JPH10335710A - Thermal conversion element and its manufacture - Google Patents
Thermal conversion element and its manufactureInfo
- Publication number
- JPH10335710A JPH10335710A JP9139564A JP13956497A JPH10335710A JP H10335710 A JPH10335710 A JP H10335710A JP 9139564 A JP9139564 A JP 9139564A JP 13956497 A JP13956497 A JP 13956497A JP H10335710 A JPH10335710 A JP H10335710A
- Authority
- JP
- Japan
- Prior art keywords
- type thermoelectric
- type
- elements
- rows
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Electromechanical Clocks (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電子腕時計等のエネルギ
ー源として使用される小型の熱電変換素子及びその製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small thermoelectric conversion element used as an energy source for an electronic wristwatch and the like, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】図6に示すように、熱電変換素子1は複
数のN型熱電素子2とP型熱電素子3とをN,P,N,
Pの順に電気的に直列に接続するように複数の回路4
a,4bにはんだ付けし、端部のN型熱電素子2a及び
図示しないP型熱電素子にそれぞれリード線5及び6を
接続して構成される。この上部の各回路4aと下部の回
路4bとの間に温度差が生じると熱電変換素子1の上面
又は下面で温度差に起因する熱が吸収され、吸収された
熱は各素子を通って下方又は上方に並列に輸送される。
その結果、低温側では電流が各素子のN型からP型に流
れ、この熱に相当する電流が図の矢印で示すように各素
子のN型からP型に流れ、N側端子であるN型熱電素子
2aに直流電源のプラス、P側端子である図示しないP
型熱電素子にマイナスの電圧が発生して電子腕時計を初
めとする携帯用電子機器等のエネルギー源として使用す
ることが期待されている。従来、熱電変換素子1は複数
のN型及びP型熱電素子は図6に示すようにN,P,
N,Pの順に所定の間隔をあけて配置した後、所定の電
気的接続となるように回路にはんだ付けすることにより
製造している。2. Description of the Related Art As shown in FIG. 6, a thermoelectric conversion element 1 comprises a plurality of N-type thermoelectric elements 2 and a P-type thermoelectric element 3, which are N, P, N,
The plurality of circuits 4 are electrically connected in series in the order of P.
a and 4b, and lead wires 5 and 6 are connected to the N-type thermoelectric element 2a at the end and a P-type thermoelectric element (not shown), respectively. When a temperature difference occurs between the upper circuit 4a and the lower circuit 4b, heat caused by the temperature difference is absorbed on the upper surface or the lower surface of the thermoelectric conversion element 1, and the absorbed heat passes through the respective elements and flows downward. Or they are transported in parallel upward.
As a result, on the low temperature side, a current flows from the N-type of each element to the P-type, and a current corresponding to this heat flows from the N-type of each element to the P-type as shown by the arrow in the figure, and the N-side terminal N P-type terminal (not shown) which is a positive and
A negative voltage is generated in the thermoelectric element, and it is expected to be used as an energy source for portable electronic devices such as electronic wristwatches. Conventionally, the thermoelectric conversion element 1 has a plurality of N-type and P-type thermoelectric elements as shown in FIG.
It is manufactured by arranging at a predetermined interval in the order of N and P, and then soldering to a circuit so as to obtain a predetermined electrical connection.
【0003】[0003]
【発明が解決しようとする課題】しかし、上述の従来の
製造方法は、工程数が多くて複雑であり、また所定の間
隔を有するようにN型熱電素子とP型熱電素子を配置し
かつ電極に接続する作業には細心の注意を必要とし、熱
電変換素子を効率良く量産することが困難であった。特
に、腕時計用の熱電素子では小体積中に100対以上の
半導体を形成しなければならない場合があり、N型熱電
素子とP型熱電素子を配置する際に極力その間隔を狭め
る必要があるが、その作業が困難で間隔をを狭めすぎる
と絶縁不良を引き起す不具合があった。この点を解消す
るために、N型熱電素子とP型熱電素子の周囲を絶縁材
料で囲むことも考えられるが、素子の周囲を全て絶縁材
料で囲むことはこの絶縁材料を介して熱が伝達され、そ
れぞれの素子による熱電変換率が減少する問題点もあっ
た。However, the above-mentioned conventional manufacturing method has a large number of steps and is complicated. Further, the N-type thermoelectric element and the P-type thermoelectric element are arranged so as to have a predetermined interval, and the electrodes are formed. The work of connecting the thermoelectric conversion elements requires great care, and it has been difficult to efficiently mass-produce the thermoelectric conversion elements. In particular, in thermoelectric elements for wristwatches, it may be necessary to form more than 100 pairs of semiconductors in a small volume. However, the work is difficult, and if the interval is too narrow, insulation failure occurs. In order to solve this problem, it is conceivable to surround the periphery of the N-type thermoelectric element and the P-type thermoelectric element with an insulating material. However, enclosing the entire periphery of the element with an insulating material means that heat is transmitted through the insulating material. Thus, there is a problem that the thermoelectric conversion rate of each element is reduced.
【0004】本発明の目的は、工程数が比較的少なく単
純で、N型熱電素子とP型熱電素子の配置及び電極との
接続が容易であって、熱電変換素子を効率良く量産し得
る熱電変換素子及びその製造方法を提供することにあ
る。本発明の別の目的は、熱電変換効率が高く、小さな
体積中に比較的多数の素子を有効に配置し得る熱電変換
素子及びその製造方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermoelectric device which has a relatively small number of steps, is simple in arrangement, and can easily connect an N-type thermoelectric element and a P-type thermoelectric element, and can be connected to electrodes. An object of the present invention is to provide a conversion element and a method for manufacturing the same. Another object of the present invention is to provide a thermoelectric conversion element having a high thermoelectric conversion efficiency and capable of effectively disposing a relatively large number of elements in a small volume, and a method for manufacturing the same.
【0005】[0005]
【課題を解決するための手段】図1に示すように、本発
明は、相対向する第1及び第2絶縁性基板11,12の
それぞれの対向面に複数の回路11a,11b,12a
が形成され、この回路11a,11b,12aにより複
数のN型熱電素子13と複数のP型熱電素子14とが
N,P,N,Pの順に電気的に直列に接続された熱電変
換素子10の改良である。その特徴ある構成は、複数の
N型熱電素子13と複数のP型熱電素子14が絶縁体1
7を介して交互にかつ列状に接合された複数の素子列1
8を形成し、複数の素子列18が互いに平行に所定の間
隔をあけて配設されたところにある。As shown in FIG. 1, according to the present invention, a plurality of circuits 11a, 11b, 12a are provided on opposing surfaces of opposing first and second insulating substrates 11, 12, respectively.
Are formed, and a plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 14 are electrically connected in series in the order of N, P, N, and P by the circuits 11a, 11b, and 12a. It is an improvement of. The characteristic configuration is that the plurality of N-type thermoelectric elements 13 and the plurality of P-type
A plurality of element rows 1 joined alternately and in a row through
8 are formed, and a plurality of element rows 18 are arranged at predetermined intervals in parallel with each other.
【0006】また、図1〜図3に示すように、本発明の
熱電変換素子10の製造方法は、シート状のN型熱電材
料21とシート状のP型熱電材料22とをシート状の絶
縁材料23を介してN型熱電材料−絶縁材料−P型熱電
材料−絶縁材料の順に又はP型熱電材料−絶縁材料−N
型熱電材料−絶縁材料の順に交互に積層して積層体24
を形成する工程と(図2(a)及び(b))、積層体2
4を積層方向に切断して複数のテープ状のN型熱電体2
6と複数のテープ状のP型熱電体27が絶縁体28を介
して交互に接合された積層板29を形成する工程と(図
2(c))、N型熱電体26及びP型熱電体27又はP
型熱電体及びN型熱電体を一単位として積層板29の積
層方向に順次連結する第1回路列11aとP型熱電体2
7及びN型熱電体26又はN型熱電体及びP型熱電体を
一単位として積層板29の積層方向に順次連結する第2
回路列11bとが交互に複数列形成された第1絶縁性基
板11に積層板29を接着する工程と(図3(a))、
第1及び第2回路列11a,11bの中間の積層板29
を積層方向に切除して空隙を形成して第1及び第2回路
列11a,11bに接着されたN型熱電素子13とP型
熱電素子14が絶縁体17を介して交互に接合された複
数の素子列18を形成する工程と(図3(b))、複数
の素子列18のそれぞれの端部におけるN型熱電素子1
3又はP型熱電素子14と隣接するいずれかの素子列1
8の端部におけるP型熱電素子14又はN型熱電素子1
3とを連結しかつ列方向のN型熱電素子13及びP型熱
電素子14とを連結する上部回路12aが形成された第
2絶縁性基板12を素子列18に接着して複数のN型熱
電素子13と複数のP型熱電素子14とがN,P,N,
Pの順に電気的に直列に接続された熱電変換素子10を
得る工程とを含む方法である。As shown in FIGS. 1 to 3, a method for manufacturing a thermoelectric conversion element 10 according to the present invention comprises a sheet-shaped N-type thermoelectric material 21 and a sheet-shaped P-type N-type thermoelectric material-insulating material-P-type thermoelectric material-insulating material or P-type thermoelectric material-insulating material-N
Laminated body 24 by alternately laminating the thermoelectric material-insulating material in this order.
(FIGS. 2A and 2B) and a laminate 2
4 in the laminating direction and a plurality of tape-shaped N-type thermoelectric elements 2
6 and a step of forming a laminated plate 29 in which a plurality of tape-shaped P-type thermoelectric elements 27 are alternately joined via an insulator 28 (FIG. 2C), an N-type thermoelectric element 26 and a P-type thermoelectric element. 27 or P
Circuit row 11a and P-type thermoelectric element 2 that are sequentially connected in the laminating direction of the laminate board 29 with the type thermoelectric element and the N-type thermoelectric element as one unit.
7 and an N-type thermoelectric element 26 or a second element in which the N-type thermoelectric element and the P-type thermoelectric element are connected as one unit in the laminating direction of the laminate 29.
Bonding the laminated board 29 to the first insulating substrate 11 in which a plurality of circuit rows 11b are alternately formed (FIG. 3A);
Laminated plate 29 between first and second circuit rows 11a and 11b
Are cut in the stacking direction to form a gap, and a plurality of N-type thermoelectric elements 13 and P-type thermoelectric elements 14 bonded to the first and second circuit rows 11a and 11b are alternately joined via an insulator 17. (FIG. 3 (b)) and the N-type thermoelectric element 1 at each end of the plurality of element rows 18.
3 or any element row 1 adjacent to the P-type thermoelectric element 14
8 at the end of P-type thermoelectric element 14 or N-type thermoelectric element 1
3 and an N-type thermoelectric element 13 and a P-type thermoelectric element 14 in the column direction. The element 13 and the plurality of P-type thermoelectric elements 14 are N, P, N,
Obtaining a thermoelectric conversion element 10 electrically connected in series in the order of P.
【0007】複数のN型熱電素子13と複数のP型熱電
素子14が絶縁体17を介して交互にかつ列状に接合す
ることによりN型熱電素子13とP型熱電素子14の間
隔を狭めることを可能とし、複数の素子列18を互いに
平行に所定の間隔をあけて配設することにより、素子1
3,14の周囲を全て絶縁材料で囲むことに起因する熱
の絶縁材料を介しての伝達を防止して、それぞれの素子
13,14による熱電変換率を向上させる。また、絶縁
体17を介して交互にかつ列状に接合された複数の素子
列18を互いに平行に所定の間隔をあけて配設すること
により、複数のN型熱電素子13と複数のP型熱電素子
14を正確に1つおきに配置することができ、かつ製造
工程数を比較的少なく済ませられる。A plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 14 are joined alternately and in rows via an insulator 17 to reduce the distance between the N-type thermoelectric elements 13 and the P-type thermoelectric elements 14. By arranging a plurality of element rows 18 in parallel with each other at a predetermined interval, the element 1
The transfer of heat caused by surrounding all of the elements 3 and 14 with the insulating material through the insulating material is prevented, and the thermoelectric conversion rates of the respective elements 13 and 14 are improved. Also, by arranging a plurality of element rows 18 alternately and in a row via an insulator 17 at predetermined intervals in parallel with each other, a plurality of N-type thermoelectric elements 13 and a plurality of P-type The thermoelectric elements 14 can be arranged exactly every other one, and the number of manufacturing steps can be relatively reduced.
【0008】[0008]
【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて詳しく説明する。図1に示すように、熱電変換
素子10は相対向する第1及び第2絶縁性基板11,1
2のそれぞれの対向面に複数の回路11a,11b,1
2aが形成され、この回路11a,11b,12aによ
り複数のN型熱電素子13と複数のP型熱電素子14と
がN,P,N,Pの順に電気的に直列に接続されたもの
である。電気的に直列に接続された複数の素子13,1
4の端部のN型熱電素子13a及びP型熱電素子14a
を接合した回路11a,11bにはそれぞれリード線1
6a,16bが接続され、この上部回路12aと下部回
路11aとの間に温度差が生じると各素子13,14を
通って下方又は上方に温度差に起因する熱が並列に輸送
される。これにより電流が低温側では各素子のN型から
P型に流れ、この熱に相当する電流が複数の素子13,
14の端部のN型熱電素子13a及びP型熱電素子14
aを接合したリード線16a,16bを介して得られる
ようになっている。Embodiments of the present invention will now be described in detail with reference to the drawings. As shown in FIG. 1, a thermoelectric conversion element 10 includes first and second insulating substrates 11, 1 opposed to each other.
2 has a plurality of circuits 11a, 11b, 1
2a are formed, and a plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 14 are electrically connected in series in the order of N, P, N, P by the circuits 11a, 11b, 12a. . A plurality of elements 13, 1 electrically connected in series
N-type thermoelectric element 13a and P-type thermoelectric element 14a
Are connected to the circuits 11a and 11b, respectively.
6a and 16b are connected, and when a temperature difference occurs between the upper circuit 12a and the lower circuit 11a, heat caused by the temperature difference is transported in parallel through the elements 13 and 14 downward or upward. As a result, a current flows from the N-type to the P-type of each element on the low temperature side, and a current corresponding to the heat is supplied to the plurality of elements 13 and 13.
N-type thermoelectric element 13a and P-type thermoelectric element 14 at the end of 14
a can be obtained through the lead wires 16a and 16b to which a is joined.
【0009】本発明の特徴ある構成は、複数のN型熱電
素子13と複数のP型熱電素子14が絶縁体17を介し
て交互にかつ列状に接合されて複数の素子列18を形成
し、この複数の素子列18が互いに平行に所定の間隔を
あけて配設されたところにある。複数のN型熱電素子1
3と複数のP型熱電素子14が絶縁体17を介して交互
にかつ列状に接合することによりN型熱電素子13とP
型熱電素子14の間隔を狭めることを可能とし、複数の
素子列18を互いに平行に所定の間隔をあけて配設する
ことにより、素子13,14の周囲を全て絶縁材料で囲
むことに起因する熱の絶縁材料を介しての伝達を防止し
て、それぞれの素子13,14による熱電変換率が向上
する。A feature of the present invention is that a plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 14 are alternately joined in a row through an insulator 17 to form a plurality of element rows 18. The plurality of element rows 18 are arranged in parallel with each other at a predetermined interval. Multiple N-type thermoelectric elements 1
3 and a plurality of P-type thermoelectric elements 14 are joined alternately and in rows via an insulator 17 so that the N-type thermoelectric elements 13
It is possible to narrow the interval between the thermoelectric elements 14 and arrange the plurality of element rows 18 in parallel with each other at a predetermined interval, thereby surrounding the elements 13 and 14 with an insulating material. The transfer of heat via the insulating material is prevented, and the thermoelectric conversion rates of the respective elements 13 and 14 are improved.
【0010】次に本発明の熱電変換素子10の製造方法
を説明する。図2(a)に示すように、シート状のN型
熱電材料21と、このN型熱電材料21と同形同大のシ
ート状のP型熱電材料22とを用意する。シート状の熱
電材料21,22の大きさは製造される熱電変換素子1
0の製作個数により決められるが、取扱いの便宜から1
辺が10〜50mmの四角状に形成されることが好まし
い。また、シート状の熱電材料21,22の厚さは熱電
変換素子10に使用される熱電素子の大きさに従ってそ
の厚さが決められ、特に0.05〜0.30mmが好ま
しい。Next, a method for manufacturing the thermoelectric conversion element 10 of the present invention will be described. As shown in FIG. 2A, a sheet-shaped N-type thermoelectric material 21 and a sheet-shaped P-type thermoelectric material 22 having the same shape and the same size as the N-type thermoelectric material 21 are prepared. The size of the sheet-like thermoelectric materials 21 and 22 depends on the thermoelectric conversion element 1 to be manufactured.
It is determined by the number of production of 0, but 1 for convenience of handling
It is preferable that the side is formed in a square shape of 10 to 50 mm. The thickness of the sheet-like thermoelectric materials 21 and 22 is determined according to the size of the thermoelectric element used for the thermoelectric conversion element 10, and is particularly preferably 0.05 to 0.30 mm.
【0011】次に、これらのシート状の熱電材料21,
22を図2(b)に示すように、絶縁材料23を介して
N型熱電材料21−絶縁材料23−P型熱電材料22−
絶縁材料23の順に交互に積層して積層体24を形成す
る。絶縁材料の厚さはN型熱電材料21とP型熱電材料
22の絶縁性を確保する上で必要最小限の厚さにするこ
とが好ましく、特に0.025〜0.200mmの厚さ
が熱電変換素子10の小型化を図る上で好ましい。この
例における絶縁材料23はアクリル系又はエポキシ系接
着剤が両面に塗布されたポリイミド又はポリエチレンテ
レフタレート(PET)からなるシート状の絶縁材料を
使用する。その後、図2(c)に示すように、この積層
体24を積層方向に切断して複数のテープ状のN型熱電
体26と複数のテープ状のP型熱電体27が絶縁体28
を介して交互に接合された積層板29を得る。積層板2
9の大きさは製造される熱電変換素子10の大きさに従
って決められ、0.01〜1.00mmの厚さに切断す
ることが好ましい。Next, these sheet-like thermoelectric materials 21,
2B, an N-type thermoelectric material 21-an insulating material 23-a P-type thermoelectric material 22-
The laminated body 24 is formed by alternately laminating the insulating materials 23 in this order. The thickness of the insulating material is preferably set to the minimum necessary for ensuring the insulating property between the N-type thermoelectric material 21 and the P-type thermoelectric material 22, and the thickness of 0.025 to 0.200 mm is particularly preferable. This is preferable in reducing the size of the conversion element 10. As the insulating material 23 in this example, a sheet-like insulating material made of polyimide or polyethylene terephthalate (PET) coated with an acrylic or epoxy adhesive on both sides is used. Then, as shown in FIG. 2C, the laminate 24 is cut in the laminating direction to form a plurality of tape-shaped N-type thermoelectric elements 26 and a plurality of tape-shaped P-type thermoelectric elements 27 into an insulator 28.
To obtain a laminated plate 29 joined alternately through the steps. Laminated board 2
The size of 9 is determined according to the size of the thermoelectric conversion element 10 to be manufactured, and is preferably cut to a thickness of 0.01 to 1.00 mm.
【0012】図3(a)に示すように、積層板29は所
定の回路が形成された第1絶縁性基板11に接着され
る。図3(a)及び図4に示すように、第1絶縁性基板
11はN型熱電体26及びP型熱電体27を一単位とし
て積層板29の積層方向に順次連結する第1回路列11
aと、P型熱電体27及びN型熱電体26を一単位とし
て積層板29の積層方向に順次連結する第2回路列11
bとが交互に複数列形成され、この第1及び第2回路列
11a,11bが形成された第1絶縁性基板11に積層
板29をはんだ付けすることにより、図3(a)に示す
ように、絶縁体28を介して存在するP型熱電体27及
びN型熱電体26が複数箇所並列に第1及び第2回路列
11a,11bにより接続される。第1絶縁性基板11
に積層板29をはんだ付けした後、図3(b)に示すよ
うに、第1及び第2回路列の中間部の積層板29を積層
方向に切除して空隙を形成する。積層板29の切除はダ
イシングマシンにより行い、積層板29を切除すること
によりN型熱電素子13とP型熱電素子14が絶縁体1
7を介して交互に接合された素子列18が第1及び第2
回路列11a,11bの上にそれぞれ形成される。As shown in FIG. 3A, the laminated board 29 is bonded to the first insulating substrate 11 on which a predetermined circuit is formed. As shown in FIGS. 3A and 4, the first insulating substrate 11 is composed of an N-type thermoelectric element 26 and a P-type thermoelectric element 27 as one unit, and the first circuit array 11 is sequentially connected in the stacking direction of the laminated board 29.
a and the second circuit row 11 sequentially connected in the laminating direction of the laminated board 29 with the P-type thermoelectric body 27 and the N-type thermoelectric body 26 as one unit.
b are alternately formed in a plurality of rows, and the laminated board 29 is soldered to the first insulating substrate 11 on which the first and second circuit rows 11a and 11b are formed, as shown in FIG. The P-type thermoelectric body 27 and the N-type thermoelectric body 26 existing via the insulator 28 are connected in parallel at a plurality of locations by the first and second circuit rows 11a and 11b. First insulating substrate 11
Then, as shown in FIG. 3B, a gap is formed by cutting off the laminated plate 29 in the middle part of the first and second circuit rows in the laminating direction, as shown in FIG. The laminate 29 is cut off by a dicing machine, and the laminate 29 is cut off so that the N-type thermoelectric element 13 and the P-type
The element row 18 alternately joined through the first and second
It is formed on each of the circuit rows 11a and 11b.
【0013】複数の素子列18を形成した後、次に第2
絶縁性基板12をこれらの素子列18に接着する。図1
及び図4に示すように、第2絶縁性基板12には上部回
路12aが形成され、上部回路12aはL字状に形成さ
れた回路と列方向のN型熱電素子13及びP型熱電素子
14とを連結する回路を備える。L字状に形成された回
路は複数の素子列18のそれぞれの端部におけるN型熱
電素子13又はP型熱電素子14と、その素子列18に
隣接するいずれかの素子列18の端部におけるP型熱電
素子14又はN型熱電素子13とを連結するようになっ
ている。この上部回路12aが形成された第2絶縁性基
板12を素子列18にはんだ付けすることにより、図1
に示すように、複数のN型熱電素子13と複数のP型熱
電素子14とがN,P,N,Pの順に電気的に直列に接
続された熱電変換素子10を得る。After the plurality of element rows 18 are formed, the second
The insulating substrate 12 is bonded to these element rows 18. FIG.
As shown in FIG. 4 and FIG. 4, an upper circuit 12a is formed on the second insulating substrate 12, and the upper circuit 12a is composed of an L-shaped circuit and an N-type thermoelectric element 13 and a P-type thermoelectric element 14 in the column direction. And a circuit for connecting The circuit formed in an L-shape includes an N-type thermoelectric element 13 or a P-type thermoelectric element 14 at each end of the plurality of element rows 18 and an end of one of the element rows 18 adjacent to the element row 18. The P-type thermoelectric element 14 or the N-type thermoelectric element 13 is connected. By soldering the second insulating substrate 12 on which the upper circuit 12a is formed to the element row 18, FIG.
As shown in (1), a thermoelectric conversion element 10 in which a plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 14 are electrically connected in series in the order of N, P, N, and P is obtained.
【0014】なお、上部回路12aのL字状に形成され
た回路は素子列18の端部におけるN型熱電素子13又
はP型熱電素子14と、その素子列18に隣接する素子
列18の端部におけるP型熱電素子14又はN型熱電素
子13とを連結するので、図3(b)の破線で示すよう
なL字状に形成された回路が連結する部分において重複
する熱電素子(図では素子列18の端部に位置するN型
熱電素子13)を、積層板29を切除する際に切取るこ
とが好ましい。即ち、この重複する熱電素子は第1及び
第2回路列11a,11bのいずれにもはんだ付けされ
ていないN型又はP型熱電素子13,14であるので、
図5の破線で示す状態から実線で示すように切取り、そ
れぞれの素子列18の端部にN型又はP型熱電素子1
3,14を交互に存在させた後、上部回路12aのL字
状に形成された回路により隣接する素子列18の端部に
おけるN型熱電素子13とP型熱電素子14とを連結す
ることが好ましい。このように複数のN型熱電素子13
と複数のP型熱電素子14とがN,P,N,Pの順に電
気的に直列に接続された熱電変換素子10には、図1に
示すように、端部のN型熱電素子13a及びP型熱電素
子14aを接合した回路11a,11bにそれぞれリー
ド線16a,16bが接続される。The L-shaped circuit of the upper circuit 12a includes an N-type thermoelectric element 13 or a P-type thermoelectric element 14 at an end of an element row 18 and an end of an element row 18 adjacent to the element row 18. Since the P-type thermoelectric element 14 or the N-type thermoelectric element 13 in the portion is connected, the thermoelectric element (FIG. 3B) overlaps at the portion where the circuit formed in an L-shape as shown by the broken line in FIG. It is preferable that the N-type thermoelectric element 13) located at the end of the element row 18 be cut off when the laminate 29 is cut off. That is, since the overlapping thermoelectric elements are the N-type or P-type thermoelectric elements 13 and 14 that are not soldered to any of the first and second circuit rows 11a and 11b,
The state shown by the broken line in FIG. 5 is cut out as shown by the solid line, and the N-type or P-type
After the three and the 14 are alternately present, the N-type thermoelectric element 13 and the P-type thermoelectric element 14 at the end of the adjacent element row 18 can be connected by the L-shaped circuit of the upper circuit 12a. preferable. Thus, the plurality of N-type thermoelectric elements 13
And a plurality of P-type thermoelectric elements 14 are electrically connected in series in the order of N, P, N, and P to the thermoelectric conversion element 10, as shown in FIG. Lead wires 16a and 16b are connected to circuits 11a and 11b to which the P-type thermoelectric elements 14a are joined, respectively.
【0015】なお、上述した実施の形態では、第1及び
第2回路列の中間の積層板29をダイシングマシンによ
り積層方向に切除して空隙を形成したが、積層板29の
切除はその他レーザにより切除しても良い。レーザによ
り積層板29を切除することにより、第1及び第2回路
列11a,11bのいずれにもはんだ付けされていない
N型又はP型熱電素子13,14の切取りをレーザによ
り強制的に行うことができる効果を有する。In the above-described embodiment, the gap is formed by cutting the laminated plate 29 in the middle of the first and second circuit rows in the laminating direction by using a dicing machine. May be resected. By cutting off the laminated board 29 with a laser, the laser is forcibly cut off the N-type or P-type thermoelectric elements 13 and 14 that are not soldered to any of the first and second circuit rows 11a and 11b. It has the effect that can be.
【0016】[0016]
【発明の効果】以上述べたように、本発明によれば、複
数のN型熱電素子と複数のP型熱電素子が絶縁体を介し
て交互にかつ列状に接合された複数の素子列を形成し、
この複数の素子列を互いに平行に所定の間隔をあけて配
設したので、N型熱電素子とP型熱電素子の間隔を可能
な限り狭めることできる。この結果、小さな体積中に比
較的多数の素子を有効に配置することができる。As described above, according to the present invention, a plurality of element rows in which a plurality of N-type thermoelectric elements and a plurality of P-type thermoelectric elements are joined alternately and in rows via an insulator are formed. Forming
Since the plurality of element rows are arranged at predetermined intervals in parallel with each other, the distance between the N-type thermoelectric element and the P-type thermoelectric element can be reduced as much as possible. As a result, a relatively large number of elements can be effectively arranged in a small volume.
【0017】また、複数の素子列を互いに平行に所定の
間隔をあけて配設することにより、素子の周囲を全て絶
縁材料で囲むことに起因する熱の絶縁材料を介しての伝
達を防止して、それぞれの素子による熱電変換率を向上
させることができる。更に、積層体を切断して積層板を
形成し、この積層板を回路列が複数列形成された第1絶
縁性基板に接着して積層板を積層方向に切除して複数の
素子列を形成し、この素子列に上部回路が形成された第
2絶縁性基板を接着すれば、複数のN型熱電素子と複数
のP型熱電素子とがN,P,N,Pの順に電気的に直列
に接続されるので、工程が単純でその工程数が比較的少
なく済む上、N型熱電素子とP型熱電素子の配置及び電
極との接続を容易に行うことができる。この結果、熱電
変換素子を効率良く量産できるとともに、素子同士の接
続ミスをなくすことができる。Further, by arranging a plurality of element rows in parallel with each other at a predetermined interval, it is possible to prevent heat from being transmitted through the insulating material due to surrounding the elements with an insulating material. Thus, the thermoelectric conversion rate of each element can be improved. Further, the laminate is cut to form a laminate, and the laminate is bonded to a first insulating substrate having a plurality of circuit rows formed thereon, and the laminate is cut off in the laminating direction to form a plurality of element rows. Then, by bonding the second insulating substrate on which the upper circuit is formed to the element row, the plurality of N-type thermoelectric elements and the plurality of P-type thermoelectric elements are electrically connected in series in the order of N, P, N, and P. Therefore, the process is simple, the number of processes is relatively small, and the arrangement of the N-type thermoelectric element and the P-type thermoelectric element and the connection with the electrodes can be easily performed. As a result, thermoelectric conversion elements can be efficiently mass-produced and connection errors between the elements can be eliminated.
【図1】本発明の熱電変換素子の斜視図。FIG. 1 is a perspective view of a thermoelectric conversion element of the present invention.
【図2】(a)本発明の熱電変換素子の製造のためのシ
ート状のN型熱電材料とシート状のP型熱電材料型枠の
斜視図。 (b)本発明の熱電変換素子の製造のための積層体の斜
視図。 (c)その積層体を切断して積層板を形成する斜視図。FIG. 2A is a perspective view of a sheet-shaped N-type thermoelectric material and a sheet-shaped P-type thermoelectric material form for manufacturing the thermoelectric conversion element of the present invention. (B) The perspective view of the laminated body for manufacture of the thermoelectric conversion element of the present invention. (C) A perspective view of cutting the laminate to form a laminate.
【図3】(a)積層板を第1絶縁性基板に接着した状態
を示す斜視図。 (b)積層板を切除して複数の素子列を第1絶縁性基板
上に形成した状態を示す斜視図。FIG. 3A is a perspective view showing a state in which a laminate is bonded to a first insulating substrate. (B) A perspective view showing a state in which a laminate is cut off to form a plurality of element rows on a first insulating substrate.
【図4】その第1及び第2絶縁性基板を示す斜視図。FIG. 4 is a perspective view showing the first and second insulating substrates.
【図5】図3(b)のA−A線断面図。FIG. 5 is a sectional view taken along line AA of FIG. 3 (b).
【図6】従来の熱電変換素子の斜視図。FIG. 6 is a perspective view of a conventional thermoelectric conversion element.
10 熱電変換素子 11 第1絶縁性基板 11a 第1回路列 11b 第2回路列 12 第2絶縁性基板 12a 上部回路 13 N型熱電素子 14 P型熱電素子 17 絶縁体 18 素子列 21 N型熱電材料 22 P型熱電材料 23 絶縁材料 24 積層体 26 N型熱電体 27 P型熱電体 29 積層板 DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion element 11 1st insulating board 11a 1st circuit row 11b 2nd circuit row 12 2nd insulating board 12a Upper circuit 13 N-type thermoelectric element 14 P-type thermoelectric element 17 Insulator 18 Element row 21 N-type thermoelectric material 22 P-type thermoelectric material 23 Insulating material 24 Laminate 26 N-type thermoelectric 27 P-type thermoelectric 29 Laminated plate
Claims (2)
12)のそれぞれの対向面に複数の回路(11a,11b,12a)が形
成され、前記回路(11a,11b,12a)により複数のN型熱電
素子(13)と複数のP型熱電素子(14)とがN,P,N,P
の順に電気的に直列に接続された熱電変換素子(10)にお
いて、 前記複数のN型熱電素子(13)と複数のP型熱電素子(14)
が絶縁体(17)を介して交互にかつ列状に接合された複数
の素子列(18)を形成し、 前記複数の素子列(18)が互いに平行に所定の間隔をあけ
て配設されたことを特徴とする熱電変換素子。A first insulating substrate facing the first substrate and a second insulating substrate facing the second insulating substrate;
A plurality of circuits (11a, 11b, 12a) are formed on respective opposing surfaces of the (12), and a plurality of N-type thermoelectric elements (13) and a plurality of P-type thermoelectric elements (14) are formed by the circuits (11a, 11b, 12a). ) And N, P, N, P
The plurality of N-type thermoelectric elements (13) and the plurality of P-type thermoelectric elements (14).
Form a plurality of element rows (18) joined alternately and in rows via an insulator (17), and the plurality of element rows (18) are arranged at predetermined intervals in parallel with each other. A thermoelectric conversion element.
のP型熱電材料(22)とをシート状の絶縁材料(23)を介し
てN型熱電材料−絶縁材料−P型熱電材料−絶縁材料の
順に又はP型熱電材料−絶縁材料−N型熱電材料−絶縁
材料の順に交互に積層して積層体(24)を形成する工程
と、 前記積層体(24)を積層方向に切断して複数のテープ状の
N型熱電体(26)と複数のテープ状のP型熱電体(27)が絶
縁体(28)を介して交互に接合された積層板(29)を形成す
る工程と、 N型熱電体(26)及びP型熱電体(27)又はP型熱電体及び
N型熱電体を一単位として前記積層板(29)の積層方向に
順次連結する第1回路列(11a)とP型熱電体(27)及びN
型熱電体(26)又はN型熱電体及びP型熱電体を一単位と
して前記積層板(29)の積層方向に順次連結する第2回路
列(11b)とが交互に複数列形成された第1絶縁性基板(1
1)に前記積層板(29)を接着する工程と、 前記第1及び第2回路列(11a,11b)の中間の前記積層板
(29)を積層方向に切除して空隙を形成して前記第1及び
第2回路列(11a,11b)に接着されたN型熱電素子(13)と
P型熱電素子(14)が絶縁体(17)を介して交互に接合され
た複数の素子列(18)を形成する工程と、 前記複数の素子列(18)のそれぞれの端部におけるN型熱
電素子(13)又はP型熱電素子(14)と隣接するいずれかの
素子列(18)の端部におけるP型熱電素子(14)又はN型熱
電素子(13)とを連結しかつ列方向のN型熱電素子(13)及
びP型熱電素子(14)とを連結する上部回路(12a)が形成
された第2絶縁性基板(12)を前記素子列(18)に接着して
複数のN型熱電素子(13)と複数のP型熱電素子(14)とが
N,P,N,Pの順に電気的に直列に接続された熱電変
換素子(10)を得る工程とを含む熱電変換素子の製造方
法。2. A sheet-shaped N-type thermoelectric material (21) and a sheet-shaped P-type thermoelectric material (22) are interposed via a sheet-shaped insulating material (23). A step of forming a laminate (24) by alternately laminating a material-insulating material or a P-type thermoelectric material-an insulating material-an N-type thermoelectric material-an insulating material in this order; By cutting, a laminated plate (29) is formed in which a plurality of tape-shaped N-type thermoelectric elements (26) and a plurality of tape-shaped P-type thermoelectric elements (27) are alternately joined via an insulator (28). A first circuit row (N-type thermoelectric element (26) and P-type thermoelectric element (27) or a first circuit row (P-type thermoelectric element and N-type thermoelectric element) as one unit and sequentially connected in the stacking direction of the laminate (29). 11a), P-type thermoelectric (27) and N
A plurality of second circuit rows (11b) which are sequentially connected in the stacking direction of the laminated plate (29) with the type thermoelectric element (26) or the N-type thermoelectric element and the P-type thermoelectric element as one unit are formed alternately. 1 insulating substrate (1
1) adhering the laminate (29) to the laminate; and the laminate between the first and second circuit rows (11a, 11b).
The N-type thermoelectric element (13) and the P-type thermoelectric element (14) bonded to the first and second circuit rows (11a, 11b) are cut off by cutting off (29) in the stacking direction to form a gap. Forming a plurality of element rows (18) alternately joined via (17); and an N-type thermoelectric element (13) or a P-type thermoelectric element at each end of the plurality of element rows (18). (14) is connected to the P-type thermoelectric element (14) or the N-type thermoelectric element (13) at the end of any adjacent element row (18), and the N-type thermoelectric elements (13) and P A second insulative substrate (12) on which an upper circuit (12a) for connecting to a thermoelectric element (14) is formed is adhered to the element row (18) and a plurality of N-type thermoelectric elements (13) and a plurality of Obtaining a thermoelectric conversion element (10) electrically connected in series with the P-type thermoelectric element (14) in the order of N, P, N, P.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9139564A JPH10335710A (en) | 1997-05-29 | 1997-05-29 | Thermal conversion element and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9139564A JPH10335710A (en) | 1997-05-29 | 1997-05-29 | Thermal conversion element and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10335710A true JPH10335710A (en) | 1998-12-18 |
Family
ID=15248209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9139564A Withdrawn JPH10335710A (en) | 1997-05-29 | 1997-05-29 | Thermal conversion element and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10335710A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000244026A (en) * | 1999-02-17 | 2000-09-08 | Seiko Instruments Inc | Thermoelectric transfer element and its manufacture |
WO2005124883A1 (en) * | 2004-06-22 | 2005-12-29 | Aruze Corp. | Thermoelectric device |
WO2012022684A1 (en) * | 2010-08-18 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Tubular thermoelectric module and method for producing said module |
WO2018035140A1 (en) * | 2016-08-17 | 2018-02-22 | Nitto Denko Corporation | Thermoelectric devices and methods of making same |
WO2022181520A1 (en) * | 2021-02-26 | 2022-09-01 | 三菱マテリアル株式会社 | Nitride insulator material, method for manufacturing same, heat flow switching element and thermoelectric conversion element |
-
1997
- 1997-05-29 JP JP9139564A patent/JPH10335710A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000244026A (en) * | 1999-02-17 | 2000-09-08 | Seiko Instruments Inc | Thermoelectric transfer element and its manufacture |
WO2005124883A1 (en) * | 2004-06-22 | 2005-12-29 | Aruze Corp. | Thermoelectric device |
JPWO2005124883A1 (en) * | 2004-06-22 | 2008-04-17 | アルゼ株式会社 | Thermoelectric element |
US8013235B2 (en) | 2004-06-22 | 2011-09-06 | Universal Entertainment Corporation | Thermoelectric device |
JP5197954B2 (en) * | 2004-06-22 | 2013-05-15 | 株式会社ユニバーサルエンターテインメント | Thermoelectric element |
WO2012022684A1 (en) * | 2010-08-18 | 2012-02-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Tubular thermoelectric module and method for producing said module |
US9484518B2 (en) | 2010-08-18 | 2016-11-01 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Tubular thermoelectric module and method for producing the module |
WO2018035140A1 (en) * | 2016-08-17 | 2018-02-22 | Nitto Denko Corporation | Thermoelectric devices and methods of making same |
WO2022181520A1 (en) * | 2021-02-26 | 2022-09-01 | 三菱マテリアル株式会社 | Nitride insulator material, method for manufacturing same, heat flow switching element and thermoelectric conversion element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2173007C2 (en) | Thermoelectric device | |
JP2000049391A (en) | Thermoelectric module and manufacture thereof | |
US20070095384A1 (en) | Photovoltaic modules and interconnect methodology for fabricating the same | |
US20070199588A1 (en) | High voltage solar cell and solar cell module | |
EP0482511A1 (en) | Integrated photovoltaic device | |
US4687879A (en) | Tiered thermoelectric unit and method of fabricating same | |
JP3099604B2 (en) | Flexible photoelectric conversion module, its connection method and its manufacturing apparatus | |
JPH10303471A (en) | Thermoelectric element and thermoelectric element module using the same | |
JP2006269721A (en) | Thermoelectric module and its manufacturing method | |
JPH10335710A (en) | Thermal conversion element and its manufacture | |
JP2000012916A (en) | Thermo-element and power-generating device | |
JP2017208478A (en) | Thermoelectric conversion module and thermoelectric conversion device | |
US9590126B2 (en) | Solar cell assembly II | |
JPH06275858A (en) | Photovoltaic module and its manufacture | |
JP2001250965A (en) | Solar battery module | |
JPH1187787A (en) | Production of thermoelectrtc module | |
JP2003017763A (en) | Substrate for thermo-electric module, method of fabricating the same module and thermo-electric module utilizing substrate for thermo-electric module | |
JP2004179480A (en) | Thin film thermoelectric element and its manufacturing method | |
JPS59215762A (en) | Composite semiconductor device | |
EP3428981B1 (en) | Thermoelectric conversion module | |
CN117542914B (en) | Solar cell module and method for manufacturing same | |
JPS62203387A (en) | Manufacture of amorphous photovoltaic power generation element module | |
KR20240052822A (en) | Energy harvesters and methods of manufacturing energy harvesters | |
JP2022052577A (en) | Thermoelectric module and manufacturing method thereof | |
JPS6320021B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040803 |