeration cycle 10 Outside air humidity sensor 11, 11a, 11b, 11c ON / OFF element 25 Refrigerator body 26 Door contact surface pipe 33 Outer box side bypass pipe 34 Solenoid valve
Claims (5)
板収納部の近傍に配置された外気湿度センサと、筐体表
面温度センサと、扉と扉の仕切り部分に設けた結露防止
ヒータと、前記筐体表面温度センサと前記外気湿度セン
サの出力に応じて前記結露防止ヒータへの通電を制御す
る制御手段とを有することを特徴とする冷蔵庫。An outside air humidity sensor disposed in the vicinity of a door hinge cover portion or a substrate storage portion in an upper portion of the housing, a housing surface temperature sensor, a dew condensation preventing heater provided in a partition between the door and the door, A refrigerator comprising: control means for controlling energization of the dew condensation prevention heater in accordance with outputs of the housing surface temperature sensor and the outside air humidity sensor.
ケット周辺の結露しやすい冷蔵庫本体表面以外のところ
に取り付ける請求項1記載の冷蔵庫。2. The refrigerator according to claim 1, wherein the housing surface temperature sensor is attached to a portion other than the surface of the refrigerator body where dew condensation is likely to occur around a gasket contacting the door.
板収納部の近傍に配置された外気湿度センサと、冷凍サ
イクルの高圧側の配管表面温度センサと、扉と扉の仕切
り部分に設けた結露防止ヒータと、前記冷凍サイクルの
高圧側の配管表面温度センサと前記外気湿度センサの出
力に応じて前記結露防止ヒータへの通電を制御する制御
手段とを有することを特徴とする冷蔵庫。3. An external air humidity sensor disposed near a door hinge cover portion or a substrate storage portion at an upper part of a housing, a piping surface temperature sensor on a high pressure side of a refrigeration cycle, and a door-to-door partition portion. A refrigerator comprising: a dew condensation prevention heater; and control means for controlling energization of the dew condensation prevention heater in accordance with an output of a piping surface temperature sensor on a high pressure side of the refrigeration cycle and an outside air humidity sensor.
板収納部の近傍に配置された外気湿度センサと、冷凍サ
イクルの低圧側の配管表面温度センサと、扉と扉の仕切
り部分に設けた結露防止ヒータと、前記冷凍サイクルの
低圧側の配管表面温度センサと前記外気湿度センサの出
力に応じて前記結露防止ヒータへの通電を制御する制御
手段とを有することを特徴とする冷蔵庫。4. An external air humidity sensor disposed near a door hinge cover or a substrate storage section at an upper part of a housing, a pipe surface temperature sensor on a low pressure side of a refrigeration cycle, and a door-to-door partition. A refrigerator comprising: a dew condensation prevention heater; and control means for controlling energization to the dew condensation prevention heater in accordance with an output of a pipe surface temperature sensor on a low pressure side of the refrigeration cycle and an output of the outside air humidity sensor.
板収納部の近傍に配置された外気湿度センサと、冷凍サ
イクルの圧縮機の運転率を算出する運転率算出手段と、
扉と扉の仕切り部分に設けた結露防止ヒータと、前記運
転率算出手段と前記外気湿度センサの出力に応じて前記
結露防止ヒータへの通電を制御する制御手段とを有する
ことを特徴とする冷蔵庫。5. An outside air humidity sensor disposed near a door hinge cover portion or a substrate storage portion at an upper part of a housing, and an operation rate calculation means for calculating an operation rate of a compressor of a refrigeration cycle;
A refrigerator comprising: a dew condensation preventing heater provided at a door and a partition between the doors; and a control unit that controls energization of the dew condensation preventing heater in accordance with an output of the operation rate calculation unit and the outside air humidity sensor. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15061697A JPH10339555A (en) | 1997-06-09 | 1997-06-09 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15061697A JPH10339555A (en) | 1997-06-09 | 1997-06-09 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10339555A true JPH10339555A (en) | 1998-12-22 |
Family
ID=15500776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15061697A Pending JPH10339555A (en) | 1997-06-09 | 1997-06-09 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10339555A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100432691B1 (en) * | 2001-11-19 | 2004-05-22 | 위니아만도 주식회사 | Control method of apparatus for protecting dew of kimchi chamber |
JP2005134093A (en) * | 2003-10-06 | 2005-05-26 | Sanden Corp | Showcase control device |
KR100764279B1 (en) | 2006-07-06 | 2007-10-05 | 엘지전자 주식회사 | Sound system of the refrigerator |
WO2008004841A3 (en) * | 2006-07-06 | 2008-10-23 | Lg Electronics Inc | Multimedia device incorporated inside the hinge cover of a refrigerator |
CN100432593C (en) * | 2002-01-29 | 2008-11-12 | 乐金电子(天津)电器有限公司 | Structure for preventing kimchi refrigerator from dewing |
US20100243748A1 (en) * | 2007-08-28 | 2010-09-30 | Yoshinori Narikawa | Humidity control apparatus |
CN102313420A (en) * | 2010-07-09 | 2012-01-11 | 苏州三星电子有限公司 | Humidity sensing type refrigerator |
CN102691448A (en) * | 2012-06-15 | 2012-09-26 | 合肥美的荣事达电冰箱有限公司 | Hinge component for refrigerator and refrigerator provided with same |
EP1751480A4 (en) * | 2004-05-10 | 2013-12-11 | Computer Process Controls Inc | ANTI-CONDENSATION CONTROL SYSTEM |
EP2161521A3 (en) * | 2008-09-03 | 2015-06-24 | LG Electronics Inc. | Refrigerator and method of controlling the same |
JP2016020796A (en) * | 2014-07-16 | 2016-02-04 | 日立アプライアンス株式会社 | refrigerator |
WO2019016958A1 (en) * | 2017-07-21 | 2019-01-24 | 三菱電機株式会社 | Refrigerator |
WO2021186613A1 (en) * | 2020-03-18 | 2021-09-23 | 三菱電機株式会社 | Refrigerator |
US20220170678A1 (en) * | 2020-11-30 | 2022-06-02 | Lg Electronics Inc. | Method of controlling refrigerator |
-
1997
- 1997-06-09 JP JP15061697A patent/JPH10339555A/en active Pending
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100432691B1 (en) * | 2001-11-19 | 2004-05-22 | 위니아만도 주식회사 | Control method of apparatus for protecting dew of kimchi chamber |
CN100432593C (en) * | 2002-01-29 | 2008-11-12 | 乐金电子(天津)电器有限公司 | Structure for preventing kimchi refrigerator from dewing |
JP2005134093A (en) * | 2003-10-06 | 2005-05-26 | Sanden Corp | Showcase control device |
EP1751480A4 (en) * | 2004-05-10 | 2013-12-11 | Computer Process Controls Inc | ANTI-CONDENSATION CONTROL SYSTEM |
KR100764279B1 (en) | 2006-07-06 | 2007-10-05 | 엘지전자 주식회사 | Sound system of the refrigerator |
WO2008004841A3 (en) * | 2006-07-06 | 2008-10-23 | Lg Electronics Inc | Multimedia device incorporated inside the hinge cover of a refrigerator |
US20100243748A1 (en) * | 2007-08-28 | 2010-09-30 | Yoshinori Narikawa | Humidity control apparatus |
EP2161521B1 (en) | 2008-09-03 | 2017-03-15 | LG Electronics Inc. | Refrigerator and method of controlling the same |
EP2161521A3 (en) * | 2008-09-03 | 2015-06-24 | LG Electronics Inc. | Refrigerator and method of controlling the same |
CN102313420A (en) * | 2010-07-09 | 2012-01-11 | 苏州三星电子有限公司 | Humidity sensing type refrigerator |
CN102691448A (en) * | 2012-06-15 | 2012-09-26 | 合肥美的荣事达电冰箱有限公司 | Hinge component for refrigerator and refrigerator provided with same |
JP2016020796A (en) * | 2014-07-16 | 2016-02-04 | 日立アプライアンス株式会社 | refrigerator |
WO2019016958A1 (en) * | 2017-07-21 | 2019-01-24 | 三菱電機株式会社 | Refrigerator |
CN109282567A (en) * | 2017-07-21 | 2019-01-29 | 三菱电机株式会社 | Refrigerator |
TWI671498B (en) * | 2017-07-21 | 2019-09-11 | 日商三菱電機股份有限公司 | refrigerator |
JPWO2019016958A1 (en) * | 2017-07-21 | 2019-11-07 | 三菱電機株式会社 | refrigerator |
RU2729001C1 (en) * | 2017-07-21 | 2020-08-03 | Мицубиси Электрик Корпорейшн | Refrigerator |
CN109282567B (en) * | 2017-07-21 | 2020-09-15 | 三菱电机株式会社 | Refrigerator with a door |
AU2017423650B2 (en) * | 2017-07-21 | 2020-10-01 | Mitsubishi Electric Corporation | Refrigerator |
WO2021186613A1 (en) * | 2020-03-18 | 2021-09-23 | 三菱電機株式会社 | Refrigerator |
JPWO2021186613A1 (en) * | 2020-03-18 | 2021-09-23 | ||
US20220170678A1 (en) * | 2020-11-30 | 2022-06-02 | Lg Electronics Inc. | Method of controlling refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10339555A (en) | Refrigerator | |
JP3073636B2 (en) | Indirect cooling refrigerator | |
AU2021218201B2 (en) | Refrigerator for vehicle and vehicle | |
HK1206095A1 (en) | Refrigerator | |
KR102817801B1 (en) | Refrigerating or warming apparatus, and vehicle | |
JP3956418B2 (en) | Enclosure cooling device | |
JP5159304B2 (en) | Control device for refrigeration equipment or air conditioning equipment | |
JP2016044942A (en) | refrigerator | |
JP3942688B2 (en) | refrigerator | |
US20240401867A1 (en) | Refrigerated device with door open sensor fault identification | |
JP2008175437A (en) | Refrigerator | |
JPH08166184A (en) | Refrigerating equipment with freezing function | |
JPH07103644A (en) | Refrigerator | |
JPH10197129A (en) | Refrigerator | |
JP2008070041A (en) | Refrigerator | |
JP3426504B2 (en) | Cooling storage | |
JP2000180014A (en) | Controller of refrigerator | |
KR19990010261A (en) | Defrosting operation method of refrigerator and its apparatus | |
JP2007298214A (en) | refrigerator | |
JP2021076327A (en) | refrigerator | |
JPH06129752A (en) | Refrigerator | |
RU2775367C2 (en) | Device with cooling and heating function and vehicle | |
KR100193707B1 (en) | Evaporation room shutoff device and control method of refrigerator having same | |
JP2736160B2 (en) | Refrigerator temperature controller | |
JPH05118732A (en) | Method of controlling defrosting of showcase |