JPH10318728A - Three-dimensional shape measuring apparatus and z-axis stage in three-dimensional shape measuring apparatus - Google Patents
Three-dimensional shape measuring apparatus and z-axis stage in three-dimensional shape measuring apparatusInfo
- Publication number
- JPH10318728A JPH10318728A JP19343897A JP19343897A JPH10318728A JP H10318728 A JPH10318728 A JP H10318728A JP 19343897 A JP19343897 A JP 19343897A JP 19343897 A JP19343897 A JP 19343897A JP H10318728 A JPH10318728 A JP H10318728A
- Authority
- JP
- Japan
- Prior art keywords
- axis
- measuring
- moving
- axes
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、被測定物を非接触
で高精度に三次元の形状を測定する三次元形状測定装置
およびZ軸ステージに関するものであるが、該Z軸ステ
ージは、各種自動生産機器や精密加工機などにも応用可
能である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus and a Z-axis stage for measuring a three-dimensional shape of an object to be measured in a non-contact manner with high accuracy. It can also be applied to automatic production equipment and precision processing machines.
【0002】[0002]
(1)特開平4−299206号公報(超高精度三次元
測定機)に記載の発明は、定盤上に、X軸方向又はX−
Y軸方向に水平移動する架台を設け、この架台に、X軸
方向又はX−Y軸方向に垂直なZ軸方向に上下移動する
Z軸移動台を設け、前記定盤上に固定された被測定物の
被測定面とその上方に位置するZ軸移動台上の特定点と
の距離Z1を測定する測定手段を設け、前記定盤上に固
定された支持体に、Z軸に垂直なX−Y軸基準面を前記
Z軸移動台の上方に設け、前記X−Y軸基準面とその下
方に位置するZ軸移動台上の特定点との距離Z2を測定
する測定手段を設け、前記被測定物のXY軸方向の各測
定点に対する前記距離Z1と前記距離Z2の各データに
基づいて前記被測定物の形状を測定するようにしたもの
で、定盤上に固定された支持体を介して、前記Z軸移動
台の上方に、Z軸に垂直なX−Y基準面を設けることに
より、スペース的に、大型の被測定物を固定し、測定手
段Z1を設けたZ軸移動台を、X−Y−Z軸方向に大き
く移動できる余地を確保しながら、架台及び架台上の測
定用スケール設定手段及び測定手段と、各種ミラー、プ
リズム、偏光板等の光学システムの配置をコンパクトに
して、架台及び光学システムを撓みや振動がなく、か
つ、X−Y軸基準平面ミラー上に光を垂直に当てるよう
にしている。 (2)特開平2−134506号公報(形状測定装置)
に記載の発明は、ばねによって吊るされ、上下方向へ駆
動手段を備えたZ移動部と、前記ばねの張力と前記Z移
動部の重力がつりあう平衡位置からの前記Z移動部の位
置の変位を検出し位置信号を発生する位置検出手段と、
前記位置信号を前記駆動手段に伝達し、前記平衡位置か
らの変位に比例して発生するばね力に大きさがほぼ等し
く方向が逆の駆動力を前記駆動手段によって発生させる
ばね力補償手段を備えており、面の形状を測定する3次
元測定機において、レーザ光を測定面上に集光し、この
反射面からフォーカスサーボをかけ、測定面の形状を
0.01μm台の超高精度で測定する光学プローブ等
で、Z移動部をばねで吊るしリニアモータで駆動する方
式で、ばねの復元力の影響を実質的になくし、フォーカ
ス誤差等をなくし、高い測定精度と良好な操作性を達成
できるようにしている。(1) The invention described in Japanese Patent Application Laid-Open No. 4-299206 (ultra-high-precision three-dimensional measuring machine) is disclosed in which an X-axis direction or an X-
A gantry that moves horizontally in the Y-axis direction is provided, and a Z-axis movement table that moves vertically in the Z-axis direction perpendicular to the X-axis direction or the XY axis direction is provided on the gantry. Measuring means for measuring a distance Z1 between a surface to be measured of a measurement object and a specific point on a Z-axis moving table located above the measuring object is provided, and a support fixed on the surface plate is provided with X perpendicular to the Z-axis. A measuring means for measuring a distance Z2 between the XY axis reference plane and a specific point on the Z axis slide located below the XY axis reference plane; The shape of the object to be measured is measured based on the data of the distance Z1 and the distance Z2 with respect to each measurement point in the XY axis direction of the object to be measured, and a support fixed on a surface plate is provided. By providing an XY reference plane perpendicular to the Z-axis above the Z-axis moving table, A mount and a scale setting means for measurement on the mount while securing a large movable object in the X-Y-Z-axis direction with the Z-axis movable table provided with the measuring means Z1 fixed to the large object to be measured; The arrangement of the measuring means and the optical system such as various mirrors, prisms and polarizers is made compact so that the gantry and the optical system are free from bending and vibration, and the light is directed perpendicularly onto the XY axis reference plane mirror. I have to. (2) JP-A-2-134506 (shape measuring device)
The invention described in (1) is characterized in that a Z-moving unit suspended by a spring and provided with driving means in the vertical direction, and a displacement of the position of the Z-moving unit from an equilibrium position where the tension of the spring and the gravity of the Z-moving unit balance. Position detecting means for detecting and generating a position signal;
A spring force compensating unit that transmits the position signal to the driving unit and generates a driving force having a magnitude substantially equal to and opposite to the direction of the spring force generated in proportion to the displacement from the equilibrium position by the driving unit. In a three-dimensional measuring machine that measures the shape of the surface, the laser light is focused on the measurement surface, focus servo is applied from this reflection surface, and the shape of the measurement surface is measured with ultra-high accuracy of the order of 0.01 μm A method in which the Z moving unit is suspended by a spring and driven by a linear motor with an optical probe or the like, which substantially eliminates the influence of the restoring force of the spring, eliminates focus errors and the like, and achieves high measurement accuracy and good operability. Like that.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記特開平4
−299206号公報(超高精度三次元測定機)に記載
の発明は、 測定系の各軸移動量の測定用レーザ干渉器の直交三軸
の光軸の交点に測定点を持たないため、測定データの中
に、測定光学レイアウトに起因するアッベの誤差が入り
込むという欠点がある。 重力補償機構がついていないため、駆動モータは大き
な推力を必要とし、装置が大きくなるという欠点があ
る。 Z軸ステージの移動量の測定をレーザ干渉器のみで行
っているため、レーザパワーが瞬時に落ちてしまうよう
な事態では、位置の情報を全て失い、制御上大変危険で
あるという欠点がある。 光学レイアウトの占めるスペースが大きく、可動テー
ブルと測定ヘッドの間に、参照ミラーが配置されてお
り、対象物の大きなワークを測定する場合、測定ストロ
ークが制限されてしまうという欠点がある。 記載のリニアスケールを用いていないので、この技
術課題が生じていない。 落下防止機構を持っていない。 のような重力補償機能を用いていないので、この技
術課題が生じていない。 ダンパ機能を備えていない。このため、急激な移動が
避けられない。However, the above-mentioned Japanese Patent Application Laid-Open No.
The invention described in Japanese Patent Application Publication No.-299206 (ultra-high-precision three-dimensional measuring machine) has no measurement point at the intersection of the three orthogonal optical axes of the laser interferometer for measuring the amount of movement of each axis of the measurement system. There is a drawback that Abbe's error caused by the measurement optical layout is included in the data. Since there is no gravity compensation mechanism, the drive motor requires a large thrust, and has a disadvantage that the device becomes large. Since the amount of movement of the Z-axis stage is measured only by the laser interferometer, there is a disadvantage that in a situation where the laser power drops instantaneously, all the position information is lost, which is very dangerous in control. The space occupied by the optical layout is large, and the reference mirror is arranged between the movable table and the measuring head. When measuring a large workpiece, there is a disadvantage that the measuring stroke is limited. This technical problem does not occur because the described linear scale is not used. Does not have a fall prevention mechanism. This technical problem does not occur because a gravity compensation function such as that described above is not used. Does not have a damper function. For this reason, rapid movement is inevitable.
【0004】また、上記特開平2−134506号公報
(形状測定装置)に記載の発明は、 重力補償機構として、コイルばねを用いているが、こ
れでは駆動モータは(上下方向に可動体を駆動する力)
+(ばねの復元力)の合わせた推力が必要となり、ばね
定数が大きいとばねの復元力が大きくなりサイズの大き
なモータが必要となるし、ばね定数が小さいばねではあ
る程度ばね長さが必要となるため、いずれにしろ装置ス
ペースの増大化を招くという欠点がある。 落下防止機能を持っていない、 ばねの交換に関する記載はないが、ただ単にばねを可
動体にフックのようなもので引っかけるだけだとする
と、結合部に遊びが出て、これにより微少な振動が生じ
るし、また、ユニット化していないと交換に要する作業
時間がかかり、交換のあいだに重量物を支えるための力
が必要となる。In the invention described in Japanese Patent Application Laid-Open No. 2-134506 (shape measuring device), a coil spring is used as a gravity compensating mechanism. Power)
+ (Spring restoring force) requires a combined thrust. If the spring constant is large, the restoring force of the spring is large and a large motor is required. A spring with a small spring constant requires a certain spring length. In any case, there is a disadvantage that the space of the device is increased. There is no description about replacement of the spring, which does not have a fall prevention function.However, if the spring is simply hooked on a movable body with a hook, there will be play at the joint, which will cause slight vibration. In addition, if the unit is not formed as a unit, it takes a long time to perform the replacement, and a force for supporting a heavy object is required during the replacement.
【0005】請求項1の発明は、被測定物の形状を測定
するためのレーザ光の光軸の交点を被測定物の測定点と
することで、アッベの測定誤差をなくし前記従来技術
(1)の技術課題を解決できるようにしたものである。
請求項2の発明は、プローブが重力方向を向き、重力方
向に測定を行うようにして、測定時に重力による傾きを
生じさせず、プローブの傾きを制御する必要がなく、装
置の制御を簡略化できるようにしたものである。According to the first aspect of the present invention, the point of intersection of the optical axis of a laser beam for measuring the shape of an object to be measured is set as a measurement point of the object to be measured, thereby eliminating Abbe measurement errors. ) Can be solved.
According to the second aspect of the present invention, the probe is oriented in the direction of gravity, and the measurement is performed in the direction of gravity, so that no tilt is caused by gravity at the time of measurement, and it is not necessary to control the tilt of the probe, thereby simplifying the control of the apparatus. It is made possible.
【0006】請求項3の発明は、移動軸のうちの二軸を
水平面上に設けて、それぞれの軸上を移動させる上で、
重力の変化をうけずにすみ、制御を簡略化できるように
したものである。請求項4の発明は、移動軸とレーザ光
の軸とが同一直線上にのらないようにし、参照ミラーと
の干渉がストローク内で制限をうけることがなくなるよ
うにして、装置全体を小型化できるようにしたものであ
る。According to a third aspect of the present invention, two axes of the moving axes are provided on a horizontal plane, and the two axes are moved on the respective axes.
This allows the control to be simplified without being affected by changes in gravity. According to a fourth aspect of the present invention, the movement axis and the axis of the laser beam do not lie on the same straight line, so that interference with the reference mirror is not restricted within a stroke, thereby reducing the size of the entire apparatus. It is made possible.
【0007】請求項5の発明は、移動二軸が作る平面と
変位測定方向の移動軸とを直交させて、移動軸の制御を
簡単にできるようにしたものである。請求項6の発明
は、移動二軸が作る平面と平行な平面を作るレーザ光の
二軸を、それぞれ直交させて、被測定物の測定および移
動軸の制御を簡単にできるようにしたものである。According to a fifth aspect of the present invention, the plane formed by the two moving axes and the moving axis in the displacement measuring direction are orthogonal to each other so that the control of the moving axis can be simplified. According to a sixth aspect of the present invention, the two axes of the laser beam forming a plane parallel to the plane formed by the two moving axes are orthogonal to each other so that the measurement of the object to be measured and the control of the moving axis can be simplified. is there.
【0008】請求項7の発明は、移動三軸およびレーザ
光の三軸を、それぞれ直交させて、被測定物の測定およ
び移動軸の制御を簡単にできるようにしたものである。
請求項8の発明は、測定用のプローブと各軸移動量の測
定用レーザ干渉器をZ軸テーブルに搭載することによ
り、形状測定機の三軸機構がいかに動いても、レーザ干
渉器の各光軸の交点に測定点がくるように配置でき、機
構系の真直度や姿勢不良に伴って発生するアッベの測定
誤差をキャンセルできるようにし、前記従来技術(1)
の技術課題を解決できるようにしたものである。According to a seventh aspect of the present invention, measurement of an object to be measured and control of the movement axis can be easily performed by making the three axes of movement and the three axes of laser light orthogonal to each other.
The invention according to claim 8 is characterized in that the measuring probe and the laser interferometer for measuring the amount of movement of each axis are mounted on the Z-axis table, so that the three-axis mechanism of the shape measuring machine moves no matter how the laser interferometer moves. The prior art (1) can be arranged such that the measurement point is located at the intersection of the optical axes, and can cancel the Abbe measurement error generated due to the straightness of the mechanical system and the poor posture.
It is possible to solve the technical problem of the above.
【0009】請求項9の発明は、重力補償手段で使われ
る渦巻ばねを、設定されたストローク内では、伸縮させ
ても発生する復元力の大きさがほとんど変化しないよう
にし、Z軸ステージを保持するのに要する駆動力を大し
て使わずに済むようにし、モータを大きくする必要がな
く、従来技術(1)の技術課題を解決できるようにした
ものである。また、負荷を直接吊り上げるようにして、
保持力を伝達する要素を必要とせず、伝達要素に起因す
る剛性の低下を招かなくて済み、高剛性化を可能とした
ものである。According to a ninth aspect of the present invention, the magnitude of the restoring force generated even when the spiral spring used in the gravity compensating means is expanded or contracted within a set stroke is hardly changed, and the Z-axis stage is held. This eliminates the necessity of using a large amount of driving force required to perform the operation, and eliminates the need to increase the size of the motor, thereby solving the technical problem of the prior art (1). Also, by directly lifting the load,
An element for transmitting the holding force is not required, so that the rigidity due to the transmitting element does not decrease, and the rigidity can be increased.
【0010】Z軸ステージを制御する際に、そのフィー
ドバック値として、移動量測定用のレーザ干渉器の値を
用いると、そのデータ変換時間のための高速制御できな
いという課題があった。そこで、制御をかける場合、位
置の情報としてレーザ干渉器の値を用いずに、請求項1
0の発明は、リニアスケールの値を使うことにより、高
速に安定した制御を行うことができるようにしたもので
ある。When the value of the laser interferometer for measuring the moving amount is used as the feedback value when controlling the Z-axis stage, there is a problem that high-speed control cannot be performed due to the data conversion time. Therefore, when the control is applied, the value of the laser interferometer is not used as the position information,
In the invention of No. 0, stable control can be performed at high speed by using the value of the linear scale.
【0011】請求項11の発明は、各軸移動量測定用の
レーザ干渉器を、Z軸ステージのガイドであるエアスラ
イドの前面と両側面にユニット化して取り付けること
で、複雑な光学系を構成しないで済み、非常にコンパク
トな構成をとることができ、しかも他の定盤上に固定さ
れている参照ミラーとの干渉が、ストローク内で制限を
うけることがないようにしたものである。According to an eleventh aspect of the present invention, a complex optical system is formed by mounting a laser interferometer for measuring the amount of movement of each axis on the front and both sides of an air slide serving as a guide for the Z-axis stage. Therefore, a very compact configuration can be obtained, and interference with a reference mirror fixed on another surface plate is not restricted within the stroke.
【0012】ボイスコイルモータのボビン構造材の剛性
が低いと、Z軸ステージを含めた機構系の中で、この部
分の剛性が最も低くなり、制御帯域を上げられなくなる
という問題が残る。そこで、請求項12の発明は、ボビ
ン構造材を従来のアルミニウムと絶縁体(例えば、ガラ
スエポキシ材)の各2枚からなる4枚の組立て構成でで
きたものから、ステンレスの一体構造とすることで剛性
を上げて上記の問題を解決するようにしたものである。If the rigidity of the bobbin structural member of the voice coil motor is low, the rigidity of this portion becomes the lowest in the mechanical system including the Z-axis stage, and the problem remains that the control band cannot be increased. Therefore, according to a twelfth aspect of the present invention, the bobbin structural member is made of a conventional four-piece assembly structure consisting of two pieces each of aluminum and an insulator (for example, a glass epoxy material), and is formed into an integral structure of stainless steel. In order to solve the above problem by increasing the rigidity.
【0013】請求項13の発明の落下防止手段は、Z軸
イケール裏面に固着されたエアシリンダによって動作す
るはさみ板と制止しているパッドの間を、前記エアスラ
イドの側面に取り付けられたステンレス製の摺動板が、
パッドとの極わずかなクリアランスを保って摺動し、ブ
レーキ差動時に前記はさみ板で該摺動板をパッドに押し
付ける形ではさみこみ、全体をストップさせるもので、
この時、パッド面の摺動板をはさむ側には、ステンレス
との摩擦係数が非常に高いゴム材が貼られており、これ
により、Z軸テーブル及びそれをガイドするエアスライ
ドに取り付けられている各種高額な光学系の不測の事態
における破損を未然に防ぐことができるようにしたもの
である。A fall prevention means according to the invention of claim 13 is a stainless steel attached to a side surface of the air slide, between a scissor plate operated by an air cylinder fixed to the back surface of the Z-axis scale and a pad for stopping. The sliding plate of
Sliding while maintaining a very small clearance with the pad, in the form of pressing the sliding plate against the pad with the scissor plate at the time of brake differential, to stop the whole,
At this time, a rubber material having a very high coefficient of friction with stainless steel is adhered to a side of the pad surface that sandwiches the sliding plate, and is attached to the Z-axis table and an air slide that guides the Z-axis table. It is intended to prevent various expensive optical systems from being damaged in an unexpected situation.
【0014】請求項14の発明は、寿命に伴う交換が必
要な重力補償機構のユニット化を図ることで、作業に要
する時間や力を省くことができ、また、それぞれをねじ
止めすることで剛性的にも高めることができるようにし
たものである。請求項15の発明は、重力補償手段で使
われている渦巻ばねによって発生するわずかな復元力に
よって上下方向に、他のZ軸ステージを含めた機構系の
最小の固有振動数(例えば200Hz)よりもはるかに
低い固有振動数(例えば1Hz)が生じる。このため、
この機構だけでは、粘性減衰比が小さいため、制御上ゲ
インを上げられないという問題がある。[0014] According to the fourteenth aspect of the invention, the time and force required for the operation can be reduced by unitizing the gravity compensating mechanism which needs to be replaced according to the service life. It is designed to be able to be improved. According to a fifteenth aspect of the present invention, the minimum natural frequency (for example, 200 Hz) of the mechanical system including the other Z-axis stages is vertically increased by a slight restoring force generated by the spiral spring used in the gravity compensation means. A much lower natural frequency (eg, 1 Hz) also results. For this reason,
With this mechanism alone, there is a problem that the gain cannot be increased in control because the viscous damping ratio is small.
【0015】そこで、流体等の粘性抵抗を利用したダン
パを用いることにより、この粘性減衰比を高くすること
ができ、Z軸ステージの重力補償機構に起因する固有振
動数において、振動的になることを抑えることができ、
制御上ゲインも上げることができるようにしたものであ
る。Therefore, by using a damper utilizing the viscous resistance of a fluid or the like, the viscous damping ratio can be increased, and the viscous damping ratio can be increased at the natural frequency caused by the gravity compensation mechanism of the Z-axis stage. Can be suppressed,
The control allows the gain to be increased.
【0016】[0016]
【課題を解決するための手段】請求項1記載の発明は、
上記目的達成のため、定盤上に固着された被測定物の形
状測定用変位測定プローブを搭載し、該プローブを前記
被測定物に対して、三次元方向に移動させる移動手段
と、該移動手段の移動量を測定する測定手段と、前記変
位測定プローブ内から前記被測定物にレーザ光を照射す
るレーザ光照射手段とを備え、前記レーザ光照射手段か
ら前記被測定物にレーザ光が照射され、該被測定物から
反射されるレーザ光に基づいて、前記移動手段が被測定
物と前記プローブとの距離を一定に保つように移動さ
せ、前記測定手段が前記移動手段の移動量を測定するこ
とにより前記被測定物の形状を測定する三次元形状測定
装置において、前記測定手段が、同一平面上にない三軸
のレーザ測長器を用いて、前記移動手段による移動量を
測定し、該レーザ測長器のレーザ光の光軸の交点を被測
定物の測定点とすることを特徴としたものである。According to the first aspect of the present invention,
In order to achieve the above object, a displacement measuring probe mounted on a surface plate for measuring the shape of an object to be measured is mounted, and moving means for moving the probe in a three-dimensional direction with respect to the object to be measured; Measuring means for measuring the amount of movement of the means, and laser light irradiating means for irradiating the object to be measured with laser light from within the displacement measuring probe, and irradiating the object to be measured with laser light from the laser light irradiating means Then, based on the laser light reflected from the measured object, the moving means moves so as to keep the distance between the measured object and the probe constant, and the measuring means measures the moving amount of the moving means. In the three-dimensional shape measuring apparatus for measuring the shape of the object to be measured by doing, the measuring means, using a three-axis laser length measuring device not coplanar, to measure the amount of movement by the moving means, Laser measurement The intersection of the optical axis of the laser beam is obtained is characterized in that the measuring point of the object to be measured.
【0017】請求項2記載の発明は、上記目的達成のた
め、請求項1記載の発明において、前記プローブを、前
記被測定物に対して重力の方向に設置し、重力方向に移
動して被測定物の形状を測定することを特徴としたもの
である。請求項3記載の発明は、上記目的達成のため、
請求項1記載の発明において、前記移動手段が、それぞ
れ同一平面上にない三軸を移動軸とし、該移動軸のうち
の二軸が作る面が水平面であることを特徴としたもので
ある。According to a second aspect of the present invention, in order to achieve the above object, in the first aspect of the present invention, the probe is installed in the direction of gravity with respect to the object to be measured, and is moved by moving in the direction of gravity. It is characterized by measuring the shape of a measured object. The invention according to claim 3 achieves the above object,
The invention according to claim 1, wherein the moving means uses three axes which are not on the same plane as the moving axis, and a plane formed by two of the moving axes is a horizontal plane.
【0018】請求項4記載の発明は、上記目的達成のた
め、請求項1記載の発明において、前記移動手段が、そ
れぞれ同一平面上にない三軸を移動軸とし、該移動軸の
うち変位測定方向を除く二軸が作る平面が、前記レーザ
光の二軸が作る平面と平行であり、該それぞれの平面を
作る移動二軸とレーザ光の二軸のそれぞれが、互いに一
定の角度を持つことを特徴としたものである。According to a fourth aspect of the present invention, in order to achieve the above object, in the first aspect of the present invention, the moving means uses three axes which are not on the same plane as the moving axes, and measures displacement among the moving axes. The plane formed by the two axes excluding the direction is parallel to the plane formed by the two axes of the laser light, and the two moving axes and the two axes of the laser light forming the respective planes have a certain angle with each other. It is characterized by.
【0019】請求項5記載の発明は、上記目的達成のた
め、請求項4記載の発明において、前記変位測定方向を
除く移動二軸が作る平面と変位測定方向の移動軸とが直
交すること特徴としたものである。請求項6記載の発明
は、上記目的達成のため、請求項4記載の発明におい
て、前記移動二軸が作る平面と平行な平面を作るレーザ
光の二軸が、それぞれ直交すること特徴としたものであ
る。According to a fifth aspect of the present invention, in order to achieve the above object, in the fourth aspect of the present invention, a plane formed by two moving axes excluding the displacement measuring direction is orthogonal to a moving axis in the displacement measuring direction. It is what it was. According to a sixth aspect of the present invention, in order to achieve the above object, in the fourth aspect of the invention, two axes of a laser beam forming a plane parallel to a plane formed by the two moving axes are respectively orthogonal to each other. It is.
【0020】請求項7記載の発明は、上記目的達成のた
め、請求項1記載の発明において、前記移動手段が、そ
れぞれ同一平面上にない三軸を移動軸とし、該三軸がそ
れぞれ直交し、前記レーザ光の三軸が、それぞれ直交す
ることを特徴としたものである。請求項8記載の発明
(Z軸ステージ)は、上記目的達成のため、定盤上に固
着させた被測定物の形状測定用変位測定用プローブを具
備し、前記被測定物に対して前記プローブを三次元方向
に移動させる移動手段と、該移動手段の移動量を測定す
る測定手段と、該測定手段の出力に基づいて前記移動手
段の移動量を解析する解析手段とを備え、前記移動手段
が、定盤上に設けられた水平面内を移動するXY二軸ス
テージと、その上に搭載するように立設されたステージ
重量を補償する重力補償手段と、前記各ステージの移動
量を測定する測長手段と、前記重力補償手段をユニット
化したZ軸ステージと、で構成され、前記プローブの出
力を略一定に保つようにして前記被測定物の形状を測定
する三次元形状測定装置において、Z軸イケールに、単
軸のエアスライドをガイド軸として取り付け、該ガイド
軸を動かす駆動力としてボイスコイルモータを用い、前
記プローブと各軸移動量の測定用レーザ干渉器を搭載し
たZ軸テーブルをZ方向に移動可能とし、これを精度良
く動かすために、前記Z軸イケールにリニアスケール検
出ヘッドを持ち、前記エアスライド側面にリニアスケー
ル格子部を持つことを特徴としたものである。According to a seventh aspect of the present invention, in order to achieve the above object, in the first aspect of the present invention, the moving means uses three axes that are not on the same plane as the moving axes, and the three axes are orthogonal to each other. , Wherein the three axes of the laser light are orthogonal to each other. The invention (Z-axis stage) according to claim 8, further comprising a displacement measuring probe fixed on a surface plate for measuring a shape of an object to be measured, wherein the probe is attached to the object to be measured. Moving means for moving the moving means in a three-dimensional direction, measuring means for measuring a moving amount of the moving means, and analyzing means for analyzing a moving amount of the moving means based on an output of the measuring means, wherein the moving means An XY biaxial stage provided on a surface plate and moving in a horizontal plane, a gravitational compensation means provided on the surface plate to compensate for the weight of the stage, and a moving amount of each of the stages is measured. In a three-dimensional shape measuring apparatus configured to include a length measuring unit and a Z-axis stage in which the gravity compensation unit is unitized, and to measure a shape of the object to be measured by keeping an output of the probe substantially constant, To Z axis scale, The air slide of the shaft is mounted as a guide shaft, and a voice coil motor is used as a driving force to move the guide shaft, and the Z-axis table equipped with the probe and the laser interferometer for measuring the amount of movement of each axis can be moved in the Z direction. In order to move it with high accuracy, a linear scale detection head is provided on the Z-axis scale, and a linear scale grating is provided on the side surface of the air slide.
【0021】請求項9記載の発明(重力補償手段)は、
上記目的達成のため、請求項8記載の発明において、前
記重力補償手段が、前記Z軸イケール上方に渦巻ばねを
用いた巻取ドラムを有し、該巻取ドラムから伸ばした渦
巻ばねを直接前記Z軸テーブルのガイドであるエアスラ
イドの側面の取付金具と連結して吊り上げることで、前
記Z軸テーブルにかかる重量とバランスさせることを特
徴としたものである。The ninth aspect of the invention (gravity compensation means)
In order to achieve the above object, in the invention according to claim 8, the gravity compensating means has a winding drum using a spiral spring above the Z-axis scale, and the spiral spring extended from the winding drum is directly connected to the spiral spring. It is characterized in that it is balanced with the weight applied to the Z-axis table by being lifted in connection with a mounting bracket on the side of the air slide, which is a guide for the Z-axis table.
【0022】請求項10記載の発明(高速高精度な測定
用リニアスケール)は、上記目的達成のため、請求項8
記載の発明において、前記Z軸を駆動するボイスコイル
モータの制御用にZ軸テーブルの移動量を測定するリニ
アスケールを前記レーザ干渉器と独立して備えることを
特徴としたものである。請求項11記載の発明(測長系
のレイアウト)は、上記目的達成のため、請求項8記載
の発明において、前記定盤上に固定されたX、Y、Zの
三軸方向の測定基準としての三つの平面ミラーと、Z軸
テーブル上に配置されたX、Y、Zの三軸方向にレーザ
光を照射する三つのレーザ光源と、該レーザ光源からの
光を平面ミラーに反射する三つの反射ミラーと、前記平
面ミラーから前記反射ミラーを介して入射したレーザ光
の干渉縞を検出する三つのレーザ干渉器を用い、測定系
の配置として、前記三つのレーザ干渉器をZ軸ステージ
のガイドである前記エアスライドの前面と両側面に、前
記三つのレーザ光の光軸の交わる位置が測定点となるよ
うに配置したことを特徴としたものである。The invention according to claim 10 (the high-speed and high-accuracy linear scale for measurement) achieves the above object by claim 8.
In the invention described above, a linear scale for measuring a movement amount of a Z-axis table for controlling a voice coil motor for driving the Z-axis is provided independently of the laser interferometer. According to an eleventh aspect of the invention (layout of a length measuring system), in order to achieve the above object, in the invention of the eighth aspect, the X-, Y-, and Z-axis measurement standards fixed on the surface plate are used. Three mirrors, three laser light sources arranged on a Z-axis table for irradiating laser light in three axes of X, Y, and Z, and three laser light sources for reflecting light from the laser light sources to the plane mirror. A reflection mirror and three laser interferometers for detecting interference fringes of laser light incident from the plane mirror via the reflection mirror are used. As a measurement system arrangement, the three laser interferometers are guided by a Z-axis stage. The three laser beams are arranged on the front surface and both side surfaces of the air slide so that the positions where the optical axes of the three laser beams intersect become the measurement points.
【0023】請求項12記載の発明(ボイスコイルモー
タのボビン高剛性化)は、上記目的達成のため、請求項
8記載の発明において、前記ボイスコイルモータのボビ
ン構造をステンレスのブロックからくり抜いた形の一体
構造として、ボビン剛性を上げたことを特徴としたもの
である。請求項13記載の発明(落下防止手段)は、上
記目的達成のため、請求項8記載の発明において、前記
Z軸ステージの駆動系の制御不良等の異常時に、エアシ
リンダを使ったブレーキを効かせる落下防止手段を備え
ることを特徴としたものである。According to a twelfth aspect of the present invention (to increase the rigidity of the bobbin of the voice coil motor), in order to achieve the above object, in the invention of the eighth aspect, the bobbin structure of the voice coil motor is hollowed out of a stainless steel block. The bobbin rigidity is increased as an integral structure of the above. According to a thirteenth aspect of the invention (fall prevention means), in order to achieve the above object, in the invention of the eighth aspect, when an abnormality such as poor control of the drive system of the Z-axis stage, the brake using an air cylinder is effective. It is characterized in that it is provided with a fall prevention means.
【0024】請求項14記載の発明(重力補償ユニット
化)は、上記目的達成のため、請求項8記載の発明にお
いて、前記渦巻ばねからなる重力補償手段は、ユニット
化され、かつ、着脱自在に交換可能であることを特徴と
したものである。請求項15記載の発明(ダンパ機構)
は、請求項9記載の発明において、前記渦巻ばねからな
る重力補償手段にダンパを備えることで、渦巻ばねに起
因する固有振動に対し、粘性減衰させることを特徴とし
たものである。According to a fourteenth aspect of the present invention (gravity compensation unit), in order to achieve the above object, in the eighth aspect of the invention, the gravity compensating means comprising the spiral spring is unitized and detachably mounted. It is characterized by being interchangeable. The invention according to claim 15 (damper mechanism)
According to a ninth aspect of the present invention, in the ninth aspect of the present invention, a natural vibration caused by the spiral spring is viscously damped by providing a damper in the gravity compensating means including the spiral spring.
【0025】[0025]
【発明の実施の形態】図1は、本発明に係わる高精度三
次元形状測定装置におけるZ軸ステージの右側面図、図
2は、本発明に係わるボイスコイルモータのボビン構造
を示した図、図3は、本発明に係わる重力補償機構をユ
ニット化した図、図4は、本発明に係わるZ軸ステージ
を用いて構成した三次元形状測定装置の平面レイアウト
図である。1 is a right side view of a Z-axis stage in a high-precision three-dimensional shape measuring apparatus according to the present invention. FIG. 2 is a diagram showing a bobbin structure of a voice coil motor according to the present invention. FIG. 3 is a diagram in which the gravity compensation mechanism according to the present invention is unitized, and FIG. 4 is a plan layout diagram of a three-dimensional shape measuring apparatus configured using the Z-axis stage according to the present invention.
【0026】空気ばね式防振台(図示せず)に載せられ
た石定盤1の上に全体ベース2を取り付け、その上にX
ステージ3とYステージ4からなるXY二軸ステージを
設け、その上に立設されたZ軸イケール(アングルプレ
ート)5を基板としてZ軸ステージ6を設ける。このZ
軸ステージ6は、Z軸イケール5にガイド軸として単軸
のエアスライド7を取り付け、これを動かす駆動力とし
て、ボイスコイルモータ8を使う。これによって、Z軸
テーブル9をZ軸方向に移動可能とし、そこに取り付け
られている測定プロ−ブ10により、石定盤1上に固着
させた被測定物11を測定する。Z軸テーブル9とエア
スライド7の両側面には、XYZ三軸方向にレーザを照
射するレーザ光源を備えて、各々の測定基準となる平面
ミラー(12X、12Y、12Z)で反射されて戻って
きた光との間で起こる干渉縞を検出できるレーザ干渉器
(13X、13Y、13Z)と、前述のレーザ光源から
各平面ミラー(12X、12Y、12Z)に折り返すの
に用いる各々の反射ミラー(14X、14Y、14Z)
が取り付けられている。この時、各レーザの光軸の交点
が被測定物11の測定点になるように配置する。An overall base 2 is mounted on a stone surface plate 1 placed on an air spring type vibration isolator (not shown), and X
An XY biaxial stage including a stage 3 and a Y stage 4 is provided, and a Z-axis stage 6 is provided using a Z-axis scale (angle plate) 5 erected thereon as a substrate. This Z
The axis stage 6 attaches a single-axis air slide 7 as a guide axis to the Z-axis scale 5, and uses a voice coil motor 8 as a driving force to move the air slide. As a result, the Z-axis table 9 can be moved in the Z-axis direction, and the object to be measured 11 fixed on the stone platen 1 is measured by the measurement probe 10 attached thereto. On both sides of the Z-axis table 9 and the air slide 7, there are provided laser light sources for irradiating laser beams in the XYZ three-axis directions, and are reflected and returned by plane mirrors (12X, 12Y, 12Z) serving as measurement standards. Laser interferometers (13X, 13Y, 13Z) capable of detecting interference fringes generated by the reflected light, and reflection mirrors (14X, 14X, 12Y, 12Z) used to turn the laser light source back to the plane mirrors (12X, 12Y, 12Z). , 14Y, 14Z)
Is attached. At this time, the lasers are arranged such that the intersection of the optical axes of the lasers is the measurement point of the DUT 11.
【0027】また、Z軸イケール5に、リニアスケール
用の検出ヘッド15を固着して取り付け、そしてエアス
ライド7の側面に、リニアスケール17を保持部材18
を介して取り付けることにより、可動するZ軸テーブル
9の移動量を測定できる。図2に示すように、ボイスコ
イルモータ8のボビン部材16は、ステンレスの一体構
造からくり抜いたものに、コイルを巻き付けている。A detection head 15 for a linear scale is fixedly attached to the Z-axis scale 5, and a linear scale 17 is attached to a side of the air slide 7 by a holding member 18.
, The amount of movement of the movable Z-axis table 9 can be measured. As shown in FIG. 2, the bobbin member 16 of the voice coil motor 8 is formed by winding a coil around a hollow body made of a stainless steel.
【0028】また、Z軸イケール5上部には、渦巻ばね
19を用いて巻取ドラム20を設け、この巻取ドラム2
0は、両端をベアリング21によって、軸支されており
回転自在となっている。渦巻ばね19は、そこから伸ば
して直接Z軸テーブル9のガイド軸であるエアスライド
7の可動側の両側面にある取り付け金具と連結して、吊
り上げるようになっており、重力補償機構を構成してい
る。A winding drum 20 is provided on the upper part of the Z-axis scale 5 using a spiral spring 19.
Numeral 0 is rotatably supported at both ends by bearings 21. The spiral spring 19 extends from there and is directly connected to mounting brackets on both sides of the movable side of the air slide 7 which is a guide shaft of the Z-axis table 9 to lift the spiral spring 19, thereby constituting a gravity compensation mechanism. ing.
【0029】この重力補償機構は、図3に示すように、
ユニット化されており、Z軸イケール5より、はり出す
ベース板24上に箱形をしたユニット23をねじ止めす
るだけで交換できるようになっている。また、Z軸ステ
ージ6は、落下防止手段として、Z軸イケール5の裏側
に固着されたエアシリンダ25によって作動するはさみ
板26と静止しているパッド27の間を、エアスライド
7により延設された摺動板28が摺動するようになって
いる。また、パッド27には、ゴム材29が貼られてい
る。This gravity compensation mechanism, as shown in FIG.
It is unitized, and can be replaced by simply screwing the box-shaped unit 23 on the base plate 24 protruding from the Z-axis scale 5. The Z-axis stage 6 is extended by an air slide 7 as a fall prevention means between a scissor plate 26 operated by an air cylinder 25 fixed to the back side of the Z-axis scale 5 and a stationary pad 27. The sliding plate 28 slides. Further, a rubber material 29 is attached to the pad 27.
【0030】また、図3に示すように、巻き取りドラム
20A、Bの回転運動に対してZ軸イケール5上部に固
定されているロータリーダンパ30A、Bによって、制
動力が作用するようになっている。次に、図1,図4を
用いて、本実施例で用いた三次元形状測定装置における
測定動作について説明する。あらかじめ、被測定物11
用にティーチングされているポジションに動き、測定プ
ローブ10が測定可能な位置まで接近し測定を開始す
る。具体的には、主走査方向であるX軸方向に動作させ
ながら、測定プローブ10を搭載したZ軸テーブル9の
移動量を測定することで精密な測定を可能とする。これ
は、測定プローブ10と被測定物11との間隔を略一定
に保つように変位計の値(プローブの読み)を使って、
Z軸方向に制御をかけ、この時のZ軸テーブル9の軌跡
である移動量δ1と、変位計が測定した被測定物11と
の正確な距離δ2をたし合わせた値によって、被測定物
11の形状の測定を行うものである。As shown in FIG. 3, a braking force is applied to the rotary motion of the winding drums 20A and 20B by the rotary dampers 30A and 30B fixed above the Z-axis scale 5. I have. Next, a measuring operation in the three-dimensional shape measuring apparatus used in the present embodiment will be described with reference to FIGS. In advance, the DUT 11
The measurement probe 10 moves to the position where the measurement is performed, approaches the position where the measurement probe 10 can be measured, and starts measurement. Specifically, precise measurement is possible by measuring the amount of movement of the Z-axis table 9 on which the measurement probe 10 is mounted while operating in the X-axis direction, which is the main scanning direction. This is done by using the value of a displacement meter (probe reading) so as to keep the distance between the measurement probe 10 and the DUT 11 substantially constant,
Control is performed in the Z-axis direction, and the movement amount δ1 which is the trajectory of the Z-axis table 9 at this time is added to the accurate distance δ2 between the measurement object 11 measured by the displacement meter, and the value of the measurement object The measurement of the shape of No. 11 is performed.
【0031】また、図4でも示されているが、レーザ測
長器の平面レイアウト図を図5に示す。図5に示される
ように、移動軸をそれぞれX、Y、Z軸とし、紙面上に
X軸、Y軸があり、紙面上方に被測定物の形状を測定す
るZ軸を持つとする。この時、紙面上のX軸、Y軸とそ
れぞれ一定角傾けてレーザ測長器を配置する。このこと
により、レーザ光と移動方向が同一直線上にのることが
なく、ミラーがじゃまになることもないので、装置を小
型化できる。また、測定方向がX軸であるならば、Y軸
Z軸に対して一定角傾け、測定方向がY軸であるなら
ば、X軸Z軸に対して一定角傾けた位置にレーザ測長器
を配置する。FIG. 5 is a plan layout diagram of the laser length measuring device, as shown in FIG. As shown in FIG. 5, it is assumed that the moving axes are X, Y, and Z axes, respectively, and that the X axis and the Y axis are on the plane of the paper, and the Z axis is for measuring the shape of the object to be measured above the plane of the paper. At this time, the laser length measuring device is arranged at a fixed angle with respect to the X axis and the Y axis on the paper. As a result, the laser beam and the moving direction do not lie on the same straight line, and the mirror does not get in the way, so that the apparatus can be downsized. If the measurement direction is the X axis, the laser length measuring instrument is inclined at a constant angle with respect to the Y axis and the Z axis. If the measurement direction is the Y axis, the laser length measuring instrument is inclined at a constant angle with respect to the X axis and the Z axis. Place.
【0032】さらに、渦巻ばね19からなる重力補償手
段に、動作方向に対して、流体等の粘性抵抗を利用した
ダンパを備えることにより、粘性抵抗比を高くすること
ができ、Z軸ステージの重力補償機構に起因する固有振
動数において、振動的になることを抑えることができ、
制御上ゲインも上げることができる。このダンパ機構を
使用したときの効果を示すために、粘性減衰比ζをパラ
メータとした振動数と振幅の関係を図6に示す。図6に
示すように、ダンパ機構を用いることにより、粘性減衰
比ζを大きくとることができ、起振振動数ωが系の固有
振動数ωnに等しくなる共振状態での振幅を抑えること
ができる。例えば、本実施例では、系の固有振動数は1
Hzあたりに存在し、ダンパ機構を用いない場合粘性減
衰比ζが0.4であったが、ダンパを用いることで、粘
性減衰比ζを0.7に改善することができた。Further, by providing the gravity compensating means including the spiral spring 19 with a damper utilizing viscous resistance of a fluid or the like in the operation direction, the viscous resistance ratio can be increased, and the gravity of the Z-axis stage can be increased. At the natural frequency caused by the compensation mechanism, it is possible to suppress the vibration,
The gain can be increased in control. FIG. 6 shows the relationship between the frequency and the amplitude using the viscous damping ratio ζ as a parameter in order to show the effect when this damper mechanism is used. As shown in FIG. 6, by using the damper mechanism, the viscous damping ratio ζ can be increased, and the amplitude in the resonance state where the vibration frequency ω becomes equal to the natural frequency ωn of the system can be suppressed. . For example, in the present embodiment, the natural frequency of the system is 1
Viscous damping ratio ζ was around 0.4 when the damper mechanism was not used, but the viscous damping ratio ζ could be improved to 0.7 by using a damper.
【0033】[0033]
【発明の効果】請求項1記載の発明によれば、被測定物
の形状に沿って移動するプローブの移動量をレーザ測長
器を用い、同一平面上にない三軸のレーザ光の光軸の交
点を測定点とするので、アッベの誤差が測定結果に入り
込まないようにでき、正確な測定を行うことができる。According to the first aspect of the present invention, the amount of movement of the probe moving along the shape of the object to be measured is measured using the laser length measuring device, and the optical axis of the three-axis laser light that is not on the same plane is measured. Is set as a measurement point, it is possible to prevent Abbe's error from entering the measurement result, and to perform accurate measurement.
【0034】請求項2記載の発明によれば、プローブが
重力方向を向き、重力方向に測定を行うので、測定時に
重力による傾きが生じないので、プローブの傾きを制御
する必要がなく、装置の制御を簡略化できる。請求項3
記載の発明によれば、移動軸のうちの二軸が水平面上に
あるので、それぞれの軸上を移動させる上で、重力の変
化をうけることがなく、制御を簡略化できる。According to the second aspect of the present invention, since the probe is oriented in the direction of gravity and measures in the direction of gravity, no inclination due to gravity occurs during the measurement, so that it is not necessary to control the inclination of the probe, and the apparatus is not required to be tilted. Control can be simplified. Claim 3
According to the invention described above, since two of the moving axes are on the horizontal plane, the control can be simplified without being affected by gravity in moving on each axis.
【0035】請求項4記載の発明によれば、移動軸とレ
ーザ光の軸とが同一直線上にのらないので、参照ミラー
との干渉がストローク内で制限をうけることがなく、装
置全体を小型化できる。請求項5記載の発明によれば、
移動二軸が作る平面と変位測定方向の移動軸とが直交す
るので、移動軸の制御を簡単にできる。According to the fourth aspect of the present invention, since the axis of movement and the axis of the laser beam do not lie on the same straight line, interference with the reference mirror is not restricted within the stroke, and the entire apparatus can be used. Can be downsized. According to the invention described in claim 5,
Since the plane formed by the two moving axes is orthogonal to the moving axis in the displacement measurement direction, the control of the moving axis can be simplified.
【0036】請求項6記載の発明によれば、移動二軸が
作る平面と平行な平面を作るレーザ光の二軸が、それぞ
れ直交するので、被測定物の測定および移動軸の制御を
簡単にできる。請求項7記載の発明によれば、移動三軸
およびレーザ光の三軸が、それぞれ直交するので、被測
定物の測定および移動軸の制御を簡単にできる。According to the sixth aspect of the present invention, the two axes of the laser beam forming a plane parallel to the plane formed by the two moving axes are orthogonal to each other, so that the measurement of the object to be measured and the control of the moving axis can be easily performed. it can. According to the seventh aspect of the invention, since the three axes of movement and the three axes of the laser beam are orthogonal to each other, it is possible to easily measure the object to be measured and control the axis of movement.
【0037】請求項8記載の発明によれば、三軸構成の
Z軸ステージを使うことで、精密部品をサブミクロン
(測長分解能、例えば、面粗度0.01μm、面精度
0.1μm)の精度での測定を可能とするとともに、こ
のZ軸ステージに、測定プローブと各軸移動量の測定用
レーザ干渉器を載せることで、各軸の機構系の真直度や
姿勢の不良に伴って生じるアッベの誤差を測定誤差に入
れないようにでき、正確な測定を可能とすることができ
る。According to the eighth aspect of the present invention, by using a Z-axis stage having a three-axis configuration, precision components can be submicron (length measurement resolution, for example, surface roughness 0.01 μm, surface accuracy 0.1 μm). The Z-axis stage is equipped with a measurement probe and a laser interferometer for measuring the amount of movement of each axis. The Abbe error that occurs can be prevented from being included in the measurement error, and accurate measurement can be performed.
【0038】請求項9記載の発明によれば、渦巻ばねを
用いた重力補償機構を設けることで、そのステージ位置
に対する復元力の変化の小ささから、Z軸ステージを保
持するために制御上発生させる力は、ほとんど必要でな
くなるため、必要な推力を小さくでき、高速動作できる
とともに、モータを小型化することができ、このため、
装置全体の軽量化、コンパクト化ができる。また、直接
ステージを吊り上げる構成なので、ワイヤ等を用いたと
きに生じる伝達系での剛性の低下の心配がない。According to the ninth aspect of the present invention, since the gravity compensation mechanism using the spiral spring is provided, since the change of the restoring force with respect to the stage position is small, the control is required to hold the Z-axis stage. Since almost no force is required, the required thrust can be reduced, high-speed operation can be achieved, and the motor can be downsized.
The entire device can be reduced in weight and size. Further, since the stage is directly lifted, there is no need to worry about a decrease in rigidity in the transmission system caused when a wire or the like is used.
【0039】請求項10記載の発明によれば、リニアス
ケールを用いた位置測定によって、Z軸ステージの制御
を行うことで高速な制御を容易にすることができ、さら
に、Z軸レーザ干渉器を用いた場合に発生するレーザの
遮断やレーザパワーの減少等による測定不能の状態が起
こらないため、Z軸ステージを安定してコントロールす
ることができる。According to the tenth aspect of the present invention, high-speed control can be facilitated by controlling the Z-axis stage by position measurement using a linear scale. Since a state in which measurement is impossible due to a laser cutoff or a decrease in laser power, which occurs when used, does not occur, the Z-axis stage can be stably controlled.
【0040】請求項11記載の発明によれば、各軸の移
動量の測長用レーザ干渉器をコンパクトにまとめること
で、各軸の移動に伴う装置干渉領域を小さくでき、各々
の干渉器と対となる参照ミラーの定盤上の配置を確保し
つつも装置全体をコンパクトにすることができる。例え
ば、X軸にかなり広い可動範囲(例えば、300mm)
を持つことも可能で、中型の部品の測定も行えるという
効果がある。According to the eleventh aspect of the present invention, the laser interferometers for measuring the amount of movement of each axis are compactly arranged, so that the interference area of the apparatus accompanying the movement of each axis can be reduced. The entire apparatus can be made compact while securing the arrangement of the paired reference mirrors on the surface plate. For example, a considerably large movable range in the X axis (for example, 300 mm)
It is also possible to measure medium-sized parts.
【0041】請求項12記載の発明によれば、ボイスコ
イルモータのボビン構造材の剛性が低いとZ軸ステージ
の固有振動数が低下するという問題に対して、ボビン構
造材の剛性を上げることで解決でき、結果として、Z軸
ステージの良好な制御を実現することができる。請求項
13記載の発明によれば、落下防止機能を用いること
で、Z軸テーブル及びそれをガイドするエアスライドに
取り付けられている各種高額な光学系の不測の事態にお
ける破損を未然に防ぐことができる。According to the twelfth aspect of the present invention, the rigidity of the bobbin structural member of the voice coil motor is reduced by increasing the rigidity of the bobbin structural member in response to the problem that the natural frequency of the Z-axis stage is reduced if the rigidity of the bobbin structural member is low. As a result, good control of the Z-axis stage can be realized. According to the thirteenth aspect of the present invention, by using the fall prevention function, it is possible to prevent damage to the Z-axis table and various expensive optical systems attached to the air slide that guides the Z-axis table in an unexpected situation. it can.
【0042】請求項14記載の発明によれば、寿命に伴
う交換が必要な重力補償機構をユニット化することで、
作業に関する時間や力を省くことができる。また、剛性
的にもそれぞれをねじ止めすることで高めることができ
る。請求項15記載の発明によれば、流体等の粘性抵抗
を利用したダンパを用いることにより、重力補償機構の
粘性減衰比を高くすることができ、Z軸ステージの持つ
重力補償機構に起因する固有振動数においても、振動的
になることを抑えることができ、制御上ゲインも上げる
ことができ、結果として良好な制御を実現することがで
きる。According to the fourteenth aspect of the present invention, the gravity compensating mechanism which needs to be replaced according to the life is unitized,
Time and power related to work can be saved. The rigidity can also be increased by screwing each of them. According to the fifteenth aspect of the present invention, the viscous damping ratio of the gravity compensation mechanism can be increased by using the damper utilizing the viscous resistance of the fluid or the like. As for the frequency, it is possible to suppress the occurrence of vibration and to increase the gain in control. As a result, good control can be realized.
【図1】本発明に係わる高精度三次元形状測定装置にお
けるZ軸ステージの右側面図である。FIG. 1 is a right side view of a Z-axis stage in a high-precision three-dimensional shape measuring apparatus according to the present invention.
【図2】本発明に係わるボイスコイルモータのボビン構
造を示した図である。FIG. 2 is a diagram showing a bobbin structure of the voice coil motor according to the present invention.
【図3】本発明に係わる重力補償機構をユニット化した
図である。FIG. 3 is a diagram in which a gravity compensation mechanism according to the present invention is unitized.
【図4】本発明に係わるZ軸ステージを用いて構成した
三次元形状測定装置の平面レイアウト図である。FIG. 4 is a plan layout diagram of a three-dimensional shape measuring apparatus configured using a Z-axis stage according to the present invention.
【図5】本発明に係わるレーザ測長器の平面レイアウト
図である。FIG. 5 is a plan layout diagram of a laser length measuring device according to the present invention.
【図6】粘性減衰比ζをパラメータとした振動数と振幅
の関係を示す図である。FIG. 6 is a diagram illustrating a relationship between a frequency and an amplitude using a viscous damping ratio パ ラ メ ー タ as a parameter.
1 定盤 2 全体ベース 3 Xステージ 4 Yステージ 5 Z軸イケール 6 Z軸ステージ 7 エアスライド 8 ボイスコイルモータ 9 Z軸テーブル 10 測定プローブ 11 被測定物 12X、12Y、12Z 平面ミラー 13X、13Y、13Z レーザ干渉器 14X、14Y、14Z 反射ミラー 15 検出ヘッド 16 ボビン部材 17 リニアスケール 18 保持部材 19 渦巻ばね 20A、B 巻取ドラム 21 ベアリング 23 ユニット 24 ベース板 25 エアシリンダ 26 はさみ板 27 パッド 28 摺動板 29 ゴム材 30A、B ロータリーダンパ DESCRIPTION OF SYMBOLS 1 Surface plate 2 Whole base 3 X stage 4 Y stage 5 Z axis scale 6 Z axis stage 7 Air slide 8 Voice coil motor 9 Z axis table 10 Measurement probe 11 Measurement object 12X, 12Y, 12Z Plane mirror 13X, 13Y, 13Z Laser interferometer 14X, 14Y, 14Z Reflecting mirror 15 Detection head 16 Bobbin member 17 Linear scale 18 Holding member 19 Spiral spring 20A, B Winding drum 21 Bearing 23 Unit 24 Base plate 25 Air cylinder 26 Scissor plate 27 Pad 28 Sliding plate 29 Rubber material 30A, B Rotary damper
Claims (15)
変位測定プローブを搭載し、該プローブを前記被測定物
に対して、三次元方向に移動させる移動手段と、該移動
手段の移動量を測定する測定手段と、前記変位測定プロ
ーブ内から前記被測定物にレーザ光を照射するレーザ光
照射手段とを備え、 前記レーザ光照射手段から前記被測定物にレーザ光が照
射され、該被測定物から反射されるレーザ光に基づい
て、前記移動手段が被測定物と前記プローブとの距離を
一定に保つように移動させ、前記測定手段が前記移動手
段の移動量を測定することにより前記被測定物の形状を
測定する三次元形状測定装置において、 前記測定手段が、同一平面上にない三軸のレーザ測長器
を用いて、前記移動手段による移動量を測定し、該レー
ザ測長器のレーザ光の光軸の交点を被測定物の測定点と
することを特徴とする三次元形状測定装置。1. A moving means for mounting a displacement measuring probe for measuring the shape of an object to be measured fixed on a surface plate, and moving the probe in a three-dimensional direction with respect to the object to be measured. Measuring means for measuring the amount of movement of the object, and laser light irradiating means for irradiating the object to be measured with laser light from within the displacement measurement probe, and the object to be measured is irradiated with laser light from the laser light irradiating means. Based on the laser light reflected from the object, the moving means moves so as to keep the distance between the object and the probe constant, and the measuring means measures the amount of movement of the moving means In the three-dimensional shape measuring apparatus that measures the shape of the object to be measured, the measuring unit measures the amount of movement by the moving unit using a three-axis laser length measuring device that is not on the same plane. Laser length measuring device Three-dimensional shape measuring apparatus, characterized in that the intersection of the optical axis of the laser light and the measurement point of the object to be measured.
力の方向に設置し、重力方向に移動して被測定物の形状
を測定することを特徴とする請求項1記載の三次元形状
測定装置。2. The three-dimensional shape according to claim 1, wherein the probe is installed in the direction of gravity with respect to the object to be measured, and is moved in the direction of gravity to measure the shape of the object to be measured. measuring device.
い三軸を移動軸とし、該移動軸のうちの二軸が作る面が
水平面であることを特徴とする請求項1記載の三次元形
状測定装置。3. The three-dimensional apparatus according to claim 1, wherein said moving means uses three axes which are not on the same plane as a moving axis, and a plane formed by two of said moving axes is a horizontal plane. Shape measuring device.
い三軸を移動軸とし、該移動軸のうち変位測定方向を除
く二軸が作る平面が、前記レーザ光の二軸が作る平面と
平行であり、 該それぞれの平面を作る移動二軸とレーザ光の二軸のそ
れぞれが、互いに一定の角度を持つことを特徴とする請
求項1記載の三次元形状測定装置。4. The moving means has three axes which are not on the same plane as a moving axis, and a plane formed by two axes of the moving axes excluding a displacement measuring direction is a plane formed by two axes of the laser beam. 3. The three-dimensional shape measuring apparatus according to claim 1, wherein the two axes of movement and the two axes of the laser beam which are parallel to each other have a certain angle with each other.
面と変位測定方向の移動軸とが直交すること特徴とする
請求項4記載の三次元形状測定装置。5. The three-dimensional shape measuring apparatus according to claim 4, wherein a plane formed by the two movement axes excluding the displacement measurement direction is orthogonal to a movement axis in the displacement measurement direction.
るレーザ光の二軸が、それぞれ直交すること特徴とする
請求項4記載の三次元形状測定装置。6. The three-dimensional shape measuring apparatus according to claim 4, wherein two axes of a laser beam forming a plane parallel to a plane formed by the two moving axes are orthogonal to each other.
い三軸を移動軸とし、該三軸がそれぞれ直交し、 前記レーザ光の三軸が、それぞれ直交することを特徴と
する請求項1記載の三次元形状測定装置。7. The apparatus according to claim 1, wherein the moving means uses three axes that are not on the same plane as the moving axis, the three axes are orthogonal to each other, and the three axes of the laser beam are orthogonal to each other. The three-dimensional shape measuring device according to the above.
変位測定プローブを搭載し、該プローブを前記被測定物
に対して三次元方向に移動させる移動手段と、該移動手
段の移動量を測定する測定手段と、該測定手段の出力に
基づいて前記移動手段の移動量を解析する解析手段と、
を備え、前記移動手段が、前記定盤上に設けられた水平
面内を移動するXY二軸ステージと、該XY二軸ステー
ジの上に搭載するように立設されたステージ重量を補償
する重力補償手段と、前記各ステージの移動量を測定す
る測長手段と、前記重力補償手段をユニット化したZ軸
ステージと、で構成され、前記プローブの出力を略一定
に保つようにして前記被測定物の形状を測定する三次元
形状測定装置において、 Z軸イケールに、単軸のエアスライドをガイド軸として
取り付け、 該ガイド軸を動かす駆動力としてボイスコイルモータを
用い、 前記プローブと各軸移動量の測定用レーザ干渉器を搭載
したZ軸テーブルをZ方向に移動可能とし、 前記Z軸イケールにリニアスケール検出ヘッドを有し、 前記エアスライド側面にリニアスケール格子部を有する
ことを特徴とするZ軸ステージ。8. A moving means for mounting a displacement measuring probe for measuring the shape of an object to be measured fixed on a surface plate, and moving the probe in a three-dimensional direction with respect to the object to be measured. Measuring means for measuring the moving amount, and analyzing means for analyzing the moving amount of the moving means based on the output of the measuring means,
XY biaxial stage, wherein the moving means moves on a horizontal plane provided on the surface plate, and gravity compensation for compensating for the weight of a stage erected to be mounted on the XY biaxial stage Means, a length measuring means for measuring an amount of movement of each of the stages, and a Z-axis stage in which the gravity compensating means is unitized, wherein the output of the probe is maintained substantially constant so that the object to be measured is In the three-dimensional shape measuring apparatus for measuring the shape of the probe, a single-axis air slide is attached to the Z-axis scale as a guide shaft, and a voice coil motor is used as a driving force for moving the guide shaft. A Z-axis table on which a laser interferometer for measurement is mounted can be moved in the Z direction, a linear scale detection head is provided on the Z-axis scale, and a linear scale is provided on a side surface of the air slide. Z-axis stage and having a grating portion.
方に渦巻ばねを用いた巻取ドラムを有し、該巻取ドラム
から伸ばした渦巻ばねを前記Z軸テーブルのガイドであ
るエアスライドの側面の取付金具と連結して吊り上げる
ことで、前記Z軸テーブルにかかる重量とバランスさせ
ることを特徴とする請求項8記載のZ軸ステージ。9. The gravity compensating means has a winding drum using a spiral spring above the Z-axis scale, and the spiral spring extended from the winding drum is provided on an air slide as a guide for the Z-axis table. 9. The Z-axis stage according to claim 8, wherein the Z-axis stage is balanced with the weight applied to the Z-axis table by being lifted in connection with a mounting bracket on a side surface.
の制御用にZ軸テーブルの移動量を測定するリニアスケ
ールを前記レーザ干渉器と独立して備えることを特徴と
する請求項8記載のZ軸ステージ。10. The Z-axis according to claim 8, further comprising a linear scale for measuring a movement amount of a Z-axis table for controlling a voice coil motor for driving said Z-axis, independently of said laser interferometer. Axis stage.
軸方向の測定基準としての三つの平面ミラーと、Z軸テ
ーブル上に配置されたX、Y、Zの三軸方向にレーザ光
を照射する三つのレーザ光源と、該レーザ光源からの光
を平面ミラーに反射する三つの反射ミラーと、前記平面
ミラーから前記反射ミラーを介して入射したレーザ光の
干渉縞を検出する三つのレーザ干渉器を具備し、前記三
つのレーザ干渉器をZ軸ステージのガイドである前記エ
アスライドの前面と両側面に、前記三つのレーザ光の光
軸の交わる位置が測定点となるように配置したことを特
徴とする請求項8記載のZ軸ステージ。11. A three-plane mirror as a measurement reference in X, Y, and Z directions fixed on the surface plate, and an X, Y, and Z directions arranged on a Z-axis table. Three laser light sources that irradiate the laser light to the light source, three reflection mirrors that reflect light from the laser light source to a plane mirror, and interference fringes of the laser light incident from the plane mirror via the reflection mirror are detected. Three laser interferometers are provided, and the three laser interferometers are positioned on the front surface and both side surfaces of the air slide, which is a guide of the Z-axis stage, so that the positions where the optical axes of the three laser beams intersect become measurement points. 9. The Z-axis stage according to claim 8, wherein the Z-axis stage is arranged on a stage.
ステンレスのブロックからくり抜いた形の一体構造とし
てボビン剛性を上げたことを特徴とする請求項8記載の
Z軸ステージ。12. The Z-axis stage according to claim 8, wherein the bobbin structure of said voice coil motor is formed as an integral structure formed by hollowing out a stainless steel block to increase bobbin rigidity.
の異常時に、エアシリンダを使ったブレーキを効かせる
落下防止手段を備えることを特徴とする請求項8記載の
Z軸ステージ。13. The Z-axis stage according to claim 8, further comprising a fall prevention means for applying a brake using an air cylinder when an abnormality such as a control failure of the drive system of the Z-axis stage occurs.
ユニット化され、かつ、着脱自在に交換可能であること
を特徴とする請求項8記載のZ軸ステージ。14. A gravity compensation means comprising a spiral spring,
9. The Z-axis stage according to claim 8, wherein the Z-axis stage is unitized and detachably replaceable.
いて、動作方向に対して、流体等の粘性抵抗を利用した
ダンパを備えたことを特徴とする請求項9記載のZ軸ス
テージ。15. The Z-axis stage according to claim 9, wherein said gravity compensating means comprising a spiral spring includes a damper utilizing a viscous resistance of a fluid or the like in an operation direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19343897A JP3678887B2 (en) | 1997-03-18 | 1997-07-18 | 3D shape measuring device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6404397 | 1997-03-18 | ||
JP9-64043 | 1997-03-18 | ||
JP19343897A JP3678887B2 (en) | 1997-03-18 | 1997-07-18 | 3D shape measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10318728A true JPH10318728A (en) | 1998-12-04 |
JP3678887B2 JP3678887B2 (en) | 2005-08-03 |
Family
ID=26405176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19343897A Expired - Fee Related JP3678887B2 (en) | 1997-03-18 | 1997-07-18 | 3D shape measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3678887B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002207171A (en) * | 2001-01-10 | 2002-07-26 | Hamamatsu Photonics Kk | Optical device |
US8179621B2 (en) | 2003-09-12 | 2012-05-15 | Carl Zeiss Smt Gmbh | Apparatus for manipulation of an optical element |
KR101330468B1 (en) * | 2010-09-09 | 2013-11-15 | 파나소닉 주식회사 | Three dimensional shape measuring apparatus |
CN104913735A (en) * | 2015-06-19 | 2015-09-16 | 四川大学 | Slope adaptive morphology measurement method for microstructure workpiece |
KR20160127812A (en) | 2014-04-01 | 2016-11-04 | 닛뽄 세이꼬 가부시기가이샤 | Table device, conveyance device, semiconductor-manufacturing device, and inspection device |
CN107747909A (en) * | 2017-08-17 | 2018-03-02 | 韶关学院 | The device of clearance is born in on-line measurement during a kind of hub-bearing unit riveted assembling |
CN109000705A (en) * | 2018-04-08 | 2018-12-14 | 浙江禾川科技股份有限公司 | A kind of motor shaft detection jig |
CN109648353A (en) * | 2017-10-11 | 2019-04-19 | 维嘉数控科技(苏州)有限公司 | Z-axis driving structure and PCB edge milling machines |
CN110456730A (en) * | 2019-07-25 | 2019-11-15 | 上海拓璞数控科技股份有限公司 | Collision avoidance system and method for double five axis mirror images milling equipment |
CN116651693A (en) * | 2023-06-07 | 2023-08-29 | 苏州汇创芯精密智能装备有限公司 | Double-valve abnormal movement mechanism |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5491435B2 (en) * | 2011-02-25 | 2014-05-14 | キヤノン株式会社 | Measuring device |
-
1997
- 1997-07-18 JP JP19343897A patent/JP3678887B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002207171A (en) * | 2001-01-10 | 2002-07-26 | Hamamatsu Photonics Kk | Optical device |
US8179621B2 (en) | 2003-09-12 | 2012-05-15 | Carl Zeiss Smt Gmbh | Apparatus for manipulation of an optical element |
KR101330468B1 (en) * | 2010-09-09 | 2013-11-15 | 파나소닉 주식회사 | Three dimensional shape measuring apparatus |
KR20160127812A (en) | 2014-04-01 | 2016-11-04 | 닛뽄 세이꼬 가부시기가이샤 | Table device, conveyance device, semiconductor-manufacturing device, and inspection device |
CN104913735A (en) * | 2015-06-19 | 2015-09-16 | 四川大学 | Slope adaptive morphology measurement method for microstructure workpiece |
CN107747909A (en) * | 2017-08-17 | 2018-03-02 | 韶关学院 | The device of clearance is born in on-line measurement during a kind of hub-bearing unit riveted assembling |
CN107747909B (en) * | 2017-08-17 | 2024-01-09 | 韶关学院 | Device for online measurement of negative clearance during riveting assembly of hub bearing unit |
CN109648353A (en) * | 2017-10-11 | 2019-04-19 | 维嘉数控科技(苏州)有限公司 | Z-axis driving structure and PCB edge milling machines |
CN109000705A (en) * | 2018-04-08 | 2018-12-14 | 浙江禾川科技股份有限公司 | A kind of motor shaft detection jig |
CN110456730A (en) * | 2019-07-25 | 2019-11-15 | 上海拓璞数控科技股份有限公司 | Collision avoidance system and method for double five axis mirror images milling equipment |
CN110456730B (en) * | 2019-07-25 | 2021-05-11 | 上海拓璞数控科技股份有限公司 | Anti-collision system and method for double five-axis mirror milling equipment |
CN116651693A (en) * | 2023-06-07 | 2023-08-29 | 苏州汇创芯精密智能装备有限公司 | Double-valve abnormal movement mechanism |
Also Published As
Publication number | Publication date |
---|---|
JP3678887B2 (en) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3970720B2 (en) | Coordinate measurement table device and coordinate measurement device | |
US6188195B1 (en) | Exposure method, and method of making exposure apparatus having dynamically isolated support structure | |
US5757160A (en) | Moving interferometer wafer stage | |
US4714339A (en) | Three and five axis laser tracking systems | |
JP5834171B2 (en) | Shape measuring device | |
CN111971526B (en) | metering system | |
JPH10318728A (en) | Three-dimensional shape measuring apparatus and z-axis stage in three-dimensional shape measuring apparatus | |
US4538911A (en) | Three-dimensional interferometric length-measuring apparatus | |
JP2001317933A (en) | Shape-measuring apparatus | |
JP5606039B2 (en) | Stage device and wavefront aberration measuring device | |
JP6198393B2 (en) | Contact type three-dimensional shape measuring apparatus and probe control method | |
CN110514136B (en) | Shape measuring probe | |
Manske et al. | Nanopositioning and nanomeasuring machine for high accuracy measuring procedures of small features in large areas | |
JP3046635B2 (en) | Ultra-high-precision CMM | |
JP3532347B2 (en) | Shape measuring device | |
JP2005123287A (en) | Positioning device | |
JP3580960B2 (en) | 3D shape measuring device | |
JP3218711B2 (en) | Interferometer device | |
JPH11166823A (en) | Probe mechanism and coordinate measuring device using the same | |
JPH10221039A (en) | Method for measuring squareness of moving axis | |
JP2006292527A (en) | 3-dimensional geometry measuring device | |
JPH046402A (en) | Interference measuring device | |
TW202422237A (en) | Positioning device | |
WO2023100395A1 (en) | Stage device for optical instrument | |
JPH0466289A (en) | Laser beam machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050511 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080520 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090520 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100520 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110520 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120520 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130520 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130520 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |