JPH10322883A - Power converter - Google Patents
Power converterInfo
- Publication number
- JPH10322883A JPH10322883A JP10068129A JP6812998A JPH10322883A JP H10322883 A JPH10322883 A JP H10322883A JP 10068129 A JP10068129 A JP 10068129A JP 6812998 A JP6812998 A JP 6812998A JP H10322883 A JPH10322883 A JP H10322883A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- ground
- power supply
- photocoupler
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 230000007935 neutral effect Effects 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 3
- 238000010586 diagram Methods 0.000 description 32
- 230000005283 ground state Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
- Protection Of Static Devices (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は入力と出力がともに
交流で、さらに回路の一部に正相,中性相,負相から成
る直流3線回路があって、交流の一線と直流の中性相を
共通にした順変換器と逆変換器を有する電力変換装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC three-wire circuit composed of a positive phase, a neutral phase, and a negative phase in which both an input and an output are AC. The present invention relates to a power converter having a forward converter and an inverse converter having a common sex phase.
【0002】[0002]
【従来の技術】交流入力から直流へ、さらにその直流を
交流出力へ変換する電力変換装置で、入力交流の一線
と、直流の中性相と、出力交流の一線とを共通にした電
力変換装置では特開平5−15171号公報に記載されるよう
に、順変換器と逆変換器をハーフブリッジとし、直流の
中性相に接続される交流の一相の電流は、直流回路のコ
ンデンサへ流れ込むか又はこのコンデンサから流れ出す
が、順変換器と逆変換器をフルブリッジとする構成に比
較し、変換装置を小形化できるため、小容量変換装置で
実用化されている。2. Description of the Related Art A power converter for converting an AC input into a DC, and further converting the DC into an AC output. The power converter has a common line of input AC, a neutral phase of DC, and a line of output AC. As described in JP-A-5-15171, a forward converter and an inverse converter are formed as a half bridge, and a single-phase AC current connected to a DC neutral phase flows into a capacitor of a DC circuit. Alternatively, the current flows out of the capacitor, but the converter can be downsized compared to a configuration in which the forward converter and the inverse converter are full bridges.
【0003】[0003]
【発明が解決しようとする課題】従来技術の問題点につ
いて図11から図18により説明する。Problems of the prior art will be described with reference to FIGS.
【0004】図11は単相交流電源接続部1を入力とし
て、順変換器,正相,中性相,負相の3線直流,逆変換
器を介し、負荷装置接続部32へ出力する単相交流入力
型の電力変換装置である。順変換器は単相交流電源接続
部1と、直流の正相と負相との間に直列接続されたトラ
ンジスタ7,8と、トランジスタ7,8のそれぞれに逆
並列に接続されたダイオード11,12と、トランジス
タ7,8の中点と単相交流電源接続部1の第一相との間
に接続したリアクトル5と、正相と負相との間に直列に
接続され、かつ中点が単相交流電源接続部1の第二相及
び直流の中性相に接続された2直列のコンデンサ15,
16と、単相交流電源接続部1に並列接続されたコンデ
ンサ3から構成される。すなわち、1個のハーフブリッ
ジ型変換回路(ハーフブリッジ型の単相順変換器とも呼
称される)を有し、単相交流を直流3線出力へ変換する
電力変換装置としての順変換器が構成される。FIG. 11 shows a single-phase AC power supply connection 1 as an input, and a single-phase output to a load device connection 32 via a forward converter, a positive-phase, neutral-phase, and negative-phase three-wire DC / inverter. This is a phase AC input type power converter. The forward converter includes a single-phase AC power supply connection unit 1, transistors 7, 8 connected in series between the positive and negative phases of DC, and diodes 11, connected in anti-parallel to each of the transistors 7, 8. 12, a reactor 5 connected between the middle point of the transistors 7 and 8 and the first phase of the single-phase AC power supply connection part 1, and a series connection between the positive phase and the negative phase, and the middle point Two series capacitors 15 connected to the second phase of the single-phase AC power connection 1 and the neutral phase of the DC,
16 and a capacitor 3 connected in parallel to the single-phase AC power supply connection unit 1. That is, a forward converter as a power converter that has one half-bridge type conversion circuit (also referred to as a half-bridge type single-phase forward converter) and converts a single-phase AC to a DC three-wire output is configured. Is done.
【0005】逆変換器は直流の正相と負相との間に直列
接続されたトランジスタ17,18と、トランジスタ1
7,18のそれぞれに逆並列に接続されたダイオード2
1,22と、トランジスタ17,18の中点と負荷装置
接続部32の第一相との間に接続したリアクトル25
と、直流の正相と負相との間に直列に接続され、かつ中
点が単相交流電源接続部1の第二相及び直流の中性相に
接続された2直列のコンデンサ15,16と、負荷装置
接続部32に並列接続されたコンデンサ27から構成さ
れる。The inverter is composed of transistors 17 and 18 connected in series between the positive and negative DC phases and a transistor 1.
Diode 2 connected in anti-parallel to each of 7 and 18
Reactors 25 connected between the middle points of the transistors 17, 18 and the first phase of the load device connection 32.
And two series-connected capacitors 15, 16 connected in series between the positive and negative DC phases and having a midpoint connected to the second phase of the single-phase AC power supply connection 1 and the neutral phase of the DC. And a capacitor 27 connected in parallel to the load device connection part 32.
【0006】負荷装置接続部32のノイズフィルタとし
て、コンデンサ29は負荷装置接続部32の第一相と大
地間に接続され、コンデンサ30は負荷装置接続部32
の第二相と大地間に接続される。The capacitor 29 is connected between the first phase of the load device connecting portion 32 and the ground as a noise filter of the load device connecting portion 32, and the capacitor 30 is connected to the load device connecting portion 32.
Is connected between the second phase and the earth.
【0007】トランジスタ7,8,17,18のオン,
オフを制御することによって、理想的には交流入力電流
波形が正弦波になり、かつ交流出力電圧が正弦波とな
る。When the transistors 7, 8, 17, 18 are turned on,
By controlling off, ideally, the AC input current waveform becomes a sine wave and the AC output voltage becomes a sine wave.
【0008】なお、以下の説明では、単相交流電源接続
部1を単相交流電源1と、負荷装置接続部32を負荷装
置32と略称する。In the following description, the single-phase AC power supply connection unit 1 is abbreviated as the single-phase AC power supply 1 and the load device connection unit 32 is abbreviated as the load device 32.
【0009】ここで、負荷装置32の第一相の電位を図
12から図14で説明する。Here, the potential of the first phase of the load device 32 will be described with reference to FIGS.
【0010】図12は単相交流電源1の第二相が接地さ
れて、逆変換器の出力電圧Vuvoが単相交流電源1の
入力電圧Vuviと同位相の場合のベクトル図を示す。
第二相が接地されているため、第二相が大地電位とな
り、逆変換器の出力電圧Vuvoは単相交流電源1の入力
電圧Vuviと同位相であるから、負荷装置32の第一
相の最大電位は単相交流電源1の入力電圧の最大電位と
同じとなる。FIG. 12 shows a vector diagram when the second phase of the single-phase AC power supply 1 is grounded and the output voltage Vuvo of the inverter is in phase with the input voltage Vuvi of the single-phase AC power supply 1.
Since the second phase is grounded, the second phase becomes ground potential, and the output voltage Vuvo of the inverter is in phase with the input voltage Vuvi of the single-phase AC power supply 1, so that the first phase of the load device 32 The maximum potential is the same as the maximum potential of the input voltage of the single-phase AC power supply 1.
【0011】図13は単相交流電源1の第二相が接地さ
れて、逆変換器の出力電圧Vuvoが単相交流電源1の
入力電圧Vuviと逆位相の場合のベクトル図を示す。
第二相が接地されているため、第二相が大地電位とな
り、逆変換器の出力電圧Vuvoは単相交流電源1の入力
電圧Vuviと逆位相であるが、負荷装置32の第一相
の最大電位は単相交流電源1の入力電圧の最大電位と同
じとなる。FIG. 13 shows a vector diagram when the second phase of the single-phase AC power supply 1 is grounded and the output voltage Vuvo of the inverter is in the opposite phase to the input voltage Vuvi of the single-phase AC power supply 1.
Since the second phase is grounded, the second phase becomes ground potential, and the output voltage Vuvo of the inverter is in the opposite phase to the input voltage Vuvi of the single-phase AC power supply 1, but the output voltage Vuvi of the first phase of the load device 32 is The maximum potential is the same as the maximum potential of the input voltage of the single-phase AC power supply 1.
【0012】図14は単相交流電源1の第一相が接地さ
れて、逆変換器の出力電圧Vuvoが単相交流電源1の
入力電圧Vuviと逆位相の場合のベクトル図を示す。
第一相が接地されているため、第一相が大地電位とな
り、逆変換器の出力電圧Vuvoは単相交流電源1の入力
電圧Vuviと逆位相であるから、負荷装置32の第一
相の最大電位は単相交流電源1の入力電圧の最大電位に
対し、2倍となる。FIG. 14 is a vector diagram when the first phase of the single-phase AC power supply 1 is grounded and the output voltage Vuvo of the inverter is in the opposite phase to the input voltage Vuvi of the single-phase AC power supply 1.
Since the first phase is grounded, the first phase becomes ground potential, and the output voltage Vuvo of the inverter is in the opposite phase to the input voltage Vuvi of the single-phase AC power supply 1, so that the first phase of the load device 32 The maximum potential is twice the maximum potential of the input voltage of the single-phase AC power supply 1.
【0013】負荷装置32の第一相の電位はコンデンサ
29に印加される電圧であり、負荷装置32への入力電
圧を100Vとすれば、図12,図13ではコンデンサ
29に印加される電圧は100Vであるが、図14では
200Vとなり、コンデンサ29には過大な電圧が印加
され、コンデンサを損傷することがある。また、コンデ
ンサの代わりにアレスタを接続することがあるが、これ
も同様に損傷することがある。The potential of the first phase of the load device 32 is the voltage applied to the capacitor 29. If the input voltage to the load device 32 is 100 V, the voltage applied to the capacitor 29 in FIGS. Although it is 100 V, it becomes 200 V in FIG. 14, and an excessive voltage is applied to the capacitor 29, which may damage the capacitor. An arrester may be connected instead of a capacitor, which can be similarly damaged.
【0014】図15は三相交流電源2を入力として、順
変換器,正相,中性相,負相の3線直流,逆変換器を介
し、負荷装置33へ出力する三相交流入力型の電力変換
装置である。順変換器は三相交流電源接続部2と、直流
の正相と負相との間に直列接続されたトランジスタ7,
8と、トランジスタ7,8のそれぞれに逆並列に接続さ
れたダイオード11,12と、トランジスタ7,8の中
点と三相交流電源2の第一相との間に接続したリアクト
ル5と、直流の正相と負相との間に直列接続されたトラ
ンジスタ9,10と、トランジスタ9,10のそれぞれ
に逆並列に接続されたダイオード13,14と、トラン
ジスタ9,10の中点と三相交流電源2の第三相との間
に接続したリアクトル6と正相と負相との間に直列に接
続され、かつ中点が三相交流電源2の第二相及び直流の
中性相に接続された2直列のコンデンサ15,16と、
三相交流電源2の第一相と第二相に並列接続されたコン
デンサ3と第二相と第三相に並列接続されたコンデンサ
4から構成される。すなわち、2個のハーフブリッジ型
変換回路を有し、三相交流を直流3線出力へ変換する電
力変換装置としての順変換器が構成される。FIG. 15 shows a three-phase AC input type in which a three-phase AC power supply 2 is input and output to a load device 33 via a forward converter, positive-phase, neutral-phase, and negative-phase three-wire DC / inverter. Power conversion device. The forward converter includes a three-phase AC power supply connection 2 and a transistor 7 connected in series between the positive and negative DC phases.
8, a diode 11, 12 connected in anti-parallel to each of the transistors 7, 8, a reactor 5 connected between the midpoint of the transistors 7, 8 and the first phase of the three-phase AC power supply 2, Transistors 9, 10 connected in series between the positive phase and the negative phase, diodes 13, 14 connected in anti-parallel to the transistors 9, 10 respectively, and a three-phase AC Reactor 6 connected to the third phase of power supply 2 is connected in series between the positive and negative phases, and the midpoint is connected to the second phase and the neutral phase of the DC of three-phase AC power supply 2 Two series capacitors 15 and 16
The three-phase AC power supply 2 includes a capacitor 3 connected in parallel to the first and second phases and a capacitor 4 connected in parallel to the second and third phases. That is, a forward converter as a power converter that has two half-bridge type conversion circuits and converts a three-phase AC into a DC three-wire output is configured.
【0015】逆変換器は直流の正相と負相との間に直列
接続されたトランジスタ17,18と、トランジスタ1
7,18のそれぞれに逆並列に接続されたダイオード2
1,22と、トランジスタ17,18の中点と負荷装置
33の第一相との間に接続したリアクトル25と、直流
の正相と負相との間に直列接続されたトランジスタ1
9,20と、トランジスタ19,20のそれぞれに逆並
列に接続されたダイオード23,24と、トランジスタ
19,20の中点と負荷装置33の第三相との間に接続
したリアクトル26と直流の正相と負相との間に直列に
接続され、かつ中点が三相交流電源2の第二相及び直流
の中性相に接続された2直列のコンデンサ15,16
と、負荷装置接続部32の第一相と第二相に並列接続さ
れたコンデンサ27と第二相と第三相に並列接続された
コンデンサ28から構成される。The inverter is composed of transistors 17 and 18 connected in series between the positive and negative DC phases and a transistor 1.
Diode 2 connected in anti-parallel to each of 7 and 18
A reactor 25 connected between the middle point of the transistors 17 and 18 and the first phase of the load device 33; and a transistor 1 connected in series between the positive and negative DC phases.
9, 20, a diode 23, 24 connected in anti-parallel to each of the transistors 19, 20; a reactor 26 connected between the midpoint of the transistors 19, 20 and the third phase of the load device 33; Two series capacitors 15, 16 connected in series between the positive phase and the negative phase and having a middle point connected to the second phase and the neutral phase of the three-phase AC power supply 2.
And a capacitor 27 connected in parallel to the first and second phases of the load device connecting portion 32 and a capacitor 28 connected in parallel to the second and third phases.
【0016】負荷装置33のノイズフィルタとして、コ
ンデンサ29は負荷装置33の第一相と大地間に、コン
デンサ30は負荷装置33の第二相と大地間に、コンデ
ンサ31は負荷装置33の第三相と大地間に接続され
る。As a noise filter of the load device 33, the capacitor 29 is connected between the first phase and the ground of the load device 33, the capacitor 30 is connected between the second phase and the ground of the load device 33, and the capacitor 31 is connected to the third phase of the load device 33. Connected between phase and earth.
【0017】ここで、負荷装置33の第一相の電位を図
16から図18で説明する。Here, the potential of the first phase of the load device 33 will be described with reference to FIGS.
【0018】図16は三相交流電源2の第二相が接地さ
れて、逆変換器の出力電圧Vuvo,Vvwo,Vwu
oが三相交流電源2の入力電圧Vuvi,Vvwi,Vw
uiと同位相の場合のベクトル図を示す。第二相が接地
されているため、第二相が大地電位となり、逆変換器の
出力電圧は三相交流電源2の入力電圧と同位相であるか
ら、負荷装置33の第一相の最大電位は三相交流電源2
の入力電圧の最大電位と同じとなる。FIG. 16 shows that the second phase of the three-phase AC power supply 2 is grounded and the output voltages Vuvo, Vvwo, Vwu of the inverter are output.
o is the input voltage Vuvi, Vvwi, Vw of the three-phase AC power supply 2
FIG. 4 shows a vector diagram in the case of the same phase as ui. Since the second phase is grounded, the second phase becomes the ground potential, and the output voltage of the inverter is in phase with the input voltage of the three-phase AC power supply 2. Is three-phase AC power supply 2
Is the same as the maximum potential of the input voltage.
【0019】図17は三相交流電源2の第二相が接地さ
れて、逆変換器の出力電圧Vuvo,Vvwo,Vwu
oが三相交流電源2の入力電圧Vuvi,Vvwi,Vw
uiと逆位相の場合のベクトル図を示す。第二相が接地
されているため、第二相が大地電位となり、逆変換器の
出力電圧は三相交流電源2の入力電圧と逆位相である
が、負荷装置33の第一相の最大電位は三相交流電源2
の入力電圧の最大電位と同じとなる。FIG. 17 shows that the second phase of the three-phase AC power supply 2 is grounded and the output voltages Vuvo, Vvwo, Vwu of the inverter are output.
o is the input voltage Vuvi, Vvwi, Vw of the three-phase AC power supply 2
FIG. 8 shows a vector diagram in the case of a phase opposite to that of ui. Since the second phase is grounded, the second phase is at ground potential, and the output voltage of the inverter is in phase opposite to the input voltage of the three-phase AC power supply 2, but the maximum potential of the first phase of the load device 33 is Is three-phase AC power supply 2
Is the same as the maximum potential of the input voltage.
【0020】図18は三相交流電源2の第一相が接地さ
れて、逆変換器の出力電圧Vuvo,Vvwo,Vwu
oが三相交流電源2の入力電圧Vuvi,Vvwi,Vw
uiと逆位相の場合のベクトル図を示す。第一相が接地
されているため、第一相が大地電位となり、逆変換器の
出力電圧は三相交流電源2の入力電圧と逆位相であるか
ら、負荷装置33の第一相の最大電位は三相交流電源2
の入力電圧の最大電位に対し、2倍となる。FIG. 18 shows that the first phase of the three-phase AC power supply 2 is grounded, and the output voltages Vuvo, Vvwo, Vwu of the inverter are output.
o is the input voltage Vuvi, Vvwi, Vw of the three-phase AC power supply 2
FIG. 8 shows a vector diagram in the case of a phase opposite to that of ui. Since the first phase is grounded, the first phase is at the ground potential, and the output voltage of the inverter is in the opposite phase to the input voltage of the three-phase AC power supply 2. Is three-phase AC power supply 2
Is twice as large as the maximum potential of the input voltage.
【0021】負荷装置33の第一相の電位はコンデンサ
29に印加される電圧であり、負荷装置33への入力電
圧を200Vとすれば、図16,図17ではコンデンサ
29に印加される電圧は200Vであるが、図18では
400Vとなり、コンデンサ29には過大な電圧が印加
され、コンデンサを損傷することがある。また、コンデ
ンサの代わりにアレスタを接続することがあるが、これ
も同様に損傷することがある。The potential of the first phase of the load device 33 is the voltage applied to the capacitor 29. If the input voltage to the load device 33 is 200 V, the voltage applied to the capacitor 29 in FIGS. Although it is 200 V, it becomes 400 V in FIG. 18, and an excessive voltage is applied to the capacitor 29, which may damage the capacitor. An arrester may be connected instead of a capacitor, which can be similarly damaged.
【0022】交流の一線と直流の中性相を共通とするハ
ーフブリッジ形電力変換装置は小形化が図れる反面、上
記のように、負荷装置の電位が交流電源の接地相で変わ
り、負荷装置と大地間にあるコンデンサやアレスタを損
傷することがある。従来は電力変換装置を設置するとき
に、接地相を確認することでこの問題に対処している
が、入力電源が更新されるなど、その都度確認をしなけ
ればならない煩わしさがあり、システム信頼性の面から
も適切な接地検出,保護が望まれている。The half-bridge type power converter having a common line of alternating current and the neutral phase of direct current can be downsized. May damage capacitors and arresters between grounds. Conventionally, this problem has been dealt with by checking the ground phase when installing the power converter.However, the input power supply has to be updated and the need to check each time is required. Therefore, proper ground detection and protection are also desired from the viewpoint of the nature.
【0023】[0023]
【課題を解決するための手段】上記目的を達成する本発
明の特徴は、入力と出力がともに交流で、さらに回路の
一部に正相,中性相,負相からなる直流3線回路があっ
て、正相と中性相の間と、中性相と負相の間とにそれぞ
れコンデンサが接続され、先の交流の一線と直流の中性
相を共通にした順変換器と逆変換器を有する電力変換装
置において、交流入力電源と大地間に流れる電流または
電圧を検出して、接地を検出することにある。A feature of the present invention that achieves the above object is that an input and an output are both AC and a DC three-wire circuit comprising a positive phase, a neutral phase, and a negative phase is part of the circuit. Capacitors are connected between the positive and neutral phases and between the neutral and negative phases, respectively. In a power converter having a transformer, a current or voltage flowing between an AC input power supply and the ground is detected to detect grounding.
【0024】[0024]
【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照し説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0025】図1は本発明による第一の実施例の単相電
力変換装置を示す回路図である。FIG. 1 is a circuit diagram showing a single-phase power converter according to a first embodiment of the present invention.
【0026】主回路の構成は図11と同一であるので、
説明を省略する。単相交流電源1の第一相と大地間に抵
抗34,フォトカプラ35,ダイオード37を直列した
ものを接続する。Since the configuration of the main circuit is the same as that of FIG.
Description is omitted. A series connection of a resistor 34, a photocoupler 35, and a diode 37 is connected between the first phase of the single-phase AC power supply 1 and the ground.
【0027】フォトカプラ35の発光ダイオードに逆並
列にダイオード36を、受光トランジスタの出力を接地
判定回路38に接続する。単相交流電源の第二相と大地
間に抵抗39,フォトカプラ40,ダイオード42を直
列したものを接続する。フォトカプラ40の発光ダイオ
ードに逆並列にダイオード41を、受光トランジスタの
出力を接地判定回路43にそれぞれ接続する。A diode 36 is connected in anti-parallel to the light emitting diode of the photocoupler 35, and the output of the light receiving transistor is connected to a ground determination circuit 38. A series connection of a resistor 39, a photocoupler 40, and a diode 42 is connected between the second phase of the single-phase AC power supply and the ground. A diode 41 is connected in antiparallel to the light emitting diode of the photocoupler 40, and the output of the light receiving transistor is connected to the ground determination circuit 43.
【0028】図1,図2により接地検出を説明する。The ground detection will be described with reference to FIGS.
【0029】図1は単相交流電源1の第二相が接地され
ている場合で、単相交流電源1の第一相から抵抗34,
フォトカプラ35,ダイオード37,大地,単相交流電
源1の第二相のループで接地検出電流ieuが流れ、フ
ォトカプラ35の受光トランジスタはオンとなる。フォ
トカプラ40には接地検出電流が流れず、フォトカプラ
40の受光トランジスタはオフとなる。FIG. 1 shows a case where the second phase of the single-phase AC power supply 1 is grounded.
The ground detection current ieu flows through the second phase loop of the photocoupler 35, the diode 37, the ground, and the single-phase AC power supply 1, and the light receiving transistor of the photocoupler 35 is turned on. No ground detection current flows through the photocoupler 40, and the light receiving transistor of the photocoupler 40 is turned off.
【0030】図2は単相交流電源1の第一相が接地され
ている場合で、単相交流電源1の第二相から抵抗39,
フォトカプラ40,ダイオード42,大地,単相交流電
源1の第一相のループで接地検出電流ievが流れ、フ
ォトカプラ40の受光トランジスタはオンとなる。フォ
トカプラ35には接地検出電流が流れず、フォトカプラ
35の受光トランジスタはオフとなる。FIG. 2 shows a case where the first phase of the single-phase AC power supply 1 is grounded.
The ground detection current iev flows in the first phase loop of the photocoupler 40, the diode 42, the ground, and the single-phase AC power supply 1, and the light receiving transistor of the photocoupler 40 is turned on. No ground detection current flows through the photocoupler 35, and the light receiving transistor of the photocoupler 35 is turned off.
【0031】また、単相交流電源1が非接地ならば、接
地検出電流は流れず、フォトカプラ35,40はともに
オフとなる。単相交流電源1は第二相接地、あるいは、
非接地であれば、コンデンサ29には過大電圧が印加さ
れず、第一相接地の場合にはコンデンサ29には過大電
圧が印加されることがある。第一相接地を検出すると無
停電電源装置のように逆変換器が交流入力電源に同位相
で同期して運転している装置では警報を発し、入力電源
の接地を変更することで、過大電圧を未然に防止するこ
とができる。また、逆変換器が交流入力電源に同期して
運転しない装置では、装置の運転を停止することで、コ
ンデンサ29に過大電圧が印加されることを防止する。If the single-phase AC power supply 1 is not grounded, no ground detection current flows, and both photocouplers 35 and 40 are turned off. The single-phase AC power supply 1 is grounded to the second phase, or
If not grounded, excessive voltage is not applied to the capacitor 29, and if grounded in the first phase, excessive voltage may be applied to the capacitor 29. If the inverter is operating in phase with the AC input power supply in synchronization with the AC input power supply, such as an uninterruptible power supply, when the first phase ground is detected, an alarm will be issued and the grounding of the input power supply will be changed. Voltage can be prevented beforehand. In a device in which the inverter does not operate in synchronization with the AC input power, the operation of the device is stopped to prevent application of an excessive voltage to the capacitor 29.
【0032】なお、以上を整理すれば、単相交流電源1
の接地とフォトカプラの出力の関係は以下となる。It should be noted that the above can be summarized as follows.
And the output of the photocoupler are as follows.
【0033】 フォトカプラ35 フォトカプラ40 第一相接地 オフ オン 第二相接地 オン オフ 非接地 オフ オフ このように本実施例によれば、単相電力変換装置が第一
相接地,第二相接地及び非接地のいずれの接地状態にあ
るかが識別できる。Photocoupler 35 Photocoupler 40 1st phase grounding off on 2nd phase grounding on off Non-grounding off off As described above, according to the present embodiment, the single-phase power converter is connected to the first phase grounding, It can be distinguished whether it is in a two-phase grounded state or a non-grounded state.
【0034】図3は本発明による第二の実施例の三相電
力変換装置を示す回路図である。FIG. 3 is a circuit diagram showing a three-phase power converter according to a second embodiment of the present invention.
【0035】主回路の構成は図15と同一である。三相
交流電源の第一相と大地間に抵抗34,フォトカプラ3
5,ダイオード37を直列したものを接続する。フォト
カプラ35の発光ダイオードに逆並列にダイオード36
を、受光トランジスタの出力を接地判定回路38にそれ
ぞれ接続する。三相交流電源の第二相と大地間に抵抗3
9,フォトカプラ40,ダイオード42を直列したもの
を接続する。フォトカプラ40の発光ダイオードに逆並
列にダイオード41を、受光トランジスタの出力を接地
判定回路43にそれぞれ接続する。三相交流電源の第三
相と大地間に抵抗44,フォトカプラ45,ダイオード
47を直列したものを接続する。フォトカプラ45の発
光ダイオードに逆並列にダイオード46を、受光トラン
ジスタの出力を接地判定回路48に接続する。なお、図
3は単相3線式電力変換装置にもそのまま適用できる。The structure of the main circuit is the same as that of FIG. Resistance 34, photocoupler 3 between the first phase of three-phase AC power supply and ground
5, a diode 37 connected in series is connected. The diode 36 is connected in anti-parallel to the light emitting diode of the photocoupler 35.
Are connected to the output of the light receiving transistor to the ground determination circuit 38, respectively. Resistance 3 between the second phase of three-phase AC power supply and the earth
9, a photocoupler 40 and a diode 42 connected in series are connected. A diode 41 is connected in antiparallel to the light emitting diode of the photocoupler 40, and the output of the light receiving transistor is connected to the ground determination circuit 43. A resistor 44, a photocoupler 45, and a diode 47 in series are connected between the third phase of the three-phase AC power supply and the ground. The diode 46 is connected in antiparallel to the light emitting diode of the photocoupler 45, and the output of the light receiving transistor is connected to the ground determination circuit 48. FIG. 3 can be applied to a single-phase three-wire power converter as it is.
【0036】図3,図4により接地検出を説明する。The ground detection will be described with reference to FIGS.
【0037】図3は三相交流電源2の第二相が接地され
ている場合で、三相交流電源2の第一相から抵抗34,
フォトカプラ35,ダイオード37,大地,三相交流電
源2の第二相のループで接地検出電流ieuが流れ、フ
ォトカプラ35の受光トランジスタはオンとなる。三相
交流電源2の第三相から抵抗44,フォトカプラ45,
ダイオード47,大地,三相交流電源2の第二相のルー
プで接地検出電流iewが流れ、フォトカプラ45の受光
トランジスタはオンとなる。フォトカプラ40には接地
検出電流が流れず、フォトカプラ40の受光トランジス
タはオフとなる。FIG. 3 shows a case where the second phase of the three-phase AC power supply 2 is grounded.
The ground detection current ieu flows in the second phase loop of the photocoupler 35, the diode 37, the ground, and the three-phase AC power supply 2, and the light receiving transistor of the photocoupler 35 is turned on. From the third phase of the three-phase AC power supply 2, a resistor 44, a photocoupler 45,
The ground detection current iew flows through the second phase loop of the diode 47, the ground, and the three-phase AC power supply 2, and the light receiving transistor of the photocoupler 45 is turned on. No ground detection current flows through the photocoupler 40, and the light receiving transistor of the photocoupler 40 is turned off.
【0038】図4は三相交流電源2の第一相が接地され
た場合で、三相交流電源2の第二相から抵抗39,フォ
トカプラ40,ダイオード42,大地,三相交流電源2
の第一相のループで接地検出電流ievが流れ、フォト
カプラ40の受光トランジスタはオンとなる。三相交流
電源2の第三相から抵抗44,フォトカプラ45,ダイ
オード47,大地,三相交流電源2の第一相のループで
接地検出電流iewが流れ、フォトカプラ45の受光ト
ランジスタはオンとなる。フォトカプラ35には接地検
出電流が流れず、フォトカプラ35の受光トランジスタ
はオフとなる。また、三相交流電源2が非接地ならば、
接地検出電流は流れず、フォトカプラ35,40,45
はともにオフとなる。さらに、三相交流電源2が中性点
接地ならば、すべてのフォトカプラに接地検出電流は流
れ、フォトカプラ35,40,45はともにオンとな
る。FIG. 4 shows a case where the first phase of the three-phase AC power supply 2 is grounded, and the resistor 39, the photocoupler 40, the diode 42, the ground, and the three-phase AC power supply 2
In the first phase loop, the ground detection current iev flows, and the light receiving transistor of the photocoupler 40 is turned on. From the third phase of the three-phase AC power supply 2, the resistor 44, the photocoupler 45, the diode 47, the ground, and the ground detection current iew flows in the first phase loop of the three-phase AC power supply 2, and the light receiving transistor of the photocoupler 45 is turned on. Become. No ground detection current flows through the photocoupler 35, and the light receiving transistor of the photocoupler 35 is turned off. If the three-phase AC power supply 2 is not grounded,
No ground detection current flows, and the photocouplers 35, 40, 45
Are both turned off. Further, if the three-phase AC power supply 2 is grounded to a neutral point, a ground detection current flows through all the photocouplers, and all of the photocouplers 35, 40, and 45 are turned on.
【0039】三相交流電源2は第二相接地、あるいは、
非接地であれば、コンデンサ29,31には過大電圧が
印加されず、第一相接地,第三相接地,中性点接地の場
合にコンデンサ29,31には過大電圧が印加されるこ
とがある。第一相接地,第三相接地,中性点接地を検出
すると、第一の実施例と同様に警報発報、または、装置
を停止する保護を行う。The three-phase AC power supply 2 is grounded in the second phase, or
If not grounded, no excessive voltage is applied to the capacitors 29 and 31, and excessive voltage is applied to the capacitors 29 and 31 in the case of first-phase grounding, third-phase grounding, and neutral grounding. Sometimes. When the first-phase grounding, the third-phase grounding, and the neutral point grounding are detected, an alarm is issued or protection for stopping the device is performed as in the first embodiment.
【0040】なお、以上を整理すれば、三相交流電源2
の接地とフォトカプラの出力の関係は以下となる。It should be noted that the above can be summarized as follows.
And the output of the photocoupler are as follows.
【0041】 フォトカプラ35 フォトカプラ40 フォトカプラ45 第一相接地 オフ オン オン 第二相接地 オン オフ オン 第三相接地 オン オン オフ 中性点接地 オン オン オン 非接地 オフ オフ オフ このように本実施例によれば、三相電力変換装置が、第
一相接地,第二相接地,第三相接地,中性点接地及び非
接地のいずれの接地状態にあるかを識別できる。Photocoupler 35 Photocoupler 40 Photocoupler 45 First-phase ground Off On On Second-phase ground On Off On Third-phase ground On On Off Neutral ground On On On Non-ground Off Off Off According to this embodiment, the three-phase power converter determines whether the three-phase power converter is in the ground state of the first-phase ground, the second-phase ground, the third-phase ground, the neutral point ground, or the non-ground. it can.
【0042】図5は本発明による第三の実施例の単相電
力変換装置を示す回路図である。FIG. 5 is a circuit diagram showing a single-phase power converter according to a third embodiment of the present invention.
【0043】主回路の構成は図11と同一である。直流
の中性相に接続されている単相交流電源の第二相と大地
間に抵抗39,フォトカプラ40を直列したものを接続
する。フォトカプラ40の発光ダイオードに逆並列にダ
イオード41を、受光トランジスタの出力を接地判定回
路43に接続する。The structure of the main circuit is the same as that of FIG. A series connection of a resistor 39 and a photocoupler 40 is connected between the second phase of the single-phase AC power supply connected to the DC neutral phase and the ground. The diode 41 is connected in antiparallel to the light emitting diode of the photocoupler 40, and the output of the light receiving transistor is connected to the ground determination circuit 43.
【0044】単相交流電源1の第二相が接地されると、
フォトカプラ40には接地検出電流が流れず、フォトカ
プラ40の受光トランジスタはオフとなる。単相交流電
源1の第一相が接地されると、単相交流電源1の第二相
から抵抗39,フォトカプラ40,大地,単相交流電源
1の第一相のループで接地検出電流が流れ、フォトカプ
ラ40の受光トランジスタはオンとなる。また、単相交
流電源1が非接地ならば、接地検出電流は流れず、フォ
トカプラ40はオフとなる。以上を整理すれば、単相交
流電源1の接地とフォトカプラの出力の関係は以下とな
る。When the second phase of the single-phase AC power supply 1 is grounded,
No ground detection current flows through the photocoupler 40, and the light receiving transistor of the photocoupler 40 is turned off. When the first phase of the single-phase AC power supply 1 is grounded, the ground detection current flows from the second phase of the single-phase AC power supply 1 to the resistor 39, the photocoupler 40, the ground, and the first phase loop of the single-phase AC power supply 1. As a result, the light receiving transistor of the photocoupler 40 is turned on. If the single-phase AC power supply 1 is not grounded, no ground detection current flows and the photocoupler 40 is turned off. Summarizing the above, the relationship between the ground of the single-phase AC power supply 1 and the output of the photocoupler is as follows.
【0045】 単相交流電源1は第二相接地、あるいは、非接地であれ
ば、コンデンサ29には過大電圧が印加されないので、
フォトカプラ40がオンとなる第一相接地の場合には警
報発報、または、装置を停止し、過大電圧を未然に防止
することができる。このように、少なくとも、直流の中
性相に接続される単相交流電源の第二相に接地電流検出
回路を接続して接地電流を検出すれば、コンデンサ29
に過電圧が印加される接地状態で有るか否かを識別でき
る。[0045] If the single-phase AC power supply 1 is the second phase grounded or non-grounded, no excessive voltage is applied to the capacitor 29.
In the case of the first-phase grounding in which the photocoupler 40 is turned on, an alarm can be issued or the device can be stopped to prevent an excessive voltage. In this manner, if the ground current is detected by connecting the ground current detection circuit to at least the second phase of the single-phase AC power supply connected to the neutral phase of the DC, the capacitor 29
Can be identified as being in a ground state in which an overvoltage is applied.
【0046】図6は本発明による第四の実施例の三相電
力変換装置を示す回路図である。FIG. 6 is a circuit diagram showing a four-phase power converter according to a fourth embodiment of the present invention.
【0047】主回路の構成は図15と同一である。直流
の中性相に接続されている三相交流電源の第二相と大地
間に抵抗39,フォトカプラ40を直列したものを接続
する。フォトカプラ40の発光ダイオードに逆並列にダ
イオード41を、受光トランジスタの出力を接地判定回
路43にそれぞれ接続する。The structure of the main circuit is the same as that of FIG. A series connection of a resistor 39 and a photocoupler 40 is connected between the ground and the second phase of the three-phase AC power supply connected to the neutral phase of the DC. A diode 41 is connected in antiparallel to the light emitting diode of the photocoupler 40, and the output of the light receiving transistor is connected to the ground determination circuit 43.
【0048】三相交流電源2の第二相が接地されると、
フォトカプラ40には接地検出電流が流れず、フォトカ
プラ40の受光トランジスタはオフとなる。三相交流電
源2の第一相が接地されると、三相交流電源2の第二相
から抵抗39,フォトカプラ40,大地,三相交流電源
2の第一相のループで接地検出電流が流れ、フォトカプ
ラ40の受光トランジスタはオンとなる。また、三相交
流電源2が非接地ならば、接地検出電流は流れず、フォ
トカプラ40はオフとなる。さらに、三相交流電源2が
中性点接地ならば、接地検出電流は流れ、フォトカプラ
40はオンとなる。When the second phase of the three-phase AC power supply 2 is grounded,
No ground detection current flows through the photocoupler 40, and the light receiving transistor of the photocoupler 40 is turned off. When the first phase of the three-phase AC power supply 2 is grounded, the ground detection current flows from the second phase of the three-phase AC power supply 2 to the resistor 39, the photocoupler 40, the ground, and the first phase loop of the three-phase AC power supply 2. As a result, the light receiving transistor of the photocoupler 40 is turned on. If the three-phase AC power supply 2 is not grounded, no ground detection current flows and the photocoupler 40 is turned off. Further, if the three-phase AC power supply 2 is at the neutral point ground, the ground detection current flows, and the photocoupler 40 is turned on.
【0049】なお、以上を整理すれば、三相交流電源2
の接地とフォトカプラの出力の関係は以下となる。It should be noted that the three-phase AC power supply 2
And the output of the photocoupler are as follows.
【0050】 三相交流電源2は第二相接地、あるいは、非接地であれ
ば、コンデンサ29,31には過大電圧が印加されない
ので、フォトカプラ40がオンとなる第一相接地,第三
相接地,中性点接地の場合には警報発報、または、装置
を停止し、過大電圧を未然に防止することができる。こ
のように、少なくとも、直流の中性相に接続される三相
交流電源の第二相に接地電流検出回路を接続して接地電
流を検出すれば、コンデンサ29,31に過電圧が印加
される接地状態で有るか否かを判定できる。[0050] If the three-phase AC power supply 2 is the second-phase grounded or non-grounded, no excessive voltage is applied to the capacitors 29 and 31, so that the first-phase ground and the third-phase ground when the photocoupler 40 is turned on. In the case of grounding or neutral point grounding, an alarm can be issued or the device can be stopped to prevent excessive voltage. As described above, if the ground current is detected by connecting the ground current detection circuit to at least the second phase of the three-phase AC power supply connected to the neutral phase of DC, the ground in which overvoltage is applied to the capacitors 29 and 31 is obtained. It can be determined whether or not it is in the state.
【0051】本発明の第三,第四の実施例では直流の中
性相に接続される交流電源の相のみに接地検出を行うの
で、部品点数が少なく、信頼性,経済性に優れている。
さらに、フォトカプラにツェナーダイオードを直列に接
続して接地電流検出値を大きくすることも可能である。In the third and fourth embodiments of the present invention, since the ground detection is performed only in the phase of the AC power supply connected to the neutral phase of DC, the number of parts is small, and the reliability and economy are excellent. .
Furthermore, it is also possible to connect a zener diode to the photocoupler in series to increase the ground current detection value.
【0052】フォトカプラ以外の検出法を以下の実施例
で説明する。A detection method other than the photocoupler will be described in the following embodiments.
【0053】図7は本発明による第五の実施例の三相電
力変換装置を示す回路図である。FIG. 7 is a circuit diagram showing a fifth embodiment of a three-phase power converter according to the present invention.
【0054】主回路の構成は図15と同一である。直流
の中性相に接続されている三相交流電源の第二相と大地
間に抵抗39,変流器49を直列したものを接続し、変
流器49の出力を接地判定回路43に接続する。The structure of the main circuit is the same as that of FIG. A resistor 39 and a current transformer 49 are connected in series between the second phase of the three-phase AC power supply connected to the neutral phase of DC and the ground, and the output of the current transformer 49 is connected to the ground determination circuit 43. I do.
【0055】三相交流電源2の第二相が接地されると、
変流器49には接地検出電流が流れず、変流器49の出
力に電流が流れない。三相交流電源2の第一相が接地さ
れると、三相交流電源2の第二相から抵抗39,変流器
49,大地,三相交流電源2の第一相のループで接地検
出電流が流れ、変流器49の出力に電流が流れる。ま
た、三相交流電源2が非接地ならば、接地検出電流は流
れず、変流器49の出力に電流が流れない。さらに、三
相交流電源2が中性点接地ならば、接地検出電流は流
れ、変流器49の出力に電流が流れる。接地判定回路4
3で変流器49の出力電流を検出し、電流が流れなけれ
ば、第二相接地または非接地と判定でき、電流が流れれ
ば、第一相接地,第三相接地、または中性点接地と判定
でき、第四の実施例と同様に警報発報、または、装置を
停止し、過大電圧を未然に防止することができる。この
ように、図6の実施例におけるフォトカプラの代わりに
変流器で接地電流を検出しても、図6の実施例と同様の
作用・効果がある。When the second phase of the three-phase AC power supply 2 is grounded,
No ground detection current flows through the current transformer 49, and no current flows through the output of the current transformer 49. When the first phase of the three-phase AC power supply 2 is grounded, the ground detection current flows from the second phase of the three-phase AC power supply 2 to the resistor 39, the current transformer 49, the ground, and the first phase loop of the three-phase AC power supply 2. Flows, and a current flows to the output of the current transformer 49. If the three-phase AC power supply 2 is not grounded, no ground detection current flows and no current flows to the output of the current transformer 49. Furthermore, if the three-phase AC power supply 2 is grounded to a neutral point, a ground detection current flows, and a current flows to the output of the current transformer 49. Ground judgment circuit 4
In step 3, the output current of the current transformer 49 is detected. If no current flows, it can be determined that the second phase is grounded or non-grounded. If a current flows, the first phase is grounded, the third phase is grounded, or It can be determined that the ground is at the neutral point, and an alarm can be issued or the device can be stopped to prevent an excessive voltage, as in the fourth embodiment. Thus, even if the ground current is detected by the current transformer instead of the photocoupler in the embodiment of FIG. 6, the same operation and effect as in the embodiment of FIG. 6 can be obtained.
【0056】図8は本発明による第六の実施例の三相電
力変換装置を示す回路図である。FIG. 8 is a circuit diagram showing a three-phase power converter of a sixth embodiment according to the present invention.
【0057】主回路の構成は図15と同一である。直流
の中性相に接続されている三相交流電源の第二相と大地
間に変圧器50を接続し、変圧器50の出力を接地判定
回路43に接続する。The structure of the main circuit is the same as that of FIG. The transformer 50 is connected between the second phase of the three-phase AC power supply connected to the DC neutral phase and the ground, and the output of the transformer 50 is connected to the ground determination circuit 43.
【0058】三相交流電源2の第二相が接地されると、
変圧器50の一次に電圧が印加されず、変圧器50の出
力に電圧が発生しない。三相交流電源2の第一相が接地
されると、三相交流電源2の第二相と大地間に電圧が発
生するため、変圧器50の一次に電圧が印加され、変圧
器50の出力に電圧が発生する。また、三相交流電源2
が非接地ならば、変圧器50の一次に電圧が印加され
ず、変圧器50の出力に電圧が発生しない。さらに、三
相交流電源2が中性点接地ならば、変圧器50の一次に
電圧が印加され、変圧器50の出力に電圧が発生する。
接地判定回路43で変圧器50の出力電圧を検出し、電
圧がなければ、第二相接地または非接地と判定でき、電
圧があれば、第一相接地,第三相接地、または中性点接
地と判定でき、第四の実施例と同様に警報発報、また
は、装置を停止し、過大電圧を未然に防止することがで
きる。When the second phase of the three-phase AC power supply 2 is grounded,
No voltage is applied to the primary of the transformer 50, and no voltage is generated at the output of the transformer 50. When the first phase of the three-phase AC power supply 2 is grounded, a voltage is generated between the second phase of the three-phase AC power supply 2 and the ground, so that a primary voltage is applied to the transformer 50 and the output of the transformer 50 is output. Voltage is generated. In addition, three-phase AC power supply 2
Is not grounded, no voltage is applied to the primary of the transformer 50 and no voltage is generated at the output of the transformer 50. Further, if the three-phase AC power supply 2 is grounded to a neutral point, a voltage is applied to the primary of the transformer 50 and a voltage is generated at the output of the transformer 50.
The output voltage of the transformer 50 is detected by the ground determination circuit 43, and if there is no voltage, it can be determined that the second phase is grounded or non-grounded. If there is a voltage, the first phase ground, the third phase ground, or It can be determined that the ground is at the neutral point, and an alarm can be issued or the device can be stopped to prevent an excessive voltage, as in the fourth embodiment.
【0059】図9は本発明による第七の実施例の三相電
力変換装置を示す回路図である。FIG. 9 is a circuit diagram showing a seven-phase power converter according to a seventh embodiment of the present invention.
【0060】主回路の構成は図15と同一である。直流
の中性相に接続されている三相交流電源の第二相と大地
間にコンデンサ51と変圧器50を直列に接続し、変圧
器50の出力を接地判定回路43に接続する。接地検出
は第六の実施例と同じである。第六の実施例との違いは
コンデンサ51により、第二相と大地間に直流分を含む
電圧が発生した場合、第六の実施例では、直流分を含む
電圧が変圧器50の一次に電圧が印加されるため、変圧
器50が磁気飽和することがあるが、第七の実施例で
は、コンデンサ51に直流分が印加され、変圧器50の
一次には直流分を含まない交流電圧が印加されるため、
変圧器50が磁気飽和することがない。図10は本発明
による第八の実施例の三相電力変換装置を示す回路図で
ある。主回路の構成は図15と同一である。直流の中性
相に接続されている三相交流電源の第二相と大地間にコ
ンデンサ51と抵抗39を接続し、抵抗39の電圧を接
地判定回路43に入力する。The structure of the main circuit is the same as that of FIG. The capacitor 51 and the transformer 50 are connected in series between the second phase of the three-phase AC power supply connected to the neutral phase of the direct current and the ground, and the output of the transformer 50 is connected to the ground determination circuit 43. The ground detection is the same as in the sixth embodiment. The difference from the sixth embodiment is that when a voltage including a DC component is generated between the second phase and the ground by the capacitor 51, the voltage including the DC component is changed to a primary voltage of the transformer 50 in the sixth embodiment. Is applied, the transformer 50 may be magnetically saturated. However, in the seventh embodiment, a DC component is applied to the capacitor 51, and an AC voltage not including the DC component is applied to the primary of the transformer 50. To be
The transformer 50 is not magnetically saturated. FIG. 10 is a circuit diagram showing a three-phase power converter according to an eighth embodiment of the present invention. The configuration of the main circuit is the same as that of FIG. The capacitor 51 and the resistor 39 are connected between the second phase of the three-phase AC power supply connected to the DC neutral phase and the ground, and the voltage of the resistor 39 is input to the ground determination circuit 43.
【0061】三相交流電源2の第二相が接地されると、
抵抗39には電圧が発生しない。三相交流電源2の第一
相が接地されると、三相交流電源2の第二相と大地間に
電圧が発生するため、抵抗39に電圧が発生する。ま
た、三相交流電源2が非接地ならば、抵抗39には電圧
が発生しない。さらに、三相交流電源2が中性点接地な
らば、抵抗39に電圧が発生する。接地判定回路43で
抵抗39の電圧を検出し、電圧がなければ、第二相接地
または非接地と判定でき、電圧があれば、第一相接地,
第三相接地、または中性点接地と判定でき、第四の実施
例と同様に警報発報、または、装置を停止し、過大電圧
を未然に防止することができる。When the second phase of the three-phase AC power supply 2 is grounded,
No voltage is generated at the resistor 39. When the first phase of the three-phase AC power supply 2 is grounded, a voltage is generated between the second phase of the three-phase AC power supply 2 and the ground. If the three-phase AC power supply 2 is not grounded, no voltage is generated at the resistor 39. Further, if the three-phase AC power supply 2 is grounded to a neutral point, a voltage is generated at the resistor 39. The ground determination circuit 43 detects the voltage of the resistor 39. If there is no voltage, it can be determined that the second phase is grounded or non-grounded.
It can be determined that the third phase is grounded or the neutral point is grounded, and similarly to the fourth embodiment, an alarm is issued or the device is stopped to prevent an excessive voltage.
【0062】ここで、電流制限素子を実施例では抵抗と
したが、リアクトル,コンデンサ,変圧器、及びその複
合体、例えば抵抗とコンデンサの組合せ、としてもよ
く、特に、コンデンサは前述の如く直流分を負担するの
で、電流や電圧の検出手段が交流成分のみで作動する部
品で構成することができる利点がある。Here, the current limiting element is a resistor in the embodiment, but may be a reactor, a capacitor, a transformer, and a composite thereof, for example, a combination of a resistor and a capacitor. Therefore, there is an advantage that the means for detecting current and voltage can be constituted by components that operate only with the AC component.
【0063】[0063]
【発明の効果】本発明によれば、入力と出力がともに交
流で、さらに回路の一部に正相,中性相,負相からなる
直流3線回路があって、交流の一線と直流の中性相を共
通にした順変換器と逆変換器を有する電力変換装置にお
いて、交流入力電源の接地状態を確実に検出し、逆変換
器出力の過大電位を未然に防止することができる。According to the present invention, both the input and the output are AC, and a part of the circuit includes a DC three-wire circuit composed of a positive phase, a neutral phase, and a negative phase. In a power converter having a forward converter and a reverse converter having a common neutral phase, the ground state of the AC input power supply can be reliably detected, and an excessive potential of the output of the reverse converter can be prevented.
【図1】本発明を単相交流入力,単相交流出力の電力変
換装置に適用した第一の実施例の回路図及び作用説明図
である。FIG. 1 is a circuit diagram and an operation explanatory diagram of a first embodiment in which the present invention is applied to a single-phase AC input, single-phase AC output power converter.
【図2】第一の実施例の作用説明図である。FIG. 2 is an operation explanatory view of the first embodiment.
【図3】本発明を三相交流入力,三相交流出力の電力変
換装置に適用した第二の実施例の回路図及び作用説明図
である。FIG. 3 is a circuit diagram and an operation explanatory diagram of a second embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図4】第二の実施例の作用説明図である。FIG. 4 is an operation explanatory view of the second embodiment.
【図5】本発明を単相交流入力,単相交流出力の電力変
換装置に適用した第三の実施例の回路図である。FIG. 5 is a circuit diagram of a third embodiment in which the present invention is applied to a single-phase AC input, single-phase AC output power converter.
【図6】本発明を三相交流入力,三相交流出力の電力変
換装置に適用した第四の実施例の回路図である。FIG. 6 is a circuit diagram of a fourth embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図7】本発明を三相交流入力,三相交流出力の電力変
換装置に適用した第五の実施例の回路図である。FIG. 7 is a circuit diagram of a fifth embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図8】本発明を三相交流入力,三相交流出力の電力変
換装置に適用した第六の実施例の回路図である。FIG. 8 is a circuit diagram of a sixth embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図9】本発明を三相交流入力,三相交流出力の電力変
換装置に適用した第七の実施例の回路図である。FIG. 9 is a circuit diagram of a seventh embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図10】本発明を三相交流入力,三相交流出力の電力
変換装置に適用した第八の実施例の回路図である。FIG. 10 is a circuit diagram of an eighth embodiment in which the present invention is applied to a three-phase AC input, three-phase AC output power converter.
【図11】単相交流入力,単相交流出力のハーフブリッ
ジ型電力変換装置の回路図である。FIG. 11 is a circuit diagram of a single-phase AC input, single-phase AC output half-bridge type power converter.
【図12】図11の電力変換装置の交流入力第二相接地
で、逆変換器が交流入力に同位相での交流入力電圧,交
流出力電圧のベクトル図である。12 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 11 with the AC input second phase grounded and the inverter in phase with the AC input.
【図13】図11の電力変換装置の交流入力第二相接地
で、逆変換器が交流入力に逆位相での交流入力電圧,交
流出力電圧のベクトル図である。13 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 11 with the AC input second phase grounded and the inverter being in the opposite phase to the AC input.
【図14】図11の電力変換装置の交流入力第一相接地
で、逆変換器が交流入力に逆位相での交流入力電圧,交
流出力電圧のベクトル図である。FIG. 14 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 11 when the AC input is in the first phase ground and the inverter is in the opposite phase to the AC input.
【図15】三相交流入力,三相交流出力のハーフブリッ
ジ型電力変換装置の回路図である。FIG. 15 is a circuit diagram of a three-phase AC input, three-phase AC output half-bridge type power converter.
【図16】図15の電力変換装置の交流入力第二相接地
で、逆変換器が交流入力に同位相での交流入力電圧,交
流出力電圧のベクトル図である。FIG. 16 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 15 with the AC input second phase grounded and the inverter having the same phase as the AC input.
【図17】図15の電力変換装置の交流入力第二相接地
で、逆変換器が交流入力に逆位相での交流入力電圧,交
流出力電圧のベクトル図である。17 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 15 with the AC input second phase grounded and the inverter being in the opposite phase to the AC input.
【図18】図15の電力変換装置の交流入力第一相接地
で、逆変換器が交流入力に逆位相での交流入力電圧,交
流出力電圧のベクトル図である。18 is a vector diagram of an AC input voltage and an AC output voltage of the power converter of FIG. 15 with the AC input first phase grounded and the inverter being in the opposite phase to the AC input.
1…単相交流電源、2…三相交流電源、3,4,15,
16,27,28,29〜31,51…コンデンサ、
5,6,25,26…リアクトル、7〜10,17〜2
0…トランジスタ、11〜14,21〜24,36,3
7,41,42,46,47…ダイオード、32…単相
交流負荷装置、33…三相交流負荷装置、34,39,
44…抵抗、35,40,45…フォトカプラ、38,
43,48…接地判定回路、49…変流器、50…変圧
器。1: Single-phase AC power supply, 2: Three-phase AC power supply, 3, 4, 15,
16, 27, 28, 29 to 31, 51 ... capacitors,
5, 6, 25, 26 ... reactor, 7 to 10, 17 to 2
0: Transistor, 11 to 14, 21 to 24, 36, 3
7, 41, 42, 46, 47: diode, 32: single-phase AC load device, 33: three-phase AC load device, 34, 39,
44 ... resistance, 35, 40, 45 ... photocoupler, 38,
43, 48: ground determination circuit, 49: current transformer, 50: transformer.
Claims (11)
性相,負相から成る3線であり、直流3線の正相と中性
相との間に接続した正側コンデンサと、直流3線の中性
相と負相との間に接続した負側コンデンサとを備え、順
変換器の一端が直流3線の正相へ、他端が直流3線の負
相へそれぞれ接続されるハーフブリッジ回路を少なくと
も一つ有し、逆変換器の一端が直流3線の正相へ、他端
が直流3線の負相へ接続されるハーフブリッジ回路を少
なくとも一つ有する電力変換装置において、前記交流入
力電源と大地間の電流または電圧を検出して接地検出す
る手段を有することを特徴とする電力変換装置。1. A positive-side capacitor connected between the positive and neutral phases of a DC three-wire, wherein the input and output are AC and the DC part is a three-wire consisting of a positive phase, a neutral phase, and a negative phase. And a negative-side capacitor connected between the neutral phase and the negative phase of the DC 3 wire, and one end of the forward converter is connected to the positive phase of the DC 3 wire, and the other end is connected to the negative phase of the DC 3 wire. A power converter having at least one half-bridge circuit to be connected, and at least one half-bridge circuit having one end of the inverter connected to the positive phase of the three direct current wires and the other end connected to the negative phase of the three direct current wires. A power conversion device, comprising: means for detecting a current or voltage between the AC input power supply and the ground to detect grounding.
交流入力と大地間に、電流制限素子と、フォトカプラ
と、ダイオードとを直列接続し、前記直流部の中性相に
接続される交流入力と大地との間に、電流制限素子と、
フォトカプラと、ダイオードとを直列接続し、各フォト
カプラ出力で接地検出を行うことを特徴とする電力変換
装置。2. The method according to claim 1, wherein the means for detecting ground contact comprises:
Between the AC input and the ground, a current limiting element, a photocoupler, and a diode are connected in series, and between the AC input and the ground connected to the neutral phase of the DC unit, a current limiting element,
A power conversion device comprising: a photocoupler and a diode connected in series; and ground detection is performed at each photocoupler output.
直流部の中性相に接続される交流入力と大地間に、電流
制限素子と、フォトカプラと、ダイオードとを直列接続
し、フォトカプラの出力で接地検出を行うことを特徴と
する電力変換装置。3. The method according to claim 1, wherein the ground detecting means comprises:
A power converter characterized in that a current limiting element, a photocoupler, and a diode are connected in series between an AC input connected to a neutral phase of a DC section and the ground, and ground detection is performed at an output of the photocoupler. .
直流部の中性相に接続される交流入力と大地間に、電流
制限素子と、フォトカプラとを直列接続し、フォトカプ
ラにダイオードを逆並列接続し、フォトカプラ出力で接
地検出を行うことを特徴とする電力変換装置。4. The device according to claim 1, wherein the ground detecting means comprises:
The current limiting element and the photocoupler are connected in series between the AC input connected to the neutral phase of the DC section and the ground, the diode is connected in anti-parallel to the photocoupler, and the ground detection is performed by the photocoupler output. Characteristic power converter.
いて、接地検出手段は、フォトカプラと直列にツェナー
ダイオードを接続することを特徴とする電力変換装置。5. The power converter according to claim 2, wherein the ground detecting means connects a Zener diode in series with the photocoupler.
直流部の中性相に接続される交流入力と大地間に、電流
制限素子と変流器とを直列に接続し、変流器出力電流で
接地検出を行うことを特徴とする電力変換装置。6. The apparatus according to claim 1, wherein the ground detecting means comprises:
What is claimed is: 1. A power converter, comprising: a current limiting element and a current transformer connected in series between an AC input connected to a neutral phase of a DC section and a ground, and detecting a ground with an output current of the current transformer.
直流部の中性相に接続される交流入力と大地間に、変圧
器を接続し、変圧器出力電圧で接地検出を行うことを特
徴とする電力変換装置。7. The apparatus according to claim 1, wherein the ground detecting means comprises:
A power converter characterized in that a transformer is connected between an AC input connected to a neutral phase of a DC section and the ground, and ground detection is performed with a transformer output voltage.
直流部の中性相に接続される交流入力と大地間に、電流
制限素子と変圧器とを直列に接続し、変圧器出力電圧で
接地検出を行うことを特徴とする電力変換装置。8. The apparatus according to claim 1, wherein the ground detecting means comprises:
A power converter characterized in that a current limiting element and a transformer are connected in series between an AC input connected to a neutral phase of a DC section and the ground, and ground detection is performed using a transformer output voltage.
直流部の中性相に接続される交流入力と大地間に、電流
制限素子を接続し、電流制限素子の電圧で接地検出する
ことを特徴とする電力変換装置。9. The method according to claim 1, wherein the ground detecting means comprises:
A power converter, wherein a current limiting element is connected between an AC input connected to a neutral phase of a DC section and the ground, and grounding is detected by a voltage of the current limiting element.
地、及び直流部の中性相に接続される交流入力相が接地
されている以外では、警報発報あるいは装置を停止する
ことを特徴とする電力変換装置。10. The apparatus according to claim 1, wherein an alarm is issued or the apparatus is stopped unless the AC input power supply is not grounded and the AC input phase connected to the neutral phase of the DC section is grounded. Power converter.
抗器,コンデンサ,リアクトル,変圧器、及びそれらの
複合体とすることを特徴とする電力変換装置。11. The power converter according to claim 1, wherein the current limiting element is a resistor, a capacitor, a reactor, a transformer, or a composite thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06812998A JP3565000B2 (en) | 1997-03-19 | 1998-03-18 | Power converter |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6604997 | 1997-03-19 | ||
JP9-66049 | 1997-03-19 | ||
JP06812998A JP3565000B2 (en) | 1997-03-19 | 1998-03-18 | Power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10322883A true JPH10322883A (en) | 1998-12-04 |
JP3565000B2 JP3565000B2 (en) | 2004-09-15 |
Family
ID=26407225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06812998A Expired - Fee Related JP3565000B2 (en) | 1997-03-19 | 1998-03-18 | Power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3565000B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094015A (en) * | 2008-10-08 | 2010-04-22 | Semikron Elektronik Gmbh & Co Kg | Method of operating power converter circuit with built-in voltage boost circuit |
JP2010514005A (en) * | 2006-12-14 | 2010-04-30 | インテル・コーポレーション | Dynamic radio frequency power harvesting |
JP2012090470A (en) * | 2010-10-21 | 2012-05-10 | Fuji Electric Co Ltd | Noise reduction device and power conversion device having the same |
JP2015173531A (en) * | 2014-03-11 | 2015-10-01 | 株式会社日立産機システム | Inverter crane equipment |
JPWO2015141319A1 (en) * | 2014-03-18 | 2017-04-06 | 日本電気株式会社 | Power conditioner and control method thereof |
KR20220128774A (en) * | 2021-03-15 | 2022-09-22 | (주)규보시스템 | Ground detection device using photo coupler |
WO2022234812A1 (en) * | 2021-05-07 | 2022-11-10 | 三菱電機株式会社 | Noise filter |
-
1998
- 1998-03-18 JP JP06812998A patent/JP3565000B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010514005A (en) * | 2006-12-14 | 2010-04-30 | インテル・コーポレーション | Dynamic radio frequency power harvesting |
JP2010094015A (en) * | 2008-10-08 | 2010-04-22 | Semikron Elektronik Gmbh & Co Kg | Method of operating power converter circuit with built-in voltage boost circuit |
JP2012090470A (en) * | 2010-10-21 | 2012-05-10 | Fuji Electric Co Ltd | Noise reduction device and power conversion device having the same |
JP2015173531A (en) * | 2014-03-11 | 2015-10-01 | 株式会社日立産機システム | Inverter crane equipment |
JPWO2015141319A1 (en) * | 2014-03-18 | 2017-04-06 | 日本電気株式会社 | Power conditioner and control method thereof |
KR20220128774A (en) * | 2021-03-15 | 2022-09-22 | (주)규보시스템 | Ground detection device using photo coupler |
WO2022234812A1 (en) * | 2021-05-07 | 2022-11-10 | 三菱電機株式会社 | Noise filter |
WO2022234631A1 (en) * | 2021-05-07 | 2022-11-10 | 三菱電機株式会社 | Noise filter |
JPWO2022234812A1 (en) * | 2021-05-07 | 2022-11-10 |
Also Published As
Publication number | Publication date |
---|---|
JP3565000B2 (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4463963B2 (en) | Grid interconnection device | |
JP2903863B2 (en) | Inverter device | |
US6084785A (en) | Electric power converter | |
CN213275752U (en) | Connection system for voltage absence detector | |
JP4845910B2 (en) | Earth leakage breaker | |
JPH05130778A (en) | Power unit | |
CN108093672A (en) | Inverter substrate, the determination methods of the order of connection, phase shortage determination methods | |
JPH05501045A (en) | Earth fault circuit breaker | |
JPH10322883A (en) | Power converter | |
EP4040656A1 (en) | Interleaved power converter | |
JP2801621B2 (en) | Power supply device by PWM control | |
JP4423949B2 (en) | Control device for AC / AC direct conversion device | |
JP3303939B2 (en) | Neutral line open phase detection circuit device | |
JPH07146321A (en) | Storage battery ground fault detection circuit for uninterruptible power supply | |
JP2001136755A (en) | Inverter protection device | |
JPH02133070A (en) | Polyphase full-wave rectifier circuit | |
JP2000023470A (en) | Transformerless inverter protection apparatus | |
EP1234365A2 (en) | Apparatus and method for detecting a short circuit in a lighting system | |
JPH11174105A (en) | AC filter circuit abnormality detection device | |
CN216900723U (en) | Three-phase alternating current power supply detector and gradient power amplifier comprising same | |
JP2841531B2 (en) | Arm short detection circuit for power converter | |
JPH0516876Y2 (en) | ||
JPH07107672A (en) | System interconnection type inverter | |
JPS62147689A (en) | Induction heating cooker source abnormality detecting circuit | |
CN118483623A (en) | Ground wire detection circuit and ground wire detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080618 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |