JPH10333130A - Optical device and its driving method - Google Patents
Optical device and its driving methodInfo
- Publication number
- JPH10333130A JPH10333130A JP14609497A JP14609497A JPH10333130A JP H10333130 A JPH10333130 A JP H10333130A JP 14609497 A JP14609497 A JP 14609497A JP 14609497 A JP14609497 A JP 14609497A JP H10333130 A JPH10333130 A JP H10333130A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- frequency
- voltage
- optical element
- smectic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、入射光を透過,反
射,散乱させる光学素子およびその駆動方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element for transmitting, reflecting and scattering incident light and a method for driving the same.
【0002】[0002]
【従来の技術】図13は、本発明者等が先に提案した特
願平8−242823号で開示される従来技術であるス
メクティック液晶を用いた、ホログラフィック高分子分
散液晶を示す概略図である。同図に示すように、素子
は、透明電極01をつけたガラス板02に挟まれた樹脂
03中に液晶粒04を周期的に分布させた構造を有す
る。入射光05は、液晶粒と樹脂の屈折率が異なるた
め、素子中の液晶粒によって散乱される。液晶粒が周期
的に分布しているため、干渉効果により、特定の波長の
光のみが反射され反射光06となり、眼球07に入り、
他の波長の光はそのまま透過し透過光08となる。この
素子の電極間に電圧をかけると、電界により液晶が配向
し高分子樹脂との屈折率差がなくなるため各液晶粒によ
る散乱光が消え、反射光がなくなる。従来ではこの反射
光の有無を素子動作として用いる。FIG. 13 is a schematic view showing a holographic polymer-dispersed liquid crystal using a smectic liquid crystal according to the prior art disclosed in Japanese Patent Application No. 8-242823 previously proposed by the present inventors. is there. As shown in the figure, the element has a structure in which liquid crystal grains 04 are periodically distributed in a resin 03 sandwiched between a glass plate 02 on which a transparent electrode 01 is provided. The incident light 05 is scattered by the liquid crystal particles in the element because the liquid crystal particles and the resin have different refractive indexes. Since the liquid crystal particles are periodically distributed, only light of a specific wavelength is reflected by the interference effect to become reflected light 06, which enters the eyeball 07,
Light of other wavelengths is transmitted as it is to become transmitted light 08. When a voltage is applied between the electrodes of this element, the liquid crystal is oriented by the electric field and the difference in refractive index from the polymer resin disappears, so that the scattered light by each liquid crystal particle disappears and the reflected light disappears. Conventionally, the presence or absence of the reflected light is used as an element operation.
【0003】この従来技術にかかる素子では、スメクテ
ィック液晶を用いているため、液晶粒内で液晶分子が層
構造を形成している。電界により液晶分子が配向する
と、該配向方向と直交する方向の層構造が形成され、電
界を除いても層構造が保持されるため透明状態が保持さ
れる。この素子を加熱すると、液晶がより粘性の低い等
方相に転移するため、もとの反射状態に戻る。In the device according to the prior art, since a smectic liquid crystal is used, liquid crystal molecules form a layer structure in liquid crystal grains. When the liquid crystal molecules are aligned by the electric field, a layer structure in a direction orthogonal to the alignment direction is formed, and the layer structure is maintained even when the electric field is removed, so that the transparent state is maintained. When this element is heated, the liquid crystal transitions to a less viscous isotropic phase, and thus returns to the original reflection state.
【0004】[0004]
【発明が解決しようとする課題】しかし、従来技術にか
かる素子では消去のために加熱が必要であり、電界のみ
で動作させられなかった。本発明は、素子状態の保持に
電力を必要とせず、かつ、電界のみで素子状態を変化さ
せることが可能な光学素子およびその駆動方法を提供す
ることを課題とする。However, the element according to the prior art requires heating for erasing and cannot be operated only by an electric field. An object of the present invention is to provide an optical element that does not require power to maintain an element state and can change the element state only by an electric field, and a driving method thereof.
【0005】[0005]
【課題を解決するための手段】前記課題を解決する本発
明の第1の光学素子は、透光性物質中に液晶粒を分散さ
せた構造の光学素子において、前記液晶粒が二周波スメ
クティック液晶からなることを特徴とする。According to a first aspect of the present invention, there is provided an optical element having a structure in which liquid crystal particles are dispersed in a light-transmitting substance, wherein the liquid crystal particles have a dual frequency smectic liquid crystal. It is characterized by consisting of.
【0006】本発明の第2の光学素子は、第1の光学素
子において、透光性物質と液晶粒が層状の微細周期構造
を成すように液晶粒を分散させたことを特徴とする。A second optical element according to the present invention is characterized in that, in the first optical element, the liquid crystal particles are dispersed such that the light transmitting substance and the liquid crystal particles form a layered fine periodic structure.
【0007】本発明の第3の光学素子は、第1又は第2
の光学素子を対となる電極で挟んでなることを特徴とす
る。[0007] The third optical element of the present invention comprises the first or second optical element.
Characterized in that the optical element is sandwiched between a pair of electrodes.
【0008】本発明の第4の光学素子は、第3光学素子
において、前記対となる電極がマトリクス状電極である
ことを特徴とする。A fourth optical element according to the present invention is characterized in that, in the third optical element, the paired electrodes are matrix electrodes.
【0009】一方の本発明の第1の光学素子の駆動方法
は、第3又は第4の光学素子の駆動方法であって、前記
対となる電極に、前記二周波スメクティック液晶の誘電
率異方性が正となる周波数を主とする第一の交流電圧
と、前記二周波スメクティック液晶の誘電率異方性が負
となる周波数を主とする第二の交流電圧を順次印加し、
前記液晶粒の配向方向をスイッチングすることを特徴と
する。The first method for driving an optical element according to the present invention is a method for driving a third or fourth optical element, wherein the pair of electrodes is provided with a dielectric anisotropy of the two-frequency smectic liquid crystal. A first AC voltage mainly having a positive frequency and a second AC voltage mainly having a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal becomes negative are sequentially applied,
The orientation direction of the liquid crystal grains is switched.
【0010】第2の光学素子の駆動方法は、第3又は第
4の光学素子の駆動方法であって、前記対となる電極
に、前記二周波スメクティック液晶の誘電率異方性が正
となる周波数を主とする第一の交流電圧と、前記二周波
スメクティック液晶の誘電率異方性が負となる周波数を
主とする第二の交流電圧の両方を印加し、前記第一の交
流電圧と前記第二の交流電圧の振幅比率を変えることに
より、前記液晶粒の配向方向を制御することを特徴とす
る。The driving method of the second optical element is a method of driving the third or fourth optical element, wherein the two-frequency smectic liquid crystal has a positive dielectric anisotropy at the pair of electrodes. Applying both a first AC voltage mainly at a frequency and a second AC voltage mainly at a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal is negative, the first AC voltage and The orientation direction of the liquid crystal grains is controlled by changing the amplitude ratio of the second AC voltage.
【0011】第3の光学素子の駆動方法は、第3又は第
4の光学素子の駆動方法であって、前記対となる電極
に、前記二周波スメクティック液晶の誘電率異方性が正
となる第一の周波数領域と、前記二周波スメクティック
液晶の誘電率異方性が負となる第二の周波数領域の両方
を含む周波数帯域内に中心周波数を有する交流電圧を印
加し、該交流電圧の中心周波数を変えて該交流電圧の周
波数帯域における前記第一の周波数領域と前記第二の周
波数領域の比率を変えることにより、前記液晶粒の配向
方向を制御することを特徴とする。A third method for driving the optical element is a method for driving the third or fourth optical element, wherein the dielectric anisotropy of the dual frequency smectic liquid crystal is positive at the pair of electrodes. Applying an AC voltage having a center frequency within a frequency band including both a first frequency region and a second frequency region in which the dielectric anisotropy of the two-frequency smectic liquid crystal is negative, the center of the AC voltage The orientation direction of the liquid crystal grains is controlled by changing a frequency to change a ratio between the first frequency region and the second frequency region in a frequency band of the AC voltage.
【0012】第4の光学素子の駆動方法は、第3又は第
4の光学素子の駆動方法であって、前記対となる電極
に、前記二周波スメクティック液晶の誘電率異方性が正
となる周波数を中心とする第一の交流電圧と、前記二周
波スメクティック液晶の誘電率異方性が負となる周波数
を中心とする第二の交流電圧の両方を印加し、前記第一
の交流電圧と前記第二の交流電圧の帯域幅の比率を変え
ることにより、前記液晶粒の配向方向を制御することを
特徴とする。A fourth method of driving the optical element is a method of driving the third or fourth optical element, wherein the pair of electrodes has a positive dielectric anisotropy of the dual frequency smectic liquid crystal. Applying both a first AC voltage centered on a frequency and a second AC voltage centered on a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal is negative, the first AC voltage and The orientation direction of the liquid crystal grains is controlled by changing the ratio of the bandwidth of the second AC voltage.
【0013】図1は、状態を記憶することができる光学
素子を示す概略図である。図1に示すように、本実施の
形態にかかる光学素子は、透明電極11を設けた基板で
ある二枚のガラス板12,12間に樹脂13を挾んでな
り、該樹脂13中には、二周波スメクティック液晶から
なる液晶粒14が周期的(縞模様状)に分布されてい
る。FIG. 1 is a schematic diagram showing an optical element capable of storing a state. As shown in FIG. 1, the optical element according to the present embodiment has a resin 13 sandwiched between two glass plates 12, 12 which are substrates on which a transparent electrode 11 is provided. Liquid crystal grains 14 composed of a two-frequency smectic liquid crystal are periodically (striped) distributed.
【0014】本発明で用いる二周波スメクティック液晶
とは、第1の文献(D. Coates,“Asmectic A phase of
positive and negative dielectric anisotropy”,Mo
l. Cryst. Liq. Cryst, vol 49,pp.83-87 (1978).)参照
に示されているように、液晶分子の長軸方向の誘電率を
εe 、単軸方向の誘電率をε0 、誘電率を測定する2種
類の周波数をfa ,fb としたとき、 εe (fa )<ε0 (fa ) であって ε0 (fb )<εe (fb ) となるように、誘電率の大小関係が周波数によって逆転
するスメクティック液晶を指す。また、本素子では液晶
の単軸方向の屈折率ε0 が、樹脂の屈折率とほぼ一致し
ている。The dual frequency smectic liquid crystal used in the present invention is described in the first document (D. Coates, “Asmectic A phase of
positive and negative dielectric anisotropy ”, Mo
As shown in l. Cryst. Liq. Cryst, vol 49, pp. 83-87 (1978).), the dielectric constant in the major axis direction of liquid crystal molecules is ε e , and the dielectric constant in the uniaxial direction is Assuming that ε 0 and two kinds of frequencies for measuring the permittivity are f a and f b , ε e (f a ) <ε 0 (f a ) and ε 0 (f b ) <ε e (f b ) Means a smectic liquid crystal in which the magnitude relation of the dielectric constant is reversed by the frequency. Further, in the present element, the refractive index ε 0 of the liquid crystal in the uniaxial direction is almost equal to the refractive index of the resin.
【0015】素子は、透明電極11をつけた素子はガラ
ス板12に挟まれた樹脂13中に二周波スメクティック
液晶からなる粒14を周期的に分布させた構造を有す
る。なお、液晶粒径,周期など素子の具体的な寸法は、
第2の文献(伊達宗和、田中敬二、加藤謹矢、酒井重
信、「ホログラフィック高分子分散液晶(HPDLC)を用い
た反射形表示素子」、信学技報EID95-147,ED95-221,SDW
95-261,pp.131-136(1996-2 )参照)及び第3の文献
(M. Date, N. Naito, K. Tanaka, K. Kato and S.Saka
i,“Three primary-color holographic polymer disper
sed liquid crystal(HPDLC) devices for reflective
displays. ”,Proceedings of Asia Display95,pp.603-
606(1995) 参照)に示されている、液晶粒にネマティッ
ク液晶を用いた従来の素子とほぼ同じである。The element having the transparent electrode 11 has a structure in which particles 14 made of a two-frequency smectic liquid crystal are periodically distributed in a resin 13 sandwiched between glass plates 12. The specific dimensions of the device, such as the liquid crystal particle size and period, are as follows:
Second reference (Muneka Date, Keiji Tanaka, Kenya Kato, Shigenobu Sakai, "Reflective display device using holographic polymer dispersed liquid crystal (HPDLC)", IEICE Technical Report EID95-147, ED95-221, SDW
95-261, pp. 131-136 (1996-2)) and the third document (M. Date, N. Naito, K. Tanaka, K. Kato and S. Saka).
i, “Three primary-color holographic polymer disper
sed liquid crystal (HPDLC) devices for reflective
displays. ”, Proceedings of Asia Display95, pp.603-
606 (1995)), which is almost the same as a conventional device using a nematic liquid crystal for liquid crystal grains.
【0016】ここで、入射光15は、素子中の液晶粒に
よって散乱されるが、液晶粒が周期的に分布しているた
め、干渉効果により、特定の波長の光のみが反射され反
射光16となり眼球17に入り、他の波長の光はそのま
ま透過し透過光18となる。この素子の電極間に誘電率
異方性が正となるような周波数fb の電圧をかけると、
電界により液晶が電界と平行に配向し高分子樹脂との屈
折率差がなくなるため各液晶粒による散乱光が消え、反
射光がなくなる。本発明の素子では、液晶としてスメク
ティック液晶を用いているため、この透過状態が電界を
切っても記憶される。ここで、この素子の電極間に誘電
率異方性が負となるような周波数fa の電圧をかける
と、電界により液晶が電界と垂直に配向し高分子樹脂と
の屈折率差が再び生じ、反射状態に戻る。この反射状態
は、スメクティック液晶を用いているため電界を切って
も保持される。Here, the incident light 15 is scattered by the liquid crystal particles in the device, but since the liquid crystal particles are periodically distributed, only the light of a specific wavelength is reflected by the interference effect and the reflected light 16 is reflected. The light enters the eyeball 17, and the light of another wavelength is transmitted as it is to become the transmitted light 18. When a voltage having a frequency f b such that the dielectric anisotropy becomes positive is applied between the electrodes of this element,
The liquid crystal is oriented in parallel with the electric field by the electric field, and the difference in the refractive index from the polymer resin is eliminated. In the device of the present invention, since the smectic liquid crystal is used as the liquid crystal, this transmission state is stored even when the electric field is cut off. Here, when a voltage of a frequency f a is applied between the electrodes of this element so that the dielectric anisotropy becomes negative, the liquid crystal is oriented perpendicular to the electric field by the electric field, and a difference in the refractive index from the polymer resin occurs again. And return to the reflection state. This reflection state is maintained even when the electric field is cut off because the smectic liquid crystal is used.
【0017】以上のように、素子状態の保持に電力を必
要とせず、かつ、電界のみで素子状態を変化させること
が可能な素子となる。As described above, an element that does not require electric power to maintain the element state and can change the element state only by the electric field is obtained.
【0018】[0018]
[第1の実施の形態]図2及び図3は、散乱・透過機能
をもつ光学素子を示す概略図である。本実施の形態にお
いて、液晶は長軸方向と単軸方向の屈折率が異なる。ま
た、樹脂と液晶の単軸方向の屈折率はほぼ等しい。[First Embodiment] FIGS. 2 and 3 are schematic views showing an optical element having a scattering / transmission function. In the present embodiment, the liquid crystal has a different refractive index in the long axis direction and in the single axis direction. Further, the refractive indices of the resin and the liquid crystal in the uniaxial direction are substantially equal.
【0019】図2に示すように、素子は、例えばITO
(indium tin oxide)のような電極11をつけた例えばガ
ラス板のような透明な板12に挟まれた樹脂13中に二
周波スメクティック液晶粒14を分散させた構造を有す
る。なお、図中二周波スメクティック液晶粒14の矢印
は液晶の配向方向を示している。図2において、入射光
15は液晶粒14と樹脂13の屈折率差のため、素子中
の液晶粒14によって散乱されるので、この素子は散乱
状態となる。As shown in FIG. 2, the element is, for example, ITO
It has a structure in which dual frequency smectic liquid crystal particles 14 are dispersed in a resin 13 sandwiched between transparent plates 12 such as a glass plate provided with electrodes 11 such as (indium tin oxide). In the figure, the arrow of the two-frequency smectic liquid crystal particles 14 indicates the orientation direction of the liquid crystal. In FIG. 2, the incident light 15 is scattered by the liquid crystal particles 14 in the device due to the difference in the refractive index between the liquid crystal particles 14 and the resin 13, so that the device is in a scattering state.
【0020】この素子の電極11,11間に、電源20
により液晶の誘電率異方性が正となるような周波数の電
圧をかけると、電界により液晶が電界と平行に配向し高
分子樹脂13との屈折率差がなくなるため、図2に示し
た各液晶粒による散乱光19が消え、図3に示すように
透過光18となり、透過状態となる。本発明では、スメ
クティック液晶を用いているため、透明状態は電界を切
っても保持される。A power supply 20 is provided between the electrodes 11 of the device.
When a voltage having a frequency at which the dielectric anisotropy of the liquid crystal becomes positive is applied, the liquid crystal is oriented in parallel with the electric field by the electric field, and the refractive index difference from the polymer resin 13 disappears. The scattered light 19 due to the liquid crystal particles disappears and becomes the transmitted light 18 as shown in FIG. In the present invention, since the smectic liquid crystal is used, the transparent state is maintained even when the electric field is cut off.
【0021】ここで、この素子の電極11,11間に液
晶の誘電率異方性が負となるような周波数の電圧をかけ
ると、電界と垂直方向に液晶が配向し高分子樹脂との屈
折率差が生じるため、図2に示すような散乱状態とな
る。本発明では、スメクティック液晶を用いているた
め、散乱状態は電界を切っても保持される。Here, when a voltage having a frequency at which the dielectric anisotropy of the liquid crystal becomes negative is applied between the electrodes 11 of the device, the liquid crystal is oriented in a direction perpendicular to the electric field and refracted by the polymer resin. Since a rate difference occurs, a scattering state as shown in FIG. 2 results. In the present invention, since the smectic liquid crystal is used, the scattering state is maintained even when the electric field is turned off.
【0022】すなわち、電界のみで散乱・透過状態をス
イッチでき、かつ、どちらの状態も電力なしで保持可能
な素子を実現できた。That is, an element capable of switching the scattering / transmission state only by the electric field and capable of holding both states without power can be realized.
【0023】本素子は、たとえば4-n-pentylphenyl 2'-
chloro-4'(6-n-hexy1-2-naphthoyloxy)benzoate のよう
な二周波スメクティック液晶を紫外線硬化樹脂(たとえ
ばNorland 社製「NOA−65(商品名)」に溶かした
溶液を、電極のついた二枚のガラス板ではさみ、紫外線
を照射することにより作製できる。The present device is, for example, 4-n-pentylphenyl 2'-
A solution obtained by dissolving a dual-frequency smectic liquid crystal such as chloro-4 '(6-n-hexy1-2-naphthoyloxy) benzoate in an ultraviolet curable resin (for example, “NOA-65 (brand name)” manufactured by Norland) is attached to the electrode. It can be produced by sandwiching between two glass plates and irradiating with ultraviolet rays.
【0024】本実施の形態では、板としてガラス板を用
いたが、アクリルのような有機物からなる板、フィルム
などであってもよい。また、電極としてITOを用いた
がこれに限らない。In this embodiment, a glass plate is used as the plate, but a plate or film made of an organic material such as acrylic may be used. In addition, although ITO was used as the electrode, it is not limited to this.
【0025】本実施の形態においてマトリックス状の電
極を用いることにより、電極交点を画素とする表示に使
用できほぼ任意の画像情報を表示可能である。ここで、
マトリックス状電極とは、例えば図4(a)に示したよ
うに、基板43上に帯状の電極44をつけたものをいう
ものであるが、本発明はこれに限定されるものではな
い。使用に際しては、図4(b)のように、2枚の基板
43−1,43−2について電極44−1,44−2が
互いに交差するように重ねて使用すればよい。なお、図
4(c)は横方向から見た断面図である。By using a matrix-shaped electrode in this embodiment, it is possible to use the electrode intersection as a pixel and display almost arbitrary image information. here,
The matrix-shaped electrode is, for example, one in which a strip-shaped electrode 44 is provided on a substrate 43 as shown in FIG. 4A, but the present invention is not limited to this. At the time of use, as shown in FIG. 4B, the two substrates 43-1 and 43-2 may be used so that the electrodes 44-1 and 44-2 intersect each other. FIG. 4C is a cross-sectional view as viewed from the lateral direction.
【0026】[第2の実施の形態]図5は、状態を記憶
することができる光学素子を示す概略図である。素子
は、例えばITOのような電極11をつけた例えばガラ
ス板のような透明な板12に挟まれた高分子樹脂13中
に二周波スメクティック液晶粒14を周期的に分布させ
た構造を有する。入射光15は、素子中の液晶粒によっ
て散乱されるが、液晶粒が周期的に分布しているため、
干渉効果により、特定の波長の光のみが反射され反射光
16となり眼球17に入り、他の波長の光はそのまま透
過し透過光18となる。[Second Embodiment] FIG. 5 is a schematic diagram showing an optical element capable of storing a state. The element has a structure in which two-frequency smectic liquid crystal particles 14 are periodically distributed in a polymer resin 13 sandwiched between transparent plates 12 such as glass plates provided with electrodes 11 such as ITO. The incident light 15 is scattered by the liquid crystal particles in the element, but since the liquid crystal particles are periodically distributed,
Due to the interference effect, only light of a specific wavelength is reflected and becomes reflected light 16 and enters the eyeball 17. Light of other wavelengths is transmitted as it is to become transmitted light 18.
【0027】この素子の電極間に液晶の誘電率異方性が
正となるような交流電圧をかけると、電界により液晶が
配向し高分子樹脂との屈折率差がなくなるため各液晶粒
による散乱光が消え、反射光がなくなる。本発明の素子
では、液晶としてスメクティック液晶を用いているた
め、この透過状態が電界を切っても保持される。When an AC voltage is applied between the electrodes of the device so that the dielectric anisotropy of the liquid crystal becomes positive, the liquid crystal is oriented by the electric field and the difference in the refractive index from the polymer resin disappears, so that the scattering by each liquid crystal particle occurs. The light disappears and there is no reflected light. In the device of the present invention, since the smectic liquid crystal is used as the liquid crystal, this transmission state is maintained even when the electric field is cut off.
【0028】図6は本発明の光学素子の作製法を示す概
略図である。電極21をつけた透明な板22の間に、光
硬化性樹脂の中に二周波スメクティック液晶を溶解させ
た原材料23をいれる。ここに、レーザ光源24より出
た出力光25を二光束干渉させることにより生じさせた
干渉縞26を照射する。干渉縞の腹の部分で樹脂の重合
がおこり、残りの部分が相分離により析出した液晶領域
となり図5に示すような所望の構造を得ることができ
る。FIG. 6 is a schematic view showing a method for manufacturing the optical element of the present invention. A raw material 23 in which a dual-frequency smectic liquid crystal is dissolved in a photo-curable resin is put between transparent plates 22 having electrodes 21 attached thereto. Here, an interference fringe 26 generated by causing two light beams to interfere with the output light 25 emitted from the laser light source 24 is irradiated. Polymerization of the resin occurs at the antinode portion of the interference fringes, and the remaining portion becomes a liquid crystal region precipitated by phase separation, whereby a desired structure as shown in FIG. 5 can be obtained.
【0029】本実施の形態では、板としてガラス板を用
いたが、アクリルのような有機物からなる板、フィルム
などであってもよい。また、電極としてITOを用いた
がこれに限らない。In the present embodiment, a glass plate is used as the plate, but a plate or film made of an organic material such as acrylic may be used. In addition, although ITO was used as the electrode, it is not limited to this.
【0030】また、図7のように電極21を設けた基板
22,22の間に透過型回折格子構造30を設けたもの
であってもよい。なお、本構造は、図6の作製法におい
て2つのレーザ光を一方の板の側から入射し、二光束干
渉させれば作製できる。Further, as shown in FIG. 7, a transmission type diffraction grating structure 30 may be provided between the substrates 22 provided with the electrodes 21. Note that this structure can be manufactured by making two laser beams incident from one plate side and causing two-beam interference in the manufacturing method of FIG.
【0031】また、構造は一般にホログラムであっても
よい。ホログラムとは、図8に示すように、レーザ光源
24の出力光25と、例えば図のような物体41からの
散乱光42のような任意の可干渉の光とからなる、干渉
縞の照射により得られる構造をいう。The structure may generally be a hologram. As shown in FIG. 8, a hologram is formed by irradiating an interference fringe composed of output light 25 of a laser light source 24 and any coherent light such as scattered light 42 from an object 41 as shown in the figure. Refers to the resulting structure.
【0032】本実施の形態においても、上述したマトリ
ックス状の電極を用いることにより、表示に適用可能で
ありほぼ任意の画像情報を表示可能である。Also in the present embodiment, by using the above-mentioned matrix-shaped electrodes, it is applicable to display and can display almost arbitrary image information.
【0033】本実施の形態により表示した情報を電力無
しに保持する単色表示素子を実現することができた。According to the present embodiment, a monochromatic display element which holds displayed information without power can be realized.
【0034】本実施の形態の素子は、図9のように複数
の反射波長の異なる素子91−1〜91−3を積層する
ことにより、多色化が可能である。The device according to the present embodiment can be multicolored by stacking a plurality of devices 91-1 to 91-3 having different reflection wavelengths as shown in FIG.
【0035】[第3の実施の形態]図10は、本発明の
光学素子を示す概略図である。実施の形態1,2の素子
から、基板および電極を除いたもので、図2または図5
等の素子を作製後、電極11の付いたガラス板12をは
がして作製したものである。作製時に電界をかけること
により液晶の配向を制御して、光学特性に分布を与えた
フィルムを作製することが可能である。[Third Embodiment] FIG. 10 is a schematic view showing an optical element of the present invention. FIG. 2 or FIG.
And the like, and then the glass plate 12 with the electrode 11 is peeled off. By applying an electric field during the production, the orientation of the liquid crystal can be controlled to produce a film having a distribution in optical characteristics.
【0036】実施の形態1の構造をもつものは、散乱度
が場所によって異なるフィルムとなる(図10
(a))。The film having the structure of the first embodiment is a film having a different degree of scattering depending on the location (FIG. 10).
(A)).
【0037】また、実施の形態2の構造をもつものは、
回折状態が場所により異なるフィルム状ホログラムを実
現できる(図10(b),(c))。The one having the structure of the second embodiment is
A film hologram whose diffraction state differs depending on the location can be realized (FIGS. 10B and 10C).
【0038】本実施の形態の素子は、二周波スメクティ
ック液晶を用いているため、このフィルムを電極で挟み
電界を加えることにより、電極の形状に対応する部分の
状態を変化させることが可能である。Since the device of this embodiment uses a two-frequency smectic liquid crystal, the state of the portion corresponding to the shape of the electrode can be changed by sandwiching the film between the electrodes and applying an electric field. .
【0039】[第4の実施の形態]実施の形態1,2で
は、異なる2種類の周波数の電圧をかけることにより、
素子状態をスイッチしたが、離散的二周波による駆動に
限らない。加える電圧が、図11(a)に示すように、
スメクティック液晶の誘電率が正となる周波数を主とす
る周波数に幅をもった第一の交流電圧と、スメクティッ
ク液晶の誘電率が負となる周波数を主とする周波数に幅
をもった第二の交流電圧に2種類の交流電圧であっても
よい。また、図11(b)に示すように、前記第一なら
びに第二の交流電圧を重ね合わせて加え、それぞれの振
幅の比率を変えることによっても、素子状態のスイッチ
が可能である。また、振幅の比率を連続的に変えること
により中間状態を得ることも可能である。これによっ
て、スイッチの加減を所望の状態に調整することができ
る。[Fourth Embodiment] In the first and second embodiments, by applying voltages of two different frequencies,
Although the element state is switched, the invention is not limited to the drive using two discrete frequencies. As shown in FIG. 11A, the applied voltage is
A first AC voltage having a width mainly at a frequency at which the dielectric constant of the smectic liquid crystal becomes positive, and a second AC voltage having a width at a frequency mainly at a frequency at which the dielectric constant of the smectic liquid crystal becomes negative. Two types of AC voltages may be used as the AC voltage. Also, as shown in FIG. 11B, the element state can be switched by superimposing the first and second AC voltages and changing the ratio of the respective amplitudes. It is also possible to obtain an intermediate state by continuously changing the amplitude ratio. This makes it possible to adjust the level of the switch to a desired state.
【0040】また、図12(a)に示すように、二周波
スメクティック液晶の誘電率異方性が正となる第一の周
波数成分と、二周波スメクティック液晶の誘電率異方性
が負となる第二の周波数成分の両方を含む周波数帯域内
に中心周波数を有する交流電圧を印加して、その交流電
圧の周波数スペクトルにおける中心周波数を変えて、こ
の交流電圧の有する前記第一の周波数成分と前記第二の
周波数成分の比率を変えることによっても、中間状態を
得ることが可能である。As shown in FIG. 12A, the first frequency component in which the dielectric anisotropy of the two-frequency smectic liquid crystal is positive and the dielectric anisotropy of the two-frequency smectic liquid crystal are negative. Applying an AC voltage having a center frequency within a frequency band including both of the second frequency components, changing the center frequency in the frequency spectrum of the AC voltage, the first frequency component having the AC voltage and the An intermediate state can be obtained by changing the ratio of the second frequency component.
【0041】また、図12(b)に示すように、二周波
スメクティック液晶の誘電率異方性が正となる第一の周
波数を中心とする交流電圧と、二周波スメクティック液
晶の誘電率異方性が負となる第二の周波数を中心とする
交流電圧を印加して、その交流電圧の周波数スペクトル
における帯域幅を変えて、その交流電圧の有する前記第
一の周波数を中心とする交流電圧と前記第二の周波数を
中心とする交流電圧の成分比率を変えることによって
も、中間状態を得ることが可能である。Further, as shown in FIG. 12B, an AC voltage centered on the first frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal becomes positive, and a dielectric anisotropy of the two-frequency smectic liquid crystal. Applying an AC voltage centered on the second frequency at which the AC voltage is negative, changing the bandwidth in the frequency spectrum of the AC voltage, and an AC voltage centered on the first frequency having the AC voltage The intermediate state can also be obtained by changing the component ratio of the AC voltage centered on the second frequency.
【0042】上述した実施の形態1−3では、液晶の単
軸方向の屈折率と樹脂の屈折率を一致させ透明状態を作
り出したが、一致させなくても良い。この場合は、状態
により散乱度または反射率が変化する素子となる。In Embodiment 1-3 described above, the refractive index of the liquid crystal in the uniaxial direction is made to match the refractive index of the resin to create a transparent state. In this case, an element whose scattering degree or reflectance changes depending on the state is obtained.
【0043】また、上述した実施の形態1−3の透光性
物質は、等方的であっても複屈折性を持っていても良
い。Further, the light-transmitting substance according to Embodiment 1-3 described above may be isotropic or have birefringence.
【0044】[0044]
【発明の効果】本発明により、電界のみで表示状態を変
化させかつ表示状態を保持可能な表示素子が実現でき
る。よって、従来のように、消去のための加熱手段を設
ける必要がなくなり、簡素化できることとなる。According to the present invention, it is possible to realize a display element which can change the display state and maintain the display state only by the electric field. Therefore, unlike the related art, there is no need to provide a heating unit for erasing, and the simplification can be achieved.
【0045】高分子樹脂を用いることにより素子に可変
形(フレキシブル)性を持たせることができる。By using a polymer resin, the element can be made variable (flexible).
【図1】本発明の光学素子を示す概略図である。FIG. 1 is a schematic view showing an optical element of the present invention.
【図2】本発明の第1の実施の形態にかかる光学素子
(散乱状態)の概略図である。FIG. 2 is a schematic diagram of an optical element (scattered state) according to the first embodiment of the present invention.
【図3】本発明の第1の実施の形態にかかる光学素子
(透明状態)の概略図である。FIG. 3 is a schematic view of an optical element (transparent state) according to the first embodiment of the present invention.
【図4】本発明の第1の実施の形態にかかるマトリック
ス状電極を用いた光学素子の概略図である。FIG. 4 is a schematic view of an optical element using a matrix electrode according to the first embodiment of the present invention.
【図5】本発明の第2の実施の形態にかかる光学素子の
概略図である。FIG. 5 is a schematic diagram of an optical element according to a second embodiment of the present invention.
【図6】本発明の第2の実施の形態にかかる光学素子の
概略図である。FIG. 6 is a schematic view of an optical element according to a second embodiment of the present invention.
【図7】本発明の第2の実施の形態にかかる光学素子の
概略図である。FIG. 7 is a schematic diagram of an optical element according to a second embodiment of the present invention.
【図8】本発明の第2の実施の形態にかかる光学素子の
ホログラムの概略図である。FIG. 8 is a schematic diagram of a hologram of an optical element according to a second embodiment of the present invention.
【図9】本発明の第2の実施の形態にかかる光学素子の
表示素子の構成を示す概略図である。FIG. 9 is a schematic diagram illustrating a configuration of a display element of an optical element according to a second embodiment of the present invention.
【図10】本発明の第3の実施の形態にかかる光学素子
の概略図である。FIG. 10 is a schematic view of an optical element according to a third embodiment of the present invention.
【図11】本発明の第4の実施の形態にかかる光学素子
に加える電圧の周波数と振幅との関係を示す図である。FIG. 11 is a diagram showing a relationship between frequency and amplitude of a voltage applied to an optical element according to a fourth embodiment of the present invention.
【図12】本発明の第4の実施の形態にかかる光学素子
に加える電圧の周波数と振幅との関係を示す図である。FIG. 12 is a diagram illustrating a relationship between frequency and amplitude of a voltage applied to an optical element according to a fourth embodiment of the present invention.
【図13】従来技術を説明する説明図である。FIG. 13 is an explanatory diagram illustrating a conventional technique.
01 透明電極 02 ガラス板 03 樹脂 04 液晶粒 05 入射光 06 反射光 07 眼球 08 透過光 11 透明電極 12 ガラス板 13 樹脂 14 二周波スメクティック液晶からなる液晶粒 20 電源 21 電極 22 透明な板 23 二周波スメクティック液晶を溶解させた原材料 24 レーザ光源 25 出力光 26 干渉縞 43 基板 43−1,2 基板 44−1,2 電極 91−1〜3 素子 REFERENCE SIGNS LIST 01 transparent electrode 02 glass plate 03 resin 04 liquid crystal particle 05 incident light 06 reflected light 07 eyeball 08 transmitted light 11 transparent electrode 12 glass plate 13 resin 14 liquid crystal particle composed of dual frequency smectic liquid crystal 20 power supply 21 electrode 22 transparent plate 23 dual frequency Raw material in which smectic liquid crystal is dissolved 24 Laser light source 25 Output light 26 Interference fringe 43 Substrate 43-1 Substrate 44-1 Electrode 91-1 to 3 Element
Claims (8)
の光学素子において、 前記液晶粒が二周波スメクティック液晶からなることを
特徴とする光学素子。1. An optical element having a structure in which liquid crystal particles are dispersed in a translucent substance, wherein the liquid crystal particles are formed of a two-frequency smectic liquid crystal.
液晶粒を分散させたことを特徴とする光学素子。2. The optical element according to claim 1, wherein the liquid crystal particles are dispersed such that the translucent substance and the liquid crystal particles form a layered fine periodic structure.
なる電極で挟んでなることを特徴とする光学素子。3. An optical element comprising the optical element according to claim 1 sandwiched between a pair of electrodes.
とする光学素子。4. The optical element according to claim 3, wherein the pair of electrodes is a matrix electrode.
方法であって、 前記対となる電極に、前記二周波スメクティック液晶の
誘電率異方性が正となる周波数を主とする第一の交流電
圧と、前記二周波スメクティック液晶の誘電率異方性が
負となる周波数を主とする第二の交流電圧を順次印加
し、 前記液晶粒の配向方向をスイッチングすることを特徴と
する光学素子の駆動方法。5. The method for driving an optical element according to claim 3, wherein the pair of electrodes mainly has a frequency at which the dielectric anisotropy of the dual-frequency smectic liquid crystal is positive. One AC voltage and a second AC voltage mainly having a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal becomes negative are sequentially applied, and the orientation direction of the liquid crystal grains is switched. Driving method of optical element.
方法であって、 前記対となる電極に、前記二周波スメクティック液晶の
誘電率異方性が正となる周波数を主とする第一の交流電
圧と、前記二周波スメクティック液晶の誘電率異方性が
負となる周波数を主とする第二の交流電圧の両方を印加
し、 前記第一の交流電圧と前記第二の交流電圧の振幅比率を
変えることにより、前記液晶粒の配向方向を制御するこ
とを特徴とする光学素子の駆動方法。6. The method for driving an optical element according to claim 3, wherein the pair of electrodes mainly has a frequency at which the dielectric anisotropy of the dual-frequency smectic liquid crystal is positive. Applying both one AC voltage and a second AC voltage mainly having a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal becomes negative, wherein the first AC voltage and the second AC voltage are applied. A method for controlling the orientation direction of the liquid crystal grains by changing an amplitude ratio of the optical element.
方法であって、 前記対となる電極に、前記二周波スメクティック液晶の
誘電率異方性が正となる第一の周波数領域と、前記二周
波スメクティック液晶の誘電率異方性が負となる第二の
周波数領域の両方を含む周波数帯域内に中心周波数を有
する交流電圧を印加し、 該交流電圧の中心周波数を変えて該交流電圧の周波数帯
域における前記第一の周波数領域と前記第二の周波数領
域の比率を変えることにより、前記液晶粒の配向方向を
制御することを特徴とする光学素子の駆動方法。7. The method for driving an optical element according to claim 3, wherein the pair of electrodes includes a first frequency region in which the dielectric anisotropy of the dual frequency smectic liquid crystal is positive. Applying an AC voltage having a center frequency within a frequency band including both the second frequency region in which the dielectric anisotropy of the two-frequency smectic liquid crystal is negative, and changing the AC voltage by changing the center frequency of the AC voltage. A method for driving an optical element, comprising: controlling an orientation direction of liquid crystal grains by changing a ratio between the first frequency region and the second frequency region in a voltage frequency band.
方法であって、 前記対となる電極に、前記二周波スメクティック液晶の
誘電率異方性が正となる周波数を中心とする第一の交流
電圧と、前記二周波スメクティック液晶の誘電率異方性
が負となる周波数を中心とする第二の交流電圧の両方を
印加し、 前記第一の交流電圧と前記第二の交流電圧の帯域幅の比
率を変えることにより、前記液晶粒の配向方向を制御す
ることを特徴とする光学素子の駆動方法。8. The method for driving an optical element according to claim 3, wherein the paired electrodes are centered around a frequency at which the dielectric anisotropy of the dual frequency smectic liquid crystal is positive. Applying both one AC voltage and a second AC voltage centered on a frequency at which the dielectric anisotropy of the two-frequency smectic liquid crystal is negative, the first AC voltage and the second AC voltage Controlling the orientation direction of the liquid crystal grains by changing the ratio of the bandwidth of the optical element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14609497A JP3547030B2 (en) | 1997-06-04 | 1997-06-04 | Driving method of optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14609497A JP3547030B2 (en) | 1997-06-04 | 1997-06-04 | Driving method of optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10333130A true JPH10333130A (en) | 1998-12-18 |
JP3547030B2 JP3547030B2 (en) | 2004-07-28 |
Family
ID=15400009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14609497A Expired - Fee Related JP3547030B2 (en) | 1997-06-04 | 1997-06-04 | Driving method of optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3547030B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007098602A1 (en) * | 2006-03-03 | 2007-09-07 | UNIVERSITé LAVAL | Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals |
-
1997
- 1997-06-04 JP JP14609497A patent/JP3547030B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007098602A1 (en) * | 2006-03-03 | 2007-09-07 | UNIVERSITé LAVAL | Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals |
Also Published As
Publication number | Publication date |
---|---|
JP3547030B2 (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6317189B1 (en) | High-efficiency reflective liquid crystal display | |
US7301601B2 (en) | Optical switching device using holographic polymer dispersed liquid crystals | |
EP0856766B1 (en) | Holographically formed reflective display, liquid crystal display and projection system and methods of forming the same | |
US9274349B2 (en) | Laser despeckler based on angular diversity | |
US5784139A (en) | Image display device | |
WO2018076857A1 (en) | Display panel and display device | |
EP1688783A1 (en) | Optical element using liquid crystal having optical isotropy | |
JP2009075624A (en) | Broadband reflective display device | |
US11003028B2 (en) | Photo-alignment apparatus that realizes desirable distribution through single exposure and method of manufacturing an optical element | |
JP4462651B2 (en) | Paper white reflective display | |
Yousefzadeh et al. | Design of a large aperture, tunable, Pancharatnam phase beam steering device | |
Date et al. | Full‐color reflective display device using holographically fabricated polymer‐dispersed liquid crystal (HPDLC) | |
US6924870B1 (en) | Liquid crystal on silicon diffractive light valve | |
KR100584085B1 (en) | Dynamically controllable light modulator using phase diffraction grating and its application to display device | |
US20050259216A1 (en) | Optical switching device using holographic polymer dispersed liquid crystals | |
JP3162762B2 (en) | Display element | |
JP3547030B2 (en) | Driving method of optical element | |
JP4348806B2 (en) | Optical device | |
JPH1090730A (en) | Optical element, its drive method and display device | |
JP4889643B2 (en) | Optical switch using holographic polymer dispersed liquid crystal | |
RU2695937C1 (en) | Method of manufacturing a liquid crystal structure for a diffraction grating (versions), a liquid crystal diffraction grating, a dynamic diffraction grating | |
JP3506405B2 (en) | Optical element and display device | |
JPH0534730A (en) | Liquid crystal display device | |
JP3313936B2 (en) | Optical writing type spatial light modulator and projection display device | |
JP3049779B2 (en) | Liquid crystal optical element and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20040406 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
RD01 | Notification of change of attorney |
Effective date: 20040408 Free format text: JAPANESE INTERMEDIATE CODE: A7426 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20040408 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20040408 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040408 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |