JPH10319253A - Optical fiber sensor and its production - Google Patents
Optical fiber sensor and its productionInfo
- Publication number
- JPH10319253A JPH10319253A JP9164861A JP16486197A JPH10319253A JP H10319253 A JPH10319253 A JP H10319253A JP 9164861 A JP9164861 A JP 9164861A JP 16486197 A JP16486197 A JP 16486197A JP H10319253 A JPH10319253 A JP H10319253A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- sharpened
- water
- fiber sensor
- gel layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 98
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 150000002500 ions Chemical class 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 5
- 239000000975 dye Substances 0.000 claims description 30
- 239000000126 substance Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 15
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 15
- 239000011162 core material Substances 0.000 claims description 14
- 239000007850 fluorescent dye Substances 0.000 claims description 13
- 239000002250 absorbent Substances 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 230000005284 excitation Effects 0.000 claims description 8
- 238000006460 hydrolysis reaction Methods 0.000 claims description 8
- 229920006037 cross link polymer Polymers 0.000 claims description 7
- 230000007062 hydrolysis Effects 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 239000003504 photosensitizing agent Substances 0.000 claims description 2
- 239000013308 plastic optical fiber Substances 0.000 claims 2
- 230000004044 response Effects 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 230000035945 sensitivity Effects 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 abstract description 2
- 108010025899 gelatin film Proteins 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 7
- 229940043267 rhodamine b Drugs 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- NJDNXYGOVLYJHP-UHFFFAOYSA-L disodium;2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=CC(=O)C=C2OC2=CC([O-])=CC=C21 NJDNXYGOVLYJHP-UHFFFAOYSA-L 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000004043 responsiveness Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 5
- 238000002189 fluorescence spectrum Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229960002143 fluorescein Drugs 0.000 description 3
- 238000001917 fluorescence detection Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000035440 response to pH Effects 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940020947 fluorescein sodium Drugs 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N2021/7706—Reagent provision
- G01N2021/772—Tip coated light guide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N2021/7706—Reagent provision
- G01N2021/7723—Swelling part, also for adsorption sensor, i.e. without chemical reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N2021/7769—Measurement method of reaction-produced change in sensor
- G01N2021/7786—Fluorescence
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は水中及び大気中の
オン,分子の濃度を計測するための光ファイバセンサに
関する.特に本発明は,蛍光物質がイオン,分子と接触
したときに生ずる蛍光変化を利用した光ファイバセンサ
の改良に関する.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
Optical fiber sensor for measuring ON and molecular concentrations. In particular, the present invention relates to an improvement in an optical fiber sensor utilizing a change in fluorescence generated when a fluorescent substance comes into contact with ions or molecules.
【0002】[0002]
【従来技術】蛍光変化を利用した光ファイバセンサとし
て,(A)エバネッセント波利用型,(B)バンドル光
ファイバ(数千本の細い光ファイバを束状に集合したも
の)利用型,が従来検討されてきた. (A)の方法
は,光ファイバクラッド層を除去した後,コア側面に蛍
光物質を固定し,光ファイバコアから滲み出るエバネッ
セント波を利用して蛍光物質を励起し,生じた蛍光を光
ファイバを介して光検出器に導く方法である(例えば,
Z.M.Hale他,Sensors andAcut
uators,B17,p.233,1994,な
ど).(B)の方法は,バンドル光ファイバ端末部に蛍
光物質を固定し,もう一方の端末部の光ファイバ束を2
つに分割し,分割した一方の端末から蛍光物質に向けて
励起光を照射し,分割したもう1つの端末に光検出器を
配置して生じた蛍光をバンドル光ファイバを介して検出
する方法である(例えばG.Orellana他,An
al.Chem.,67,p.2231,1955,な
ど).2. Description of the Related Art As an optical fiber sensor using a change in fluorescence, (A) an evanescent wave type and (B) a bundled optical fiber (thousands of thin optical fibers assembled in a bundle) have been studied. It has been. In the method (A), after removing the optical fiber cladding layer, a fluorescent substance is fixed on the side surface of the core, the fluorescent substance is excited using an evanescent wave oozing out of the optical fiber core, and the generated fluorescence is transmitted to the optical fiber. Through a photodetector (eg,
Z. M. Hale et al., Sensors and Acut
uators, B17, p. 233, 1994, etc.). In the method (B), a fluorescent substance is fixed to the end portion of the bundle optical fiber, and the optical fiber bundle at the other end portion is fixed by two.
And irradiate the excitation light toward the fluorescent substance from one of the divided terminals, and place a photodetector on the other divided terminal to detect the generated fluorescence via a bundled optical fiber. (Eg G. Ollellana et al., An
al. Chem. , 67, p. 2231, 1955, etc.).
【0003】[0003]
【発明が解決しょうとする課題】しかし,上記(A)の
方法は(1)コア表面へ蛍光物質を固定するプロセスに
時間を要するばかりでなく,固定の均一化が難しい,
(2)蛍光物質を固定したセンサ部分の強度が極端に弱
くフィールド現場で使いにくい,(3)イオン・分子に
対するセンサ応答感度が十分でない,(4)センサアレ
イとして集合するのが困難である,と云う問題点があっ
た.(B)の方法は(1)バンドル光ファイバを使用し
ているため高価である,(2)端末部における蛍光物質
の固定が複雑である,(3)イオン・分子に対するセン
サ応答感度が十分でない,(4)多チャンネルセンサア
レイを構成するのが困難である,と云う問題点があっ
た.However, in the method (A), not only the (1) process of fixing the fluorescent substance on the core surface requires time but also it is difficult to make the fixing uniform.
(2) the intensity of the sensor portion on which the fluorescent substance is fixed is extremely weak, making it difficult to use in the field; (3) the sensor response sensitivity to ions and molecules is not sufficient; (4) it is difficult to assemble as a sensor array; There was a problem called. The method (B) is (1) expensive because a bundled optical fiber is used, (2) the fixing of the fluorescent substance at the terminal is complicated, and (3) the sensor response sensitivity to ions and molecules is not sufficient. (4) There is a problem that it is difficult to configure a multi-channel sensor array.
【0004】そこで本発明は,蛍光変化を利用した光フ
ァイバセンサ,特に上記(B)法がもつ欠点を解決する
ためになされたもので,高価なバンドル光ファイバを使
用することなく安価な通常の光ファイバ2本を使用する
のみで簡単に製造でき,バンドル光ファイバ利用型セン
サを上回る高い応答感度を有し,現場で使い易く,セン
サアレイとして構成するのが容易な光ファイバセンサを
提供することを目的とする.Accordingly, the present invention has been made to solve the drawbacks of the optical fiber sensor utilizing the change in fluorescence, particularly, the above-mentioned method (B), and uses an inexpensive ordinary optical fiber without using an expensive bundle optical fiber. To provide an optical fiber sensor that can be easily manufactured using only two optical fibers, has higher response sensitivity than a sensor using a bundled optical fiber, is easy to use in the field, and is easy to configure as a sensor array. With the goal.
【0005】[0005]
【課題を解決するための手段】請求項1の光ファイバセ
ンサを図1に基づき説明する.クラッド層1を除去した
2本の光ファイバ端末部2を加熱溶融して一体化・先鋭
化し,先鋭化端末3表面に吸水性ゲル層4を形成させ,
そのゲル層内部に蛍光物質を固定させる.次に,光ファ
イバ他端5から励起光を入射して先鋭化端末部3の吸水
性ゲル層4で蛍光を発生させ,発生した蛍光をもう一方
の光ファイバ6を通して検出することを特徴とする.An optical fiber sensor according to claim 1 will be described with reference to FIG. The two optical fiber ends 2 from which the cladding layer 1 has been removed are heated and melted to be integrated and sharpened, and a water-absorbing gel layer 4 is formed on the sharpened end 3 surface.
The fluorescent substance is fixed inside the gel layer. Next, excitation light is incident from the other end 5 of the optical fiber to generate fluorescence in the water-absorbing gel layer 4 of the sharpened terminal portion 3, and the generated fluorescence is detected through the other optical fiber 6. .
【0006】請求項2の光ファイバセンサは,前記先鋭
化端末部3の先鋭化角度が15度から50度の範囲にあ
ることを特徴とする.The optical fiber sensor according to a second aspect is characterized in that the sharpening angle of the sharpening terminal portion 3 is in a range of 15 degrees to 50 degrees.
【0007】請求項3の光ファイバセンサは,センサ作
製のために使用する原材料光ファイバとしてPMMAを
主成分とするPOFを使用し,吸水性ゲル層4として先
鋭化端末3表面にPMMA加水分解層を形成することを
特徴とする.According to a third aspect of the present invention, the raw material optical fiber used for fabricating the sensor is made of POF containing PMMA as a main component, and the water-absorbing gel layer 4 has a hydrolyzed PMMA layer on the surface of the sharpened terminal 3. It is characterized by forming.
【0008】請求項4の光ファイバセンサ製造方法は,
請求項3のPMMA加水分解層を形成させる方法とし
て,前記先鋭化端末表面に濃硫酸に接触させてPMMA
の加水分解反応を起こさせることを特徴とする.According to a fourth aspect of the present invention, there is provided a method for manufacturing an optical fiber sensor.
4. A method of forming a PMMA hydrolysis layer according to claim 3, wherein the sharpened terminal surface is brought into contact with concentrated sulfuric acid to form PMMA.
It is characterized by causing a hydrolysis reaction of.
【0009】請求項5の光ファイバセンサは,前記吸水
性ゲル層4中に固定する蛍光物質として,イオン,分子
と接触したとき蛍光変化を示す蛍光色素を1〜3種類用
いることを特徴とする.The optical fiber sensor according to the present invention is characterized in that, as the fluorescent substance fixed in the water-absorbing gel layer 4, one to three kinds of fluorescent dyes exhibiting a fluorescent change when contacted with ions or molecules are used. .
【0010】請求項6の光ファイバセンサは,原材料光
ファイバとしてシリカガラスコア/プラスチッククラッ
ド光ファイバ(PCF)を使用し,前記吸水性表面ゲル
層4として吸水性架橋高分子層を形成することを特徴と
する.In the optical fiber sensor according to the present invention, a silica glass core / plastic clad optical fiber (PCF) is used as a raw material optical fiber, and a water absorbing crosslinked polymer layer is formed as the water absorbing surface gel layer 4. Features.
【0011】請求項7の光ファイバセンサ製造方法は,
請求項6に記載した吸水性架橋高分子層を形成する方法
として,請求項6に記載した光ファイバ先鋭化端末部
(3)のガラス表面をシランカップリング剤で処理した
後,吸水性高分子またはオリゴマー,単量体,光増感
剤,光架橋剤などを含む光重合性液体と蛍光色素を混合
した色素溶液を前記先鋭化端末部(3)表面に塗布ある
いは前記端末部を前記色素溶液に浸積した状態で光ファ
イバ他端(5)から可視光線ないし紫外線を入射するこ
とにより吸水性架橋高分子層を形成することを特徴とす
る。According to a seventh aspect of the present invention, there is provided a method of manufacturing an optical fiber sensor.
As a method for forming the water-absorbent crosslinked polymer layer according to claim 6, the glass surface of the optical fiber sharpened end portion (3) according to claim 6 is treated with a silane coupling agent, and then the water-absorbent polymer is formed. Alternatively, a dye solution obtained by mixing a fluorescent dye with a photopolymerizable liquid containing an oligomer, a monomer, a photosensitizer, a photocrosslinking agent, or the like is applied to the surface of the sharpened terminal portion (3), or the terminal portion is coated with the dye solution. In this state, visible light or ultraviolet light is incident from the other end (5) of the optical fiber in a state of being immersed in the water-absorbent polymer to form a water-absorbing crosslinked polymer layer.
【0012】[0012]
【発明の実施の形態】次に発明の実施形態を詳細に説明
する.PMMAをコア材料としたPOF(コア直径1m
m)を用いたときの先鋭化端末作製法を図1に従って説
明する.クラッド層1を除去した2本の光ファイバ端末
2を用意する(A).この2本のファイバを固定した
後,先端部を加熱・圧着し,2本の光ファイバ端末を一
体化する.圧着部分が融着されているのを確認後,この
部分をさらに加熱しつつ延伸し,先鋭化する(B).こ
の一体・先鋭化端末を作製するのに要する時間は約2分
で,熟練すれば1分に短縮できる.次にこの先鋭化端末
部3を濃硫酸に浸積,水洗することによりPMMA加水
分解層を形成する(−CH3COOCH3→−CH3C
OOH).この先鋭化端末をさらにカセイソーダ水溶液
に浸積することによりカルボキシル基をイオン解離(−
CH3COOH→−COO−)し,吸水性ゲル層を中性
水中でも膨潤状態にすることができる.水中イオンの計
測にはこの膨潤状態での計測が望ましい.この吸水性ゲ
ル層4にローダミンB色素を固定し,光ファイバ他端5
から励起光を入射して吸水性ゲル層4で蛍光を発生させ
た時の様子を図2に示す.ここで,下側が励起光側5,
上側が検出側6である.明るい部分すなわち励起光側5
で主に蛍光が生じることが分かる.この蛍光は上側の検
出側光ファイバ6を通して検出される.以上の結果よ
り,2本のPOF(励起光源用,集光検出用)端末を一
緒に加熱延伸することにより両端末を一体・先鋭化した
端末を容易に作製できること,その先鋭化端末表面に吸
水性ゲル層を形成しそこに蛍光色素を固定した請求項1
の光ファイバセンサが容易に実現できることが分かる.Next, embodiments of the present invention will be described in detail. POF with core material of PMMA (core diameter 1m
The method of manufacturing a sharpened terminal using m) will be described with reference to FIG. 1. Prepare two optical fiber terminals 2 from which the clad layer 1 has been removed (A). After fixing these two fibers, the ends are heated and crimped to integrate the two optical fiber terminals. After confirming that the crimped portion has been fused, this portion is further heated and stretched to be sharpened (B). The time required to make this integrated and sharpened terminal is about 2 minutes, and can be reduced to 1 minute with skill. Then immersing the sharpening terminal unit 3 in concentrated sulfuric acid, to form a PMMA hydrolyzed layer by washing with water (-CH 3 COOCH 3 → -CH 3 C
OOH). This sharpened terminal is further immersed in an aqueous solution of caustic soda to ion dissociate the carboxyl group (−
CH 3 COOH → -COO − ), and the water-absorbing gel layer can be swollen even in neutral water. For measurement of ions in water, measurement in this swollen state is desirable. A rhodamine B dye is immobilized on the water-absorbing gel layer 4, and the other end of the optical fiber 5 is fixed.
FIG. 2 shows the state when fluorescence is generated in the water-absorbing gel layer 4 when excitation light is incident from FIG. Here, the lower side is the excitation light side 5,
The upper side is the detection side 6. Bright part, ie excitation light side 5
It turns out that fluorescence mainly occurs in This fluorescence is detected through the upper detection side optical fiber 6. From the above results, it is possible to easily produce a terminal in which both terminals are integrated and sharpened by heating and stretching two POF (for excitation light source and light collection detection) terminals together, and the surface of the sharpened terminal absorbs water. 2. A fluorescent gel layer is formed on which a fluorescent dye is fixed.
It can be seen that the optical fiber sensor can be easily realized.
【0013】前記The above
【0012】記載の光ファイバセンサにおいて,先鋭化
端末部4表面の吸水性ゲル層4で生ずる蛍光は検出側光
ファイバ6を通して検出される.その蛍光強度が,先端
部が尖っている場合(先鋭化した場合)とフラットな場
合(台形)でどの様に異なってくるか,その違いを表1
に示す.ここで,コア直径1mmのPOFから作製した
先鋭化端末(先鋭化長さ3mm)を3本用意し,その先
端を2mmカットした台形端末,1mmカットした台形
端末,カットしない先鋭化端末を濃硫酸浸積処理,1N
−カセイソーダ水溶液浸積処理して膨潤状態の吸水性ゲ
ル層を形成した.そのゲル層へローダミンBを固定し
た.その蛍光強度は,0mm>1mm>2mmの順で,
端末が先鋭化するとともに検出蛍光感度は向上するこ
と,請求項1記載の光ファイバセンサにおいて一体化端
末部を先鋭化する効果が明確に現れていること,が分か
る. In the optical fiber sensor described above, the fluorescence generated in the water-absorbing gel layer 4 on the surface of the sharpened terminal portion 4 is detected through the optical fiber 6 on the detection side. Table 1 shows how the fluorescence intensity differs when the tip is sharp (sharpened) or flat (trapezoidal).
Shown in Here, three sharpened terminals (sharpened length 3 mm) made of POF having a core diameter of 1 mm are prepared, and the trapezoidal terminals whose ends are cut by 2 mm, the trapezoidal terminals cut by 1 mm, and the sharpened terminals that are not cut are concentrated sulfuric acid. Immersion treatment, 1N
-A swollen water-absorbent gel layer was formed by immersion in an aqueous solution of sodium hydroxide. Rhodamine B was immobilized on the gel layer. The fluorescence intensity is in the order of 0 mm> 1 mm> 2 mm,
It can be seen that, as the terminal is sharpened, the detection fluorescence sensitivity is improved, and that the effect of sharpening the integrated terminal in the optical fiber sensor according to claim 1 clearly appears.
【0014】前記The above
【0012】記載の光ファイバセンサ(コア直径1mm
のPOF使用)において,先鋭化端末部3の長さすなわ
ち先鋭化角度を変えた場合,検出側光ファイバ6を通し
て検出される蛍光検出強度がどの様に異なってくるか,
その違いを表2に示す.表2の結果より,蛍光検出感度
は,先鋭化角度が36度付近で最大になること,請求項
2記載の光ファイバセンサにおいて先鋭化角度を特定す
る効果が明確に現れていること,が分かる. The optical fiber sensor described above (core diameter 1 mm
When the length of the sharpened terminal section 3, that is, the sharpened angle is changed in the POF, how the fluorescence detection intensity detected through the detection-side optical fiber 6 changes will be described.
Table 2 shows the differences. From the results in Table 2, it can be seen that the fluorescence detection sensitivity is maximized when the sharpening angle is around 36 degrees, and that the effect of specifying the sharpening angle in the optical fiber sensor according to claim 2 clearly appears. .
【0015】前記The above
【0012】記載の光ファイバセンサにおいて,吸水性
表面ゲル層が形成されている先鋭化端末を蛍光色素/有
機溶媒溶液,蛍光色素/水溶液,蛍光色素/有機溶媒/
水溶液などに浸積することにより,色素をゲル層に固定
できる.ゲル層への色素の結合形態は,色素がもつ分子
構造,官能基によって異なり,水素結合,イオン結合,
化学結合,酸/アルカリ相互作用などに分類される.図
3にフルオレセインナトリウム色素をゲル層へ固定した
光ファイバセンサをpH衝液に浸積したときの蛍光スペ
クトル変化を示す.波長(wavelength)53
0nm付近にピークをもつフルオレセインナトリウムの
蛍光(F)はpH9.0のアルカリからpH3.3の酸
性になるにつれて低下し,明確なpH応答性をもつ,す
なわちpHセンサとして十分使用できることが分かる.
一方,ゲル層を形成せず,フルオレセインナトリウム色
素を先鋭化端末に直接固定したときは,明確なpH応答
性を示さなかった(図4).以上の結果より,先鋭化端
末に吸水性ゲル層を形成しそこへ蛍光色素を固定すると
センサの水素イオン濃度(pH)に対する応答性が飛躍
的に向上すること,ゲル層を形成せずPMMA表面に直
接色素を固定してもイオン応答性は低いこと,請求項1
記載の光ファイバセンサにおいて吸水性ゲル層を形成さ
せる効果が明確に現れていること,が分かる.In the optical fiber sensor described above, the sharpened terminal on which the water-absorbing surface gel layer is formed is a fluorescent dye / organic solvent solution, a fluorescent dye / aqueous solution, a fluorescent dye / organic solvent /
The dye can be fixed to the gel layer by immersion in an aqueous solution. The binding form of the dye to the gel layer depends on the molecular structure and functional group of the dye, including hydrogen bonding, ionic bonding,
It is classified into chemical bond, acid / alkali interaction, etc. Figure 3 shows the change in the fluorescence spectrum when the optical fiber sensor with the sodium fluorescein dye immobilized on the gel layer was immersed in a pH buffer. Wavelength 53
It can be seen that the fluorescence (F) of sodium fluorescein having a peak near 0 nm decreases as the pH changes from an alkali of pH 9.0 to an acid of pH 3.3, and has a clear pH response, that is, it can be sufficiently used as a pH sensor.
On the other hand, when the fluorescein sodium dye was directly fixed to the sharpened terminal without forming a gel layer, no clear pH response was exhibited (FIG. 4). From the above results, it can be seen that when a water-absorbing gel layer is formed on the sharpened terminal and a fluorescent dye is fixed thereon, the response of the sensor to hydrogen ion concentration (pH) is dramatically improved. 2. The ion responsiveness is low even when a dye is directly immobilized on the dye.
It can be seen that the effect of forming the water-absorbing gel layer clearly appears in the described optical fiber sensor.
【0016】前記The above
【0012】記載の光ファイバセンサにおいて,1種類
の蛍光色素を固定ではなく,複数種類の色素を吸水性ゲ
ル層内へ固定すれば,複数種類のイオン,分子の濃度を
同時に計測することが可能になる.図5に,2種類の色
素すなわちフルオレセインとローダミンBを吸水性ゲル
層に混合固定した光ファイバセンサのpH,エタノール
濃度に対する応答性を示す.フルオレセインの蛍光(5
30nm)はpHに対して選択的に応答し,ローダミン
Bの蛍光(595nm)はエタノール濃度に対して選択
的に応答していることが分かる.以上の結果より,吸水
性ゲル層へ2種類の色素を固定すると,種類の異なるイ
オン,分子を同時計測できること,請求項5記載の効果
が明確に現れていること,が分かる.この効果は2種類
の色素の固定に限定されない.400nmから900n
mの波長範囲において蛍光波長の異なる色素を選択すれ
ば,3種類の色素の混合固定も十分可能である.In the optical fiber sensor described above, if one kind of fluorescent dye is fixed instead of one kind of fluorescent dye in the water-absorbing gel layer, the concentrations of plural kinds of ions and molecules can be measured simultaneously. become. Figure 5 shows the response to pH and ethanol concentration of an optical fiber sensor in which two types of dyes, fluorescein and rhodamine B, were mixed and immobilized in a water-absorbing gel layer. Fluorescein fluorescence (5
30 nm) selectively responds to pH, and the fluorescence of rhodamine B (595 nm) responds selectively to ethanol concentration. From the above results, it can be seen that when two types of dyes are immobilized on the water-absorbent gel layer, different types of ions and molecules can be measured simultaneously, and the effect of claim 5 is clearly exhibited. This effect is not limited to the fixation of the two dyes. 400nm to 900n
If dyes with different fluorescence wavelengths are selected in the wavelength range of m, it is possible to mix and fix three types of dyes.
【0017】シリカガラスをコア材料としたPCF(コ
ア直径200μm)を用いたときの先鋭化端末作製法を
図1に従って説明する.クラッド層1を除去した2本の
PCF端末2を用意する(A).この2本のファイバを
仮止めした後,炭酸ガスレーザで先端部を加熱し,ファ
イバ先端が溶融一体化した時点で延伸・先鋭化する
(B).この一体・先鋭化端末を作製するのに要する時
間は1分以下である.次にこの先鋭化端末部3表面を
[γ−(メタアクロキシ)プロピルトリメトキシシラン
液に浸積することにより,シランカップリング剤処理を
行った.この先鋭化端末をアミノフルオレセイン/光重
合性溶液に浸積しつつ,光ファイバ他端からアルゴンレ
ーザ(488nm)を入射し,先鋭化端末表面に吸水性
ゲル膜を形成させた.ゲル膜形成に必要な時間は1分以
内であった.この光ファイバセンサをpH緩衝液に浸積
したときの蛍光スペクトル変化(ピーク波長545n
m)をA method for manufacturing a sharpened terminal using a PCF (core diameter: 200 μm) using silica glass as a core material will be described with reference to FIG. 1. Prepare two PCF terminals 2 from which the clad layer 1 has been removed (A). After temporarily fixing the two fibers, the distal end is heated with a carbon dioxide gas laser, and is stretched and sharpened when the distal ends of the fibers are fused and integrated (B). The time required to make this integrated and sharpened terminal is less than one minute. Next, the surface of the sharpened end portion 3 was immersed in [γ- (methacryloxy) propyltrimethoxysilane solution to perform a silane coupling agent treatment. While immersing the sharpened terminal in aminofluorescein / photopolymerizable solution, an argon laser (488 nm) was incident from the other end of the optical fiber to form a water-absorbing gel film on the surface of the sharpened terminal. The time required for gel film formation was within one minute. Fluorescence spectrum change (peak wavelength 545 n) when this optical fiber sensor is immersed in a pH buffer solution.
m)
【0015】記載の方法と同様に測定したところ,図3
と類似の結果が得られた.ここで,重合性溶液としてヒ
ドロキシエチルメタクリレート,エチレングリコールジ
メタクリレート,ベンゾインエチルエーテルを含む溶液
を使用した.以上が本発明の1つの実施形態(実施例)
であるが,本発明は上記実施例に限定されるものでな
い.請求項6に記載の吸水性ゲル膜4として,ポリビニ
ルアルコール及びその誘導体,ポリビニルアルコール及
びその誘導体,ポリ酢酸ビニル加水分解物,ポリアクリ
ルアミド及びその誘導体,ポリアクリル酸及びポリアク
リル酸メチル加水分解物,ポリメタクリル酸及びポリメ
チルメタクリレート加水分解物,ヒドロキシエチルメタ
クリレート及びその誘導体,ヒドロキシプロピルセルロ
ーズ,ポリエチレンオキサイド及びその誘導体を含む架
橋高分子組成物が使用できる.またその架橋の方法は光
重合に限定されない.以上の結果より,2本のPCF
(励起光源用,集光検出用)端末を一緒に加熱延伸する
ことにより両端末を一体・先鋭化した端末を容易に作製
できること,その先鋭化端末表面に吸水性ゲル層を形成
しそこに蛍光色素を固定した請求項6の光ファイバセン
サが容易に実現できることが分かる.また光重合法によ
り先鋭化端末3表面に吸水性ゲル層を容易に形成でき,
請求項7の光ファイバセンサ製造方法として十分効果が
あることが分かる.When the measurement was performed in the same manner as described, FIG.
Similar results were obtained. Here, a solution containing hydroxyethyl methacrylate, ethylene glycol dimethacrylate, and benzoin ethyl ether was used as the polymerizable solution. The above is one embodiment (example) of the present invention.
However, the present invention is not limited to the above embodiment. The water-absorbing gel film 4 according to claim 6, wherein polyvinyl alcohol and its derivative, polyvinyl alcohol and its derivative, polyvinyl acetate hydrolyzate, polyacrylamide and its derivative, polyacrylic acid and polymethyl acrylate hydrolyzate, A crosslinked polymer composition containing polymethacrylic acid and polymethyl methacrylate hydrolyzate, hydroxyethyl methacrylate and its derivatives, hydroxypropyl cellulose, polyethylene oxide and its derivatives can be used. The method of crosslinking is not limited to photopolymerization. From the above results, two PCFs
(Excitation light source, for light detection) The terminal can be easily formed by heating and stretching the terminals together, and both terminals can be easily integrated and sharpened. A water-absorbing gel layer is formed on the sharpened terminal surface and the fluorescence is formed there. It can be seen that the optical fiber sensor according to claim 6 in which a dye is fixed can be easily realized. In addition, a water-absorbing gel layer can be easily formed on the surface of the sharpened terminal 3 by a photopolymerization method,
It can be seen that the method of manufacturing the optical fiber sensor according to claim 7 is sufficiently effective.
【0013】[0013]
【実施例1】コア材料としてPMMAを用いたPOF
(三菱レイヨン製SH−4001,コア直径1mm)を
2本(長さ1m)用意する.ジオキサンを用いてクラッ
ド層を除去した2本の光ファイバ端末を粘着テープで固
定した後,電熱器で加熱し,ピンセットを用いて2本の
ファイバ端末を圧着一体化した.これをさらに加熱しつ
つ延伸し,一体・先鋭化した.その細く伸ばした(先鋭
化)長さは3mmであつた.次にこれらセンサの先端部
分を濃硫酸に浸積,水洗した後,1Nカセイソーダ水溶
液に5分間浸積した.この先鋭化端末をローダミンB/
エタノール溶液に浸積することにより,ゲル層内へロー
ダミンB色素を固定した.このように作製した光ファイ
バセンサを0.1mM KCl水溶液中に浸積し,光フ
ァイバセンサの一方の端末からアルゴンレーザ光(48
8nm)を入射し,先鋭化端末に生じた蛍光をもう一方
の光ファイバを介してマルチチャンネル光検出器(PM
A−11,浜松ホトニクス製)に導き,蛍光スペクトル
を測定した.室温で濃硫酸浸積時間をを変えた(吸水性
ゲル層の厚みを変えた)場合,検出側光ファイバ6を通
して検出される蛍光強度がどの様に異なってくるか,そ
の違いを表3に示す.ここで,均一に加水分解されてい
るかどうかの判定は表面白化の度合いで判断した.また
断面を金属顕微鏡で観察することにより加水分解層の厚
みを測定した.表3の結果より,濃硫酸処理には最適時
間が存在する,すなわち加水分解層の最適厚みが存在す
ること,濃硫酸接触処理によって先鋭化端末(PMM
A)表面に吸水性ゲル層(加水分解層)が容易に形成で
き,請求項4の光ファイバセンサ製造方法として十分効
果があること,が分かる. Embodiment 1 POF using PMMA as a core material
(Mitsubishi Rayon SH-4001, core diameter 1mm) 2 pieces (length 1m) are prepared. The two optical fiber terminals from which the cladding layer was removed using dioxane were fixed with adhesive tape, heated with an electric heater, and the two fiber terminals were integrated by crimping using tweezers. This was stretched while further heating, and it was integrated and sharpened. The thinned (sharpened) length was 3 mm. Next, the tips of these sensors were immersed in concentrated sulfuric acid, washed with water, and then immersed in a 1N aqueous solution of sodium hydroxide for 5 minutes. This sharpened terminal is called Rhodamine B /
Rhodamine B dye was immobilized in the gel layer by immersion in an ethanol solution. The optical fiber sensor manufactured in this way is immersed in a 0.1 mM KCl aqueous solution, and argon laser light (48
8 nm), and the fluorescence generated at the sharpened terminal is transmitted through the other optical fiber to a multi-channel photodetector (PM).
A-11, manufactured by Hamamatsu Photonics) and measured the fluorescence spectrum. Table 3 shows how the fluorescence intensity detected through the detection-side optical fiber 6 changes when the concentrated sulfuric acid immersion time is changed at room temperature (when the thickness of the water-absorbing gel layer is changed). Show. Here, whether or not the hydrolysis was uniform was determined by the degree of surface whitening. The thickness of the hydrolyzed layer was measured by observing the cross section with a metallographic microscope. From the results in Table 3, it can be seen that there is an optimum time for the concentrated sulfuric acid treatment, that is, there is an optimal thickness of the hydrolysis layer, and the sharpened terminal (PMM)
A) It can be seen that a water-absorbing gel layer (hydrolyzing layer) can be easily formed on the surface, and is sufficiently effective as the optical fiber sensor manufacturing method according to claim 4.
【0014】[0014]
【実施例2】実施例1で作製した先鋭化端末(硫酸処理
時間20秒)をフルオレセインナトリウム水溶液に浸積
しすることにより,pHセンサを作製した.光ファイバ
端末5から高輝度青色発光ダイオード(LED,470
nm,日亜化学,1995)光を入射することにより,
吸水性ゲル膜4内のフルオレセインナトリウムを励起し
て蛍光を生じさせ,生じた蛍光をもう一方の光ファイバ
端末においてフィルター(Wratten No.1
2,Eastman Kodak)を介してシリコンホ
トダイオード(S2387−66R,浜松ホトニクス)
で検出した.このシステムを用いてpH応答性をコンピ
ュータ計測した.結果を図5に示す.河川・湖沼の酸性
度計測用として,酸性雨監視用として十分利用可能なセ
ンサ特性を有していることが分かる.Example 2 A pH sensor was manufactured by immersing the sharpened terminal (sulfuric acid treatment time: 20 seconds) prepared in Example 1 in an aqueous solution of sodium fluorescein. A high brightness blue light emitting diode (LED, 470
nm, Nichia Chemical, 1995)
The fluorescein sodium in the water-absorbent gel film 4 is excited to generate fluorescence, and the generated fluorescence is filtered at the other end of the optical fiber (Wratten No. 1).
2, Eastman Kodak) and a silicon photodiode (S2387-66R, Hamamatsu Photonics)
Was detected. The pH response was measured by computer using this system. Figure 5 shows the results. It can be seen that it has sensor characteristics that can be used sufficiently for monitoring acid rain for measuring the acidity of rivers and lakes.
【0015】[0015]
【実施例3】実施例2で作製したpHセンサと青色発光
ダイオード,フィルター,ホトダイオードを用いて,全
部品を固体化したpH計測回路を製作した.その構成図
を図6に示す.ノートパソコンと組み合わせてpH応答
特性を計測したところ,図5と類似の結果を得た.本セ
ンサシステムを装置化すれば,河川・湖沼の酸性度計測
用,酸性雨監視用のフィールド現場で使用可能な光ファ
イバセンサシステムが構築できる.Embodiment 3 Using the pH sensor manufactured in Embodiment 2, a blue light emitting diode, a filter, and a photodiode, a pH measuring circuit was manufactured in which all parts were solidified. Figure 6 shows the configuration. When the pH response characteristics were measured in combination with a notebook computer, results similar to those in Fig. 5 were obtained. If this sensor system is used as a device, an optical fiber sensor system that can be used in the field for measuring acidity of rivers and lakes and monitoring acid rain can be constructed.
【0015】[0015]
【発明の効果】請求項1の発明によれば,2本の光ファ
イバ端末を一体・先鋭化することによって端末部での蛍
光発生効率及び蛍光検出効率は大幅に向上する.またセ
ンサ構造が簡単で強固なのでフィールド現場で使い易く
なり,多チャンネルセンサアレイとして構成が容易にな
る.また先鋭化端末表面に高吸水性ゲル層を形成させそ
のゲル層に蛍光物質を固定させることによってイオン・
分子に対する応答感度(蛍光変化量)が飛躍的に向上す
る.先鋭化端末表面に直接色素を固定してもイオン分子
に対する応答性は低い.イオン・分子に対して応答性の
異なる色素を複数種類用いてセンサアレイを構成すれ
ば,複数のイオン分子の同時計測,多成分のパターン認
識的識別が可能となる.また,1つのセンサに複数種類
の色素を混合固定し,それを多チャンネル化すれば,認
識と分布の同時計測が可能になる.これらの目的に本発
明の光ファイバセンサは適している.According to the first aspect of the present invention, the efficiency of fluorescence generation and the efficiency of fluorescence detection at the terminal are greatly improved by integrating and sharpening the two optical fiber terminals. In addition, since the sensor structure is simple and robust, it is easy to use in the field and can be easily configured as a multi-channel sensor array. Also, by forming a highly water-absorbing gel layer on the sharpened terminal surface and fixing a fluorescent substance on the gel layer,
The response sensitivity to the molecule (the amount of change in fluorescence) is dramatically improved. Responsiveness to ionic molecules is low even if the dye is immobilized directly on the sharpened terminal surface. If a sensor array is constructed using multiple types of dyes with different responsiveness to ions / molecules, simultaneous measurement of multiple ionic molecules and pattern recognition identification of multiple components are possible. Simultaneously, recognition and distribution can be measured if multiple types of dyes are mixed and fixed on one sensor and multi-channeled. The optical fiber sensor of the present invention is suitable for these purposes.
【0016】請求項2の発明によれば,先鋭化の度合い
(角度)を最適化することによって吸水性ゲル層4にお
ける蛍光を最も効果的に発生させ,最も効率的に検出で
きる.また先鋭化角度を最適化することによって,製造
し易く取り扱いが容易なセンサが実現できる.According to the second aspect of the present invention, by optimizing the degree (angle) of sharpening, the fluorescence in the water-absorbing gel layer 4 can be generated most effectively, and can be detected most efficiently. By optimizing the sharpening angle, a sensor that is easy to manufacture and easy to handle can be realized.
【0017】請求項3の発明では,センサ材料としてP
OFを使用するので,一体・先鋭化加工のために特別の
道具・装置が必要でなくなり,通常の電熱ヒーター,カ
ッター,ピンセットがあれば先鋭化端末を作製でき,加
工時間も短縮できる.また先鋭化端末3表面に吸水性ゲ
ル層4(PMMA加水分解層)の形成が容易になる.According to the third aspect of the present invention, P is used as a sensor material.
The use of OF eliminates the need for special tools and equipment for integrated and sharpening, and the use of ordinary electric heaters, cutters and tweezers makes it possible to manufacture sharpened terminals and shorten the processing time. Further, the formation of the water-absorbing gel layer 4 (PMMA hydrolysis layer) on the surface of the sharpened terminal 3 is facilitated.
【0018】請求項4の発明では,濃硫酸接触処理によ
ってPMMA加水分解層を短時間(30秒以下)で均一
に形成でき,簡単で再現性のある光ファイバの製造が可
能になる.According to the fourth aspect of the present invention, the PMMA hydrolysis layer can be uniformly formed in a short time (30 seconds or less) by the concentrated sulfuric acid contact treatment, and a simple and reproducible optical fiber can be manufactured.
【0019】請求項5の発明では,蛍光物質として蛍光
色素を用いるので,目的・用途に合わせたセンサの設
計,製作が可能になる.これは,これまで数多くの蛍光
色素の性質,特性がデータベース化されており,設計製
作にそれが利用できるからである.また応答性が異なる
複数の色素を固定することによって,複数イオン・分子
の同時計測あるいは多成分のパターン認識的識別が可能
となる.According to the fifth aspect of the present invention, since a fluorescent dye is used as the fluorescent substance, it is possible to design and manufacture a sensor according to the purpose and application. This is because the properties and characteristics of many fluorescent dyes have been compiled into a database and can be used for designing and manufacturing. By fixing multiple dyes with different responsiveness, simultaneous measurement of multiple ions / molecules or pattern recognition identification of multiple components becomes possible.
【0020】請求項6の発明では,プラスチックコアの
代わりにシリカガラスコアを用いるので,伝送損失が大
幅に低減化でき,遠隔監視用センサ,広域分布計測用セ
ンサへの応用など利用分野が拡大する.またPOFでは
伝送損失が大きい300〜400nm,700〜900
nmの波長領域が利用可能になり,センシング材料とし
て利用できる蛍光物質の選択の幅が大となる.According to the sixth aspect of the present invention, the silica glass core is used in place of the plastic core, so that the transmission loss can be greatly reduced, and the field of use such as application to a sensor for remote monitoring and a sensor for wide area distribution measurement is expanded. . Further, the POF has a large transmission loss of 300 to 400 nm and 700 to 900 nm.
The wavelength region of nm can be used, and the range of choice of fluorescent materials that can be used as sensing materials is expanded.
【0021】請求項7の発明では,シランカップリング
剤で処理することによりガラス表面と吸水性ゲル層の間
に化学結合が形成でき,両者の密着性を大幅に高めるこ
とができる.また光ファイバ他端から可視光線ないし紫
外線を入射し先鋭化端末部3の内部から表面へ光を照射
して光重合を起こさせるので,センサとして最も効果的
なゲル膜を,また最も効率的にゲル膜を形成できる.ま
たこの本方法によってゲル膜への色素固定を同時に行う
ことが可能になる.According to the seventh aspect of the present invention, by treating with a silane coupling agent, a chemical bond can be formed between the glass surface and the water-absorbing gel layer, and the adhesion between the two can be greatly improved. In addition, since visible light or ultraviolet light is incident from the other end of the optical fiber and light is irradiated from the inside of the sharpened terminal portion 3 to the surface to cause photopolymerization, a gel film that is most effective as a sensor and a most efficient gel film are obtained. A gel film can be formed. In addition, this method makes it possible to simultaneously fix the dye on the gel membrane.
【図1】本発明の構成と製造方法を示す断面図である.FIG. 1 is a cross-sectional view showing a configuration and a manufacturing method of the present invention.
【図2】本発明の光ファイバセンサにおいて蛍光が生ず
る状態を撮影した写真である.FIG. 2 is a photograph of a state where fluorescence is generated in the optical fiber sensor of the present invention.
【図3】吸水性ゲル膜4にフルオレセインナトリウム色
素を固定した光ファイバセンサの蛍光スペクトルがpH
によってどのように変化するか,pHに対する応答性を
示す図である.吸水性ゲル膜4に色素を固定すると,イ
オンに対する応答性が向上することを示す.FIG. 3 shows that the fluorescence spectrum of an optical fiber sensor in which sodium fluorescein dye is immobilized on the water-absorbing gel film 4 is pH
It is a figure showing how it changes with pH and the responsiveness to pH. The results show that the fixation of the dye on the water-absorbent gel membrane 4 improves the responsiveness to ions.
【図4】先鋭化端末3表面に直接フルオレセインナトリ
ウム色素を固定した光ファイバセンサの蛍光スペクトル
がpHによってどのように変化するか,pHに対する応
答性を示す図である.吸水性ゲル膜4に色素を固定せ
ず,先鋭化端末3表面に直接色素を固定すると,イオン
に対する応答性が向上しないことを示す.FIG. 4 is a diagram showing how the fluorescence spectrum of an optical fiber sensor in which sodium fluorescein dye is directly fixed on the surface of the sharpening terminal 3 changes with pH, and the response to pH. The results show that if the dye is not fixed to the water-absorbing gel film 4 but the dye is fixed directly to the surface of the sharpened terminal 3, the response to ions is not improved.
【図5】吸水性ゲル膜4に複数の色素フルオレセイン
(530nm)とローダミンB(595nm)を固定し
た光ファイバセンサのpH(上),エタノール(下)に
対する応答性を示す図である.pHとエタノールの同時
計測が可能になることを示す.FIG. 5 is a diagram showing the response to pH (upper) and ethanol (lower) of an optical fiber sensor in which a plurality of dyes fluorescein (530 nm) and rhodamine B (595 nm) are immobilized on a water-absorbent gel film 4. We show that simultaneous measurement of pH and ethanol is possible.
【図6】実施例2を示す図で,吸水性ゲル膜4にフルオ
レセインナトリウムを固定した光ファイバセンサのpH
応答特性を示す.FIG. 6 is a view showing Example 2; pH of an optical fiber sensor in which sodium fluorescein was fixed to a water-absorbing gel film 4;
The response characteristics are shown.
【図7】実施例3を示す図で,本発明の光ファイバセン
サを使用すると全部品を固体化したイオン計測装置を作
製することができることを示す構成図である.FIG. 7 is a view showing a third embodiment, and is a configuration diagram showing that the use of the optical fiber sensor of the present invention makes it possible to manufacture an ion measuring apparatus in which all parts are solidified.
Claims (7)
イバ端末(2)を加熱溶融して一体・先鋭化し,その先
鋭化端末部(3)表面に吸水性ゲル層(4)を形成さ
せ,吸水性ゲル層(4)中に蛍光物質を固定させた後,
一方の光ファイバ端(5)から先鋭化端末部(3)及び
吸水性ゲル層(4)に向けて励起光を入射して蛍光を生
じさせ,生じた蛍光をもう一方の光ファイバ(6)を通
して検出することを特徴とする光ファイバセンサAn optical fiber end (2) from which a cladding layer (1) has been removed is heated and melted to be integrated and sharpened, and a water-absorbing gel layer (4) is formed on the surface of the sharpened end (3). After forming and fixing the fluorescent substance in the water-absorbing gel layer (4),
Excitation light is incident from one optical fiber end (5) toward the sharpened end portion (3) and the water-absorbing gel layer (4) to generate fluorescence, and the generated fluorescence is converted to the other optical fiber (6). Optical fiber sensor characterized by detecting through
から50度の範囲にあることを特徴とする請求項1記載
の光ファイバセンサ2. An optical fiber sensor according to claim 1, wherein a sharpening angle of said sharpened terminal portion is in a range of 15 to 50 degrees.
用する光ファイバとして,ポリメチルメタクリレート
(PMMA)を主成分とするプラスチック材料をコア材
料としたプラスチック光ファイバ(POF)を使用し,
前記吸水性表面ゲル層(4)として先鋭化端末部(3)
表面にPMMA加水分解層を形成することを特徴とする
請求項1記載の光ファイバセンサ3. A plastic optical fiber (POF) having a plastic material containing polymethyl methacrylate (PMMA) as a main component as a core material is used as an optical fiber used for manufacturing the optical fiber sensor.
The sharpened terminal portion (3) as the water-absorbing surface gel layer (4)
2. The optical fiber sensor according to claim 1, wherein a PMMA hydrolysis layer is formed on the surface.
形成する方法として,前記光ファイバ先鋭化端末部
(3)表面を濃硫酸に接触してPMMAの加水分解反応
を起こさせることを特徴とする請求項3記載の光ファイ
バセンサの製造方法4. A method for forming a hydrolyzed PMMA layer according to claim 3, wherein the surface of the sharpened end portion of the optical fiber (3) is brought into contact with concentrated sulfuric acid to cause a hydrolysis reaction of PMMA. 4. The method of manufacturing an optical fiber sensor according to claim 3, wherein
ン,分子と接触したとき蛍光変化を示す蛍光色素を1〜
3種類使用することを特徴とする請求項1記載の光ファ
イバセンサ5. The fluorescent substance according to claim 1, wherein the fluorescent dye exhibits a change in fluorescence upon contact with ions or molecules.
3. The optical fiber sensor according to claim 1, wherein three types are used.
製するために使用する光ファイバとして,シリカガラス
をコア材料としたシリカガラスコア/プラスチッククラ
ッド光ファイバ(PCF)を使用し,請求項1に記載し
た吸水性表面ゲル層として先鋭化端末部(3)表面に吸
水性架橋高分子層を形成することを特徴とする請求項1
記載の光ファイバセンサ6. An optical fiber used for manufacturing the optical fiber sensor according to claim 1, wherein a silica glass core / plastic clad optical fiber (PCF) using silica glass as a core material is used. 2. A water-absorbent crosslinked polymer layer is formed on the surface of the sharpened terminal portion (3) as the water-absorbent surface gel layer described in (1).
Optical fiber sensor described
形成する方法として,請求項6に記載した光ファイバ先
鋭化端末部(3)のガラス表面をシランカップリング剤
で処理した後,吸水性高分子またはオリゴマー,単量
体,光増感剤,光架橋剤などを含む光重合性液体と蛍光
色素を混合した色素溶液を前記先鋭化端末部(3)表面
に塗布あるいは前記端末部を前記色素溶液に浸積した状
態で光ファイバ他端(5)から可視光線ないし紫外線を
入射することにより,先鋭化端末部(3)表面に吸水性
架橋高分子層を形成することを特徴とする請求項6記載
の光ファイバセンサの製造方法7. A method for forming the water-absorbent crosslinked polymer layer according to claim 6, wherein the glass surface of the sharpened end portion of the optical fiber according to claim 6 is treated with a silane coupling agent. A dye solution obtained by mixing a fluorescent dye with a photopolymerizable liquid containing a polymer, a water-absorbing polymer or oligomer, a monomer, a photosensitizer, a photocrosslinking agent, etc. is applied to the surface of the sharpened terminal section (3) or the terminal is coated. A visible light or ultraviolet ray is incident from the other end (5) of the optical fiber while the portion is immersed in the dye solution, thereby forming a water-absorbent crosslinked polymer layer on the surface of the sharpened terminal portion (3). 7. The method for manufacturing an optical fiber sensor according to claim 6, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16486197A JP3308858B2 (en) | 1997-05-18 | 1997-05-18 | Optical fiber sensor and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16486197A JP3308858B2 (en) | 1997-05-18 | 1997-05-18 | Optical fiber sensor and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10319253A true JPH10319253A (en) | 1998-12-04 |
JP3308858B2 JP3308858B2 (en) | 2002-07-29 |
Family
ID=15801323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16486197A Expired - Fee Related JP3308858B2 (en) | 1997-05-18 | 1997-05-18 | Optical fiber sensor and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3308858B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545100A (en) * | 2010-11-10 | 2013-12-19 | コーニンクレッカ フィリップス エヌ ヴェ | pH monitoring device |
WO2014192375A1 (en) * | 2013-05-28 | 2014-12-04 | シャープ株式会社 | Sensing system, and sensing method |
CN105044073A (en) * | 2015-08-27 | 2015-11-11 | 黄淮学院 | Modified optical fiber and preparation method thereof and method for detecting hydrogen peroxide in solution |
CN108535220A (en) * | 2018-07-17 | 2018-09-14 | 河南师范大学 | Wedge shaped tip nanostructure integrated optical fiber surface plasma resonance biochemical sensor |
-
1997
- 1997-05-18 JP JP16486197A patent/JP3308858B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013545100A (en) * | 2010-11-10 | 2013-12-19 | コーニンクレッカ フィリップス エヌ ヴェ | pH monitoring device |
WO2014192375A1 (en) * | 2013-05-28 | 2014-12-04 | シャープ株式会社 | Sensing system, and sensing method |
CN105044073A (en) * | 2015-08-27 | 2015-11-11 | 黄淮学院 | Modified optical fiber and preparation method thereof and method for detecting hydrogen peroxide in solution |
CN108535220A (en) * | 2018-07-17 | 2018-09-14 | 河南师范大学 | Wedge shaped tip nanostructure integrated optical fiber surface plasma resonance biochemical sensor |
CN108535220B (en) * | 2018-07-17 | 2024-02-27 | 河南师范大学 | Wedge-shaped tip nanostructure integrated optical fiber surface plasma resonance biochemical sensor |
Also Published As
Publication number | Publication date |
---|---|
JP3308858B2 (en) | 2002-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6103535A (en) | Optical fiber evanescent field excited fluorosensor and method of manufacture | |
US5627922A (en) | Micro optical fiber light source and sensor and method of fabrication thereof | |
US5430813A (en) | Mode-matched, combination taper fiber optic probe | |
CN107884367B (en) | Dumbbell optical fiber SPR (surface plasmon resonance) detection microfluidic chip | |
JP2005326426A (en) | Method for detecting decaying excited emission | |
CN101082584A (en) | Optical fiber biological sensor | |
Tao et al. | Optical-fiber sensor using tailored porous sol-gel fiber core | |
CN112378884B (en) | Temperature-compensated SPR sensor with large measurement range and manufacturing and using methods | |
CN103852428A (en) | Humidity sensor based on multimode fiber core and fiber grating and preparation method of humidity sensor | |
US5271073A (en) | Optical fiber sensor and method of manufacture | |
US5854863A (en) | Surface treatment and light injection method and apparatus | |
CN101251616A (en) | A hollow-core photonic crystal fiber and a spectrum measuring device using the fiber | |
JP3308858B2 (en) | Optical fiber sensor and method of manufacturing the same | |
CN116299085A (en) | Magnetometer probe, magnetometer system and probe preparation method | |
EP2002237B1 (en) | Fabrication of fiber optic probes | |
CN118010670B (en) | An infrared micro-nano optical fiber sensor | |
JP2732878B2 (en) | Optical fiber sensor | |
JP3299150B2 (en) | Optical fiber sensor and method of manufacturing the same | |
CN217845219U (en) | Outer casing optical fiber sensing device and optical fiber detection system based on multimode-single-mode optical fiber | |
CN214150438U (en) | Optical fiber humidity sensor and humidity sensor detection device | |
Veselov et al. | Acidity sensor based on porphyrin self-assembled monolayers covalently attached to the surfaces of tapered fibres | |
EP0575408B1 (en) | A waveguide sensor | |
CN207502399U (en) | A kind of dumbbell optical fiber detects micro flow chip | |
Kooyman et al. | A fiber-optic fluorescence immunosensor | |
JPH08240484A (en) | Infrared spectrum measuring device and optical fiber probe to constitute infrared spectrum measuring device and manufacture of optical fiber probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |