[go: up one dir, main page]

JPH10316791A - Pre-expanded polypropylene resin particle and in-mold foamed molding - Google Patents

Pre-expanded polypropylene resin particle and in-mold foamed molding

Info

Publication number
JPH10316791A
JPH10316791A JP9126022A JP12602297A JPH10316791A JP H10316791 A JPH10316791 A JP H10316791A JP 9126022 A JP9126022 A JP 9126022A JP 12602297 A JP12602297 A JP 12602297A JP H10316791 A JPH10316791 A JP H10316791A
Authority
JP
Japan
Prior art keywords
polypropylene resin
melting point
propylene
crystallization time
random copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9126022A
Other languages
Japanese (ja)
Other versions
JP3600930B2 (en
Inventor
Tomonori Iwamoto
友典 岩本
Takamasa Imai
貴正 今井
Yoshinori Yamaguchi
美則 山口
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP12602297A priority Critical patent/JP3600930B2/en
Publication of JPH10316791A publication Critical patent/JPH10316791A/en
Application granted granted Critical
Publication of JP3600930B2 publication Critical patent/JP3600930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide pre-expanded particles which can be fused together by heating with a conventional die and a molding machine to give an in-mold expanded molding showing high compressive strength as well as lightweight properties. SOLUTION: The pre-expanded polypropylene resin particles are made from a base resin being an ethylene/propylene random copolymer having a melting point of 1490-157 deg.C, an MI of 1-20 g/10 min and a half-crystallization temperature of 45 sec or below, an ethylene/propylene/1-butene random copolymer having a melting point of 149-157 deg.C, an MI of 1-20 g/10 min and a half-crystallization time of 55 sec or below or a propylene/1-butene random copolymer having a melting point of 149-157 deg.C, an MI of 1-20 g/10 min and a half-crystallization time of 60 sec or below and satisfies the formula: 0.25<=β/(α+β)<=0.60 (wherein α is the melting heat of the endothermic peak attributable to the crystalline state inherent in the base resin in a DSC curve as observed when the sample is heated from 40 deg.C to 200 deg.C at a rate of temperature increase of 10 deg.C/min with a differential scanning calorimeter, and βis the melting heat of the endothermic peak appearing at a temperature higher than that of the former peak.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧縮強度等の機械的
物性に優れた発泡成形体を製造しうるポリプロピレン系
樹脂予備発泡粒子およびこの予備発泡粒子を用いて成形
してなる機械的物性に優れた型内発泡成形体に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to pre-expanded polypropylene resin particles capable of producing expanded molded articles having excellent mechanical properties such as compressive strength, and excellent mechanical properties formed by using the pre-expanded particles. The present invention relates to an in-mold foam molded article.

【0002】[0002]

【従来の技術】予備発泡粒子を型内に充填し、蒸気等の
加熱媒体により加熱融着させて得られる型内発泡成形体
において、ポリエチレン系樹脂、ポリプロピレン系樹脂
等のポリオレフィン系樹脂型内発泡成形体は、ポリスチ
レン系樹脂型内発泡成形体と比較して、耐熱性、耐薬品
性、耐衝撃性、圧縮後の回復等に優れている。さらにポ
リプロピレン系樹脂型内発泡成形体は、ポリエチレン系
樹脂型内発泡成形体と比較して、耐熱性、圧縮強度に優
れており、緩衝材、自動車部材、建築資材、断熱材等に
広く用いられている。一方、自動車バンパー芯材、自動
車側突パッド等のような用途では、上記ポリプロピレン
系樹脂の一般特性に加えて、さらに優れた剛性(高い圧
縮強度)が要求される。
2. Description of the Related Art In an in-mold foamed product obtained by filling pre-expanded particles in a mold and heat-sealing with a heating medium such as steam, a polyolefin resin such as a polyethylene resin or a polypropylene resin is foamed in the mold. The molded article is superior in heat resistance, chemical resistance, impact resistance, recovery after compression, and the like, as compared with the foam molded article in a polystyrene resin mold. Furthermore, the polypropylene resin molded foam inside is superior in heat resistance and compressive strength to the polyethylene resin molded foam, and is widely used for cushioning materials, automobile parts, building materials, heat insulating materials, etc. ing. On the other hand, in applications such as automobile bumper core materials and automobile side bump pads, in addition to the general properties of the above-mentioned polypropylene resin, further excellent rigidity (high compressive strength) is required.

【0003】ポリプロピレン系樹脂型内発泡成形体の圧
縮強度を改良しようとした場合、型内発泡成形体の発泡
倍率を下げるか、コモノマー含量の少ない基材樹脂を用
いるのが一般的である。しかし、型内発泡成形体の発泡
倍率を下げることは、重量の増加をまねき、昨今の軽量
化要求に逆行するものである。一方、基材樹脂としてコ
モノマー含量の少ないポリプロピレン系樹脂を用いる
と、基材樹脂の融点が高くなるため、例えば、予備発泡
粒子を蒸気で加熱融着させて型内発泡成形体とするため
には、より高圧(高温)の蒸気を使用しなければなら
ず、エネルギーコスト面で不利になるばかりでなく、成
形金型の耐圧性能や成型機の型締圧を向上させる必要が
あり、設備の大型化、コストアップをまねく。
[0003] In order to improve the compressive strength of the in-mold foam molded article of a polypropylene resin, it is common to lower the expansion ratio of the in-mold foam molded article or to use a base resin having a low comonomer content. However, lowering the expansion ratio of the in-mold foam molded article leads to an increase in weight, which goes against the recent demand for weight reduction. On the other hand, when a polypropylene-based resin having a low comonomer content is used as the base resin, the melting point of the base resin increases.For example, in order to heat and fuse the pre-expanded particles with steam to form an in-mold foam molded article, In addition to using high-pressure (high-temperature) steam, not only is it disadvantageous in terms of energy costs, it is also necessary to improve the pressure resistance of the molding die and the clamping pressure of the molding machine. And increase costs.

【0004】かかる問題を解決するために、1−ブテ
ン含量が3〜12重量%であって、結晶潜熱が17〜2
5cal/gのプロピレン−1−ブテンランダム共重合
体を基材樹脂とする嵩密度0.015〜0.09g/c
3 である予備発泡粒子(特公平7−68402号)、
融点が153℃以下で、かつビカット軟化点が132
℃以上であるプロピレン系ランダム共重合体を基材樹脂
とする予備発泡粒子(特開平5−32815号)、引
張降伏点強度が250〜300kg/cm2 であり、か
つ有機アルミニウム系造核剤を含有するポリプロピレン
系樹脂を基材樹脂とする予備発泡粒子(特開平5−17
9049号)、融点(XT )〔℃〕、引張弾性率(X
TM)〔kg/cm2 〕、ブテン成分含有率(WB )〔重
量%〕、エチレン成分含有率(WE )〔重量%〕とした
とき、205XT −XTM≦17800かつ355XT
TM≦39000かつ1≦WB +WE ≦12かつWE
2かつWB ≧1を満足するプロピレン系ランダム共重合
体を基材樹脂とする型内発泡成形体(特開平7−258
455号)が提案されている。しかし、上記〜で
は、圧縮強度の改良効果はいまだ十分ではない。
In order to solve this problem, the 1-butene content is 3 to 12% by weight, and the latent heat of crystallization is 17 to 2%.
Bulk density 0.015 to 0.09 g / c using 5 cal / g propylene-1-butene random copolymer as a base resin
m 3 and is pre-expanded particles (Kokoku No. 7-68402),
Melting point is 153 ° C or less and Vicat softening point is 132
Pre-expanded particles (JP-A-5-32815) using a propylene-based random copolymer having a base resin of not less than ℃, a tensile yield point strength of 250 to 300 kg / cm 2 , and an organoaluminum-based nucleating agent. Pre-expanded particles containing a polypropylene resin as a base resin (JP-A-5-17
No. 9049), melting point (X T ) [° C.], tensile modulus (X
TM) [kg / cm 2], butene component content (W B) [wt%], when the ethylene component content (W E) [wt%], 205X T -X TM ≦ 17800 and 355x T -
X TM ≦ 39000 and 1 ≦ W B + W E ≦ 12 and W E
Mold expansion molded body 2 and the propylene random copolymer base resin which satisfies W B ≧ 1 (JP-A-7-258
455) has been proposed. However, in the above cases, the effect of improving the compressive strength is not yet sufficient.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、予備
発泡粒子の加熱融着が従来の金型および成型機(いずれ
も耐圧5.0kg/cm2 −G)で実施でき、かつ得ら
れた型内発泡成形体が軽量性を損なうことなく高い圧縮
強度を有するポリプロピレン系樹脂予備発泡粒子および
型内発泡成形体を提供することを目的とする。
Therefore, according to the present invention, the heat-sealing of the pre-expanded particles can be carried out by a conventional mold and a molding machine (both withstand pressure of 5.0 kg / cm 2 -G) and obtained. It is an object of the present invention to provide a polypropylene resin pre-expanded particle and an in-mold foam molded article having high compressive strength without impairing the lightness of the in-mold foam molded article.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記事情
に鑑み、鋭意研究の結果、特定の融点およびMIの範囲
を有し、かつ半結晶化時間が特定値以下であるプロピレ
ン系ランダム共重合体を使用することにより上記課題を
解決できることを見出し、本発明を完成させるに至っ
た。すなわち、本発明は、融点が149〜157℃、M
Iが1〜20g/10分であり、かつ半結晶化時間が4
5秒以下であるエチレン−プロピレンランダム共重合体
を基材樹脂とすることを特徴とするポリプロピレン系樹
脂予備発泡粒子(請求項1)、融点が149〜157
℃、MIが1〜20g/10分であり、かつ半結晶化時
間が55秒以下であるエチレン−プロピレン−1−ブテ
ンランダム共重合体を基材樹脂とすることを特徴とする
ポリプロピレン系樹脂予備発泡粒子(請求項2)、融点
が149〜157℃、MIが1〜20g/10分であ
り、かつ半結晶化時間が60秒以下であるプロピレン−
1−ブテンランダム共重合体を基材樹脂とすることを特
徴とするポリプロピレン系樹脂予備発泡粒子(請求項
3)、示差走査熱量計によって40℃から200℃まで
10℃/分の速度で昇温した時に得られるDSC曲線に
おいて、基材樹脂が本来有していた結晶状態に基づく吸
熱ピークの融解熱量(α)〔J/g〕、このピークより
高温側に現れる吸熱ピークの融解熱量(β)〔J/g〕
が下記条件式(1)を満足する請求項1〜請求項3のい
ずれかに記載のポリプロピレン系樹脂予備発泡粒子(請
求項4)、
Means for Solving the Problems In view of the above circumstances, the present inventors have conducted intensive studies and as a result, have found that a propylene-based random having a specific melting point and MI range and a half-crystallization time of not more than a specific value. It has been found that the above problems can be solved by using a copolymer, and the present invention has been completed. That is, the present invention has a melting point of 149 to 157 ° C, M
I is 1 to 20 g / 10 min and the half-crystallization time is 4
Pre-expanded polypropylene-based resin particles characterized by using an ethylene-propylene random copolymer having a duration of 5 seconds or less as a base resin, wherein the melting point is 149 to 157.
A polypropylene-based resin reserve characterized by using, as a base resin, an ethylene-propylene-1-butene random copolymer having a temperature of 1 ° C. and an MI of 1 to 20 g / 10 minutes and a half-crystallization time of 55 seconds or less. Expanded particles (Claim 2), propylene having a melting point of 149 to 157 ° C, an MI of 1 to 20 g / 10 min, and a half-crystallization time of 60 seconds or less.
Pre-expanded polypropylene resin particles characterized by using a 1-butene random copolymer as a base resin (Claim 3), and the temperature is raised from 40 ° C to 200 ° C at a rate of 10 ° C / min by a differential scanning calorimeter. Of the endothermic peak (α) [J / g] based on the crystal state originally possessed by the base resin, and the heat of fusion (β) of the endothermic peak appearing higher than this peak in the DSC curve obtained when [J / g]
Satisfies the following conditional expression (1): pre-expanded polypropylene resin particles according to any one of claims 1 to 3 (claim 4);

【数2】 および、請求項1〜請求項4のいずれかに記載のポリプ
ロピレン系樹脂予備発泡粒子の少なくとも1種類を用い
て成形されてなる密度0.012〜0.090g/cm
3 の型内発泡成形体(請求項5)、を要旨とする。
(Equation 2)And the polyp according to any one of claims 1 to 4.
Using at least one kind of pre-expanded particles of propylene-based resin
Density of 0.012 to 0.090 g / cm
ThreeThe gist of the in-mold foam molded article (Claim 5).

【0007】[0007]

【発明の実施の形態】上記のように本発明では、ポリプ
ロピレン系樹脂予備発泡粒子の基材樹脂として、融点が
149〜157℃好ましくは150〜155℃、MI=
1〜20g/10分好ましくは3〜15g/10分であ
って、かつ半結晶化時間が45秒以下好ましくは40秒
以下であるエチレン−プロピレンランダム共重合体、融
点が149〜157℃好ましくは150〜155℃、M
I=1〜20g/10分好ましくは3〜15g/10分
であって、かつ半結晶化時間が55秒以下好ましくは5
0秒以下であるエチレン−プロピレン−1−ブテンラン
ダム共重合体、および、融点が149〜157℃好まし
くは150〜155℃、MI=1〜20g/10分好ま
しくは3〜15g/10分であって、かつ半結晶化時間
が60秒以下好ましくは55秒以下であるエチレン−1
−ブテンランダム共重合体、が使用しうる。これらプロ
ピレン系樹脂は、高立体規則性アイソタクティックポリ
プロピレンを与える触媒で重合されたものが好ましい。
例えば、三酸化チタン、塩化マグネシウム、エチルアル
ミニウムセスキクロリドやトリメチルアルミニウム等の
有機金属化合物、ピリジンや安息香酸メチル等の電子供
与体からなる触媒で重合されたものが好ましい。これら
のプロピレン系樹脂は単独で用いても良く、二種以上混
合使用してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, in the present invention, the base resin of the polypropylene resin pre-expanded particles has a melting point of 149 to 157 ° C, preferably 150 to 155 ° C, and MI =
1 to 20 g / 10 min, preferably 3 to 15 g / 10 min, and an ethylene-propylene random copolymer having a half-crystallization time of 45 seconds or less, preferably 40 seconds or less; 150-155 ° C, M
I = 1-20 g / 10 min, preferably 3-15 g / 10 min, and the half-crystallization time is 55 seconds or less, preferably 5
An ethylene-propylene-1-butene random copolymer having a melting point of 0 second or less, a melting point of 149 to 157 ° C, preferably 150 to 155 ° C, and MI of 1 to 20 g / 10 minutes, preferably 3 to 15 g / 10 minutes. Ethylene-1 having a half-crystallization time of 60 seconds or less, preferably 55 seconds or less.
-Butene random copolymer may be used. These propylene-based resins are preferably those polymerized with a catalyst that gives highly stereoregular isotactic polypropylene.
For example, those polymerized with a catalyst comprising an organic metal compound such as titanium trioxide, magnesium chloride, ethylaluminum sesquichloride and trimethylaluminum, and an electron donor such as pyridine and methyl benzoate are preferable. These propylene resins may be used alone or in combination of two or more.

【0008】基材樹脂の融点が149℃未満の場合、他
の条件を満足しても十分に高い圧縮強度を有する型内発
泡成形体が得られない。また融点が157℃より高くな
ると従来の金型および成型機(いずれも耐圧5.0kg
/cm2 −G)では十分に融着した型内発泡成形体が得
られない。
If the melting point of the base resin is less than 149 ° C., an in-mold foam molded article having a sufficiently high compressive strength cannot be obtained even if other conditions are satisfied. When the melting point is higher than 157 ° C., the conventional mold and molding machine (both withstand pressure 5.0 kg)
/ Cm 2 -G), a sufficiently fused in-mold foam molded article cannot be obtained.

【0009】基材樹脂のMIが1g/10分未満の場
合、樹脂粒子より予備発泡粒子とする予備発泡工程にお
ける発泡効率が低く好ましくない。また、MIが20g
/10分を超えると予備発泡粒子の割れが発生しやすく
なくため好ましくない。
If the MI of the base resin is less than 1 g / 10 minutes, the foaming efficiency in the pre-foaming step of converting the resin particles into pre-foamed particles is unpreferably low. In addition, MI is 20 g
If the time exceeds / 10 minutes, the pre-expanded particles are not easily cracked, which is not preferable.

【0010】基材樹脂の半結晶化時間は、エチレン−プ
ロピレンランダム共重合体で半結晶化時間が45秒を超
える場合、エチレン−プロピレン−1−ブテンランダム
共重合体で半結晶化時間が55秒を超える場合、および
エチレン−1−ブテンランダム共重合体で半結晶化時間
が60秒を超える場合は十分に高い圧縮強度を有する型
内発泡成形体が得られない。
When the half-crystallization time of the base resin is 45 seconds or more for the ethylene-propylene random copolymer, the half-crystallization time for the ethylene-propylene-1-butene random copolymer is 55 seconds. When the time exceeds 2 seconds, and when the half-crystallization time of the ethylene-1-butene random copolymer exceeds 60 seconds, an in-mold foam molded article having a sufficiently high compressive strength cannot be obtained.

【0011】通常、発泡成形体の圧縮強度の評価方法と
しては、50%圧縮時の圧縮応力が用いられるが、50
%圧縮時には型内発泡成形体内の樹脂部は弾性変形域を
越えた変形を受けている。弾性変形域を越えた変形を受
けると非晶領域だけでなく、結晶領域の変形或いは破壊
が起こると言われており、ポリプロピレン系樹脂型内発
泡成形体の圧縮強度は、基材樹脂の結晶化度に加えて結
晶の変形し難さ、言い換えれば結晶の剛性が大きく影響
すると考えることができる。基材樹脂分子鎖の立体規則
性が高い、コモノマー成分の分布が均一であるといった
場合に結晶化時間は短くなる。このため、半結晶化時間
が短い場合、結晶化度が高くなるだけでなく、結晶内の
欠陥が減少してより剛性の高い結晶が生成する。このた
め半結晶化時間が短い場合、高い圧縮強度を与えると推
測される。また、基材樹脂の融点が低くなると、同等の
結晶化度を有していても型内発泡成形体の圧縮強度は低
くなる。これは、基材樹脂の融点が低い場合、結晶中に
欠陥が多く存在するために結晶の剛性が低くなるため
に、圧縮強度が低下するものと推測される。
Usually, as a method for evaluating the compressive strength of a foamed molded article, a compressive stress at 50% compression is used.
At the time of% compression, the resin portion in the in-mold foam molded body has undergone deformation beyond the elastic deformation range. It is said that when subjected to deformation beyond the elastic deformation range, deformation or destruction occurs not only in the amorphous region but also in the crystalline region. In addition to the degree, the difficulty of deformation of the crystal, in other words, the rigidity of the crystal can be considered to have a large effect. When the stereoregularity of the base resin molecular chains is high and the distribution of the comonomer components is uniform, the crystallization time is shortened. Therefore, when the half-crystallization time is short, not only the degree of crystallinity is increased, but also defects in the crystal are reduced, and a crystal having higher rigidity is generated. For this reason, when the half-crystallization time is short, it is assumed that high compressive strength is provided. Further, when the melting point of the base resin is lowered, the compressive strength of the in-mold foam molded article is reduced even if the resin has the same crystallinity. This is presumed to be because when the melting point of the base resin is low, the crystal has many defects and the rigidity of the crystal is low, so that the compressive strength is low.

【0012】ここで基材樹脂の融点とは、示差走査熱量
計によって試料4〜10mgを40℃から200℃まで
10℃/分の速度で昇温し、その後40℃まで10℃/
分の速度で冷却し、再度200℃まで10℃/分の速度
で昇温した時に得られるDSC曲線における吸熱ピーク
のピーク温度をいう。
Here, the melting point of the base resin is defined as the temperature of a sample of 4 to 10 mg raised from 40 ° C. to 200 ° C. at a rate of 10 ° C./min.
The temperature at the endothermic peak in the DSC curve obtained when cooling at a rate of 10 minutes per minute and cooling to 200 ° C. again at a rate of 10 ° C./min.

【0013】また基材樹脂のMI値とは、JIS K7
210に準拠し、温度230℃、荷重2.16kg、ダ
イス径2.095±0.005mmで測定した値であ
る。
The MI value of the base resin is defined by JIS K7
This is a value measured at a temperature of 230 ° C., a load of 2.16 kg, and a die diameter of 2.095 ± 0.005 mm in accordance with No. 210.

【0014】さらに基材樹脂の半結晶化時間とは、実質
的に結晶核剤を含まない基材樹脂の0.1〜0.2mm
厚のフィルムをカバーグラスにはさんだ状態で230℃
に加熱し10分間保持した後、115.0±0.1℃に
保ったシリコーンオイル中に投下し、透過光量の時間変
化を測定した時、投下直後の透過光量(時間=0)と結
晶化終了後の透過光量の差の1/2の透過光量となるま
での時間(単位:秒)をいい、例えばコタキ製作所製の
半結晶化時間測定器MK−801型等を用いて測定でき
る。
Further, the half-crystallization time of the base resin is defined as 0.1 to 0.2 mm of the base resin substantially containing no nucleating agent.
230 ° C with thick film sandwiched between cover glasses
After heating for 10 minutes and dropping it in silicone oil kept at 115.0 ± 0.1 ° C. and measuring the time change of the transmitted light amount, the transmitted light amount (time = 0) immediately after the dropping and crystallization It means the time (unit: second) until the transmitted light amount becomes の of the difference of the transmitted light amount after completion, and can be measured using, for example, a semi-crystallization time measuring device MK-801 type manufactured by Kotaki Seisakusho.

【0015】結晶核剤とは、不均一核生成を促し、樹脂
の結晶化温度を高める化合物であり、例えば、カオリ
ン、タルク、炭酸カルシウム、アジピン酸、ポリシクロ
ペンテン、有機酸アルミニウム塩類である安息香酸アル
ミニウムやヒドロキシ−ジ(t−ブチル安息香酸)アル
ミニウム、ソルビトール誘導体であるビス(p−メチル
ベンジリデン)ソルビトールやビス(p−エチルベンジ
リデン)ソルビトール、有機リン酸塩類であるリン酸
2,2’−メチレンビス(4,6−ジ−t−ブチルフェ
ニル)ナトリウムやリン酸ビス(4−t−ブチルフェニ
ル)ナトリウムといったものが挙げられる。これら結晶
核剤は結晶化速度を増大させる(結晶化時間を短くす
る)が、型内発泡成形体の圧縮強度改良効果は小さい。
一般に、これら結晶核剤は不均一核を生成し、結晶化速
度を増大させる。つまり、結晶核量を増加させる、或い
は基材樹脂分子鎖が折りたたまれて結晶核を生成する
(均一核生成)誘導期間を省くことにより、見掛け上、
結晶化速度を増大させ(半結晶化時間を短くし、)結晶
化度を高くする。しかし、基材樹脂分子鎖の一次構造に
違いはなく、結晶自体の剛性の向上は望めない。また、
生成する結晶は結晶核剤を添加していない場合に比べて
より微細なものになる。そのため、結晶核剤の添加によ
り半結晶化時間が短くなった場合は、結晶化度とほぼ比
例関係にある弾性変形域での樹脂物性である引張弾性率
や曲げ弾性率等は向上するが、型内発泡成形体の圧縮強
度改良効果は小さいと推測される。
The nucleating agent is a compound which promotes heterogeneous nucleation and raises the crystallization temperature of the resin. Examples thereof include kaolin, talc, calcium carbonate, adipic acid, polycyclopentene, and benzoic acid which is an organic acid aluminum salt. Aluminum, aluminum hydroxy-di (t-butylbenzoate), bis (p-methylbenzylidene) sorbitol and bis (p-ethylbenzylidene) sorbitol, which are sorbitol derivatives, and 2,2′-methylenebisphosphate, which is an organic phosphate Examples thereof include (4,6-di-t-butylphenyl) sodium and sodium bis (4-t-butylphenyl) phosphate. These nucleating agents increase the crystallization rate (reduce the crystallization time), but have little effect on improving the compressive strength of the in-mold foam molded article.
Generally, these nucleating agents generate heterogeneous nuclei and increase the rate of crystallization. In other words, by increasing the amount of crystal nuclei or eliminating the induction period in which the base resin molecular chains are folded to generate crystal nuclei (uniform nucleation), apparently,
Increase the crystallization rate (decrease the half-crystallization time) and increase the degree of crystallinity. However, there is no difference in the primary structure of the molecular chain of the base resin, and improvement in the rigidity of the crystal itself cannot be expected. Also,
The resulting crystals are finer than when no nucleating agent is added. Therefore, when the half-crystallization time is shortened by the addition of a crystal nucleating agent, the tensile elastic modulus and the bending elastic modulus, which are the resin physical properties in the elastic deformation region which is almost proportional to the crystallinity, are improved. It is assumed that the effect of improving the compressive strength of the in-mold foam molded article is small.

【0016】さらに本発明の予備発泡粒子は、示差走査
熱量測定によって得られるDSC曲線(ただし、試料4
〜10mgを40℃から200℃まで10℃/分の速度
で昇温した時のDSC曲線)において、基材樹脂が本来
有していた結晶状態に基づく吸熱ピーク(以下、低温ピ
ークと称す。)の融解熱量α(J/g)、低温ピークよ
り高温側に現れる吸熱ピーク(以下、高温ピークと称
す。)の融解熱量β(J/g)が0.25≦β/(α+
β)≦0.60を満たす、好ましくは0.30≦β/
(α+β)≦0.50を満たすことが好ましい。β/
(α+β)が0.25未満となると基材樹脂の持つ能力
を十分に引き出すことができず十分に高い圧縮強度を有
する型内発泡成形体を得られない場合がある。また、β
/(α+β)が0.60を超えると成形圧が上昇し、従
来の金型および成型機(いずれも耐圧5.0kg/cm
2 −G)では、十分に加熱融着した型内発泡成形体が得
られない場合がある。β/(α+β)が大きくなるほど
圧縮強度は高くなる傾向にある。高温ピーク結晶は発泡
までの加熱処理により低温ピーク結晶が厚化することに
より生成したものである。一般に結晶の厚化は結晶内分
子鎖の再配列をともない、厚化後の結晶内の欠陥はより
少なくなっていることから、剛性のより高い高温ピーク
結晶が多くなる、つまりβ/(α+β)が大きくなると
圧縮強度が高くなると推測される。
Further, the pre-expanded particles of the present invention have a DSC curve obtained by differential scanning calorimetry (however, sample 4
In a DSC curve when 10 to 10 mg was heated at a rate of 10 ° C./min from 40 ° C. to 200 ° C.), an endothermic peak (hereinafter, referred to as a low-temperature peak) based on a crystal state originally possessed by the base resin. Heat of fusion α (J / g), and the heat of fusion β (J / g) of an endothermic peak (hereinafter referred to as a high-temperature peak) that appears on the higher temperature side than the low-temperature peak is 0.25 ≦ β / (α +
β) ≦ 0.60, preferably 0.30 ≦ β /
It is preferable to satisfy (α + β) ≦ 0.50. β /
If (α + β) is less than 0.25, the ability of the base resin cannot be sufficiently brought out, and an in-mold foam molded article having sufficiently high compressive strength may not be obtained. Also, β
// (α + β) exceeds 0.60, the molding pressure increases, and the conventional mold and molding machine (both withstand pressure of 5.0 kg / cm)
In the case of 2- G), a sufficiently in-mold foam molded article which is sufficiently heat-sealed may not be obtained. The compression strength tends to increase as β / (α + β) increases. The high-temperature peak crystal is generated by thickening the low-temperature peak crystal by the heat treatment until foaming. In general, thickening of a crystal involves rearrangement of molecular chains in the crystal, and the number of defects in the crystal after the thickening is smaller, so that more high-temperature peak crystals having higher rigidity are obtained, that is, β / (α + β) It is presumed that the compression strength increases as the value increases.

【0017】ここで、αおよびβの求め方を図1を用い
て説明する。低温ピークに最も近い極小点Aより低温ピ
ークの始まる側に引いた接線とDSC曲線との接点を
B、極小点Aより高温ピークの終わる側に引いた接線と
DSC曲線との接点をCとする。低温ピーク融解熱量α
は線分ABとDSC曲線の囲む面積、高温ピーク融解熱
量βは線分ACとDSC曲線の囲む面積より求められ
る。
Here, how to determine α and β will be described with reference to FIG. The point of contact between the DSC curve and the tangent drawn from the minimum point A closest to the low temperature peak to the beginning of the low temperature peak is B, and the point of contact of the DSC curve with the tangent drawn from the minimum point A to the end of the high temperature peak is C. . Low temperature peak heat of fusion α
Is the area surrounding the line segment AB and the DSC curve, and the high temperature peak heat of fusion β is determined from the area surrounding the line segment AC and the DSC curve.

【0018】本発明の予備発泡粒子の基材樹脂としての
ポリプロピレン系樹脂中には、シリカ、タルク、カオリ
ン、ゼオライト等の無機フィラー、熱安定剤、耐候剤、
滑剤、帯電防止剤、顔料を添加することができる。これ
らの添加量は、発泡粒子のセル径の微細化、不均一化が
起こらないように3重量%以下、好ましくは1重量%以
下とするほうがよい。
In the polypropylene resin as the base resin of the pre-expanded particles of the present invention, inorganic fillers such as silica, talc, kaolin and zeolite, heat stabilizers, weathering agents,
Lubricants, antistatic agents and pigments can be added. The amount of these additives is preferably 3% by weight or less, and more preferably 1% by weight or less, so that the cell diameter of the foamed particles does not become fine and nonuniform.

【0019】これらのポリプロピレン系樹脂は、あらか
じめ押出機、ニーダー、バンバリーミキサー、ロール等
を用いて溶融し、円柱状、楕円柱状、球状、立方体状、
直方体状等のような所望の粒子形状で、その粒子の粒重
量が0.2〜10mg、好ましくは0.5〜6mgにな
るように成形加工される。
These polypropylene resins are melted in advance using an extruder, a kneader, a Banbury mixer, a roll, or the like, and are formed into a columnar shape, an elliptical columnar shape, a spherical shape, a cubic shape,
The particles are formed into a desired particle shape such as a rectangular parallelepiped or the like so that the particle weight of the particles is 0.2 to 10 mg, preferably 0.5 to 6 mg.

【0020】ポリプロピレン系樹脂予備発泡粒子を製造
する方法に特に限定はなく公知の方法で行えばよいが、
例えば、耐圧容器内で基材樹脂のポリプロピレン系樹脂
を攪拌しながら水中に分散させ、次いで揮発性発泡剤を
供給し、加圧下で所定の発泡温度に加熱した後、該水分
散物を耐圧容器内より低圧雰囲気下(通常は大気圧下)
に放出する方法が利用されうる。
The method for producing the polypropylene resin pre-expanded particles is not particularly limited and may be carried out by a known method.
For example, a polypropylene resin as a base resin is dispersed in water while stirring in a pressure vessel, and then a volatile foaming agent is supplied and heated to a predetermined foaming temperature under pressure. Under low pressure atmosphere (usually under atmospheric pressure)
A method of releasing into the air may be used.

【0021】揮発性発泡剤としては、例えばプロパン、
ブタン、ペンタン、ヘキサン等の脂肪族炭化水素類、ジ
クロロジフルオロメタン、ジクロロテトラフルオロエタ
ン、トリクロロトリフルオロエタン、メチルクロライ
ド、メチレンクロライド、エチルクロライド等のハロゲ
ン化炭化水素類が挙げられる。これらの発泡剤は単独で
用いてもよく、また、二種類以上併用してもよい。ま
た、その使用量に限定はなく、所望の発泡粒子の発泡倍
率に応じて適宜使用すれば良く、通常その使用量はポリ
プロピレン系樹脂100重量部に対して5〜50重量部
である。
As the volatile foaming agent, for example, propane,
Examples include aliphatic hydrocarbons such as butane, pentane, and hexane; and halogenated hydrocarbons such as dichlorodifluoromethane, dichlorotetrafluoroethane, trichlorotrifluoroethane, methyl chloride, methylene chloride, and ethyl chloride. These foaming agents may be used alone or in combination of two or more. The amount is not limited, and may be appropriately used depending on the desired expansion ratio of the expanded particles. Usually, the amount is 5 to 50 parts by weight based on 100 parts by weight of the polypropylene resin.

【0022】前記水分散物の調製に際しては、分散剤と
して、例えば第三リン酸カルシウム、塩基性炭酸マグネ
シウム、炭酸カルシウム等の無機系懸濁剤と、例えばド
デシルベンゼンスルホン酸ソーダ、n−パラフィンスル
ホン酸ソーダ、α−オレフィンスルホン酸ソーダ等の懸
濁助剤が併用される。これらの中でも第三リン酸カルシ
ウムとドデシルベンゼンスルホン酸ナトリウムの併用が
好ましい。懸濁剤や懸濁助剤の使用量は、その種類や、
用いるポリプロピレン系樹脂の種類と使用量によって異
なるが、通常、水100重量部に対して懸濁剤0.2〜
3重量部、懸濁助剤0.001〜0.1重量部である。
また、ポリプロピレン系樹脂は、水中での分散性を良好
なものにするために、通常、水100重量部に対して2
0〜100重量部使用するのが好ましい。
In preparing the aqueous dispersion, an inorganic suspending agent such as tribasic calcium phosphate, basic magnesium carbonate, calcium carbonate and the like, and a sodium dodecylbenzenesulfonate and a sodium n-paraffinsulfonate may be used. And a suspending aid such as sodium α-olefin sulfonate. Among them, the combination use of tribasic calcium phosphate and sodium dodecylbenzenesulfonate is preferable. The amount of the suspending agent and suspending aid used depends on the type,
Depending on the type and amount of the polypropylene resin used, the suspending agent is usually 0.2 to 100 parts by weight of water.
3 parts by weight, 0.001 to 0.1 parts by weight of a suspension aid.
In order to improve the dispersibility in water, the polypropylene resin is usually used in an amount of 2 parts per 100 parts by weight of water.
It is preferable to use 0 to 100 parts by weight.

【0023】耐圧容器内に調製されたポリプロピレン系
樹脂水分散物に、ガス状あるいは液状の発泡剤が供給さ
れ、所定の発泡温度に加熱され、一定時間、通常5〜1
80分間、好ましくは10〜60分間保持されるととも
に、耐圧容器内の圧力は上昇し、発泡剤がポリプロピレ
ン系樹脂に含浸される。この後、所定の発泡圧力になる
まで発泡剤が追加供給され、一定時間、通常5〜180
分間、好ましくは10〜60分間保持される。かくし
て、加圧下で加熱されたポリプロピレン系樹脂水分散物
を、2〜10mmφの開口オリフィスを通して低圧雰囲
気下(通常は大気圧下)に放出することによりポリプロ
ピレン系樹脂発泡粒子を製造することができる。
A gaseous or liquid foaming agent is supplied to an aqueous dispersion of a polypropylene resin prepared in a pressure vessel, heated to a predetermined foaming temperature, and usually for a period of 5 to 1 hour.
The pressure is maintained for 80 minutes, preferably 10 to 60 minutes, and the pressure in the pressure vessel rises, so that the foaming agent is impregnated in the polypropylene resin. Thereafter, a foaming agent is additionally supplied until the foaming pressure reaches a predetermined foaming pressure.
Minutes, preferably 10-60 minutes. Thus, the expanded polypropylene resin particles can be produced by discharging the aqueous dispersion of the polypropylene resin heated under pressure through an opening orifice of 2 to 10 mmφ under a low-pressure atmosphere (usually under atmospheric pressure).

【0024】発泡温度は用いるポリプロピレン系樹脂の
融点をTm ℃としたとき、ほぼ(T m −20)℃〜(T
m +5)℃の範囲から決定される。また、発泡圧力は所
望の発泡倍率により選択されるが、概ね10〜50kg
/cm2 −Gである。
The foaming temperature depends on the polypropylene resin used.
Melting point Tm° C, almost (T m−20) ° C. to (T
m+5) Determined from the range of ° C. Also, the foaming pressure
It is selected according to the desired foaming ratio, but generally 10 to 50 kg
/ CmTwo-G.

【0025】ポリプロピレン系樹脂予備発泡粒子の発泡
倍率は、通常の場合、3〜60倍、好ましくは5〜40
倍の範囲である。この予備発泡粒子の発泡倍率の測定法
は下記のとおりである。十分に乾燥させた発泡粒子の重
量(W)〔g〕、エタノール浸漬体積(V)〔cm3
を測定する。これらと基材樹脂密度(d)〔g/c
3 〕から下式により計算する。 発泡倍率=(V/W)×d
The expansion ratio of the polypropylene resin pre-expanded particles is usually 3 to 60 times, preferably 5 to 40 times.
Range of double. The method for measuring the expansion ratio of the pre-expanded particles is as follows. Weight (W) [g] of fully dried foamed particles, ethanol immersion volume (V) [cm 3 ]
Is measured. These and the base resin density (d) [g / c
m 3 ] according to the following equation. Expansion ratio = (V / W) × d

【0026】本発明の発泡成形体は、上記のようにして
得た発泡粒子を用いて型内発泡成形により得られる。発
泡粒子を型内発泡成形体にするには、例えば、イ)発泡
粒子を無機ガスで加圧処理して粒子内に無機ガスを含浸
させ所定の粒子内圧を付与した後、金型に充填し、蒸気
等で加熱融着させる方法(特公昭51−22951
号)、ロ)発泡粒子をガス圧力で圧縮して金型に充填し
粒子の回復力を利用して、蒸気等で加熱融着させる方法
(特公昭53−33996号)等の方法が利用しうる。
型内発泡成形体の密度は、0.012〜0.090g/
cm3 の範囲とする。密度が0.012g/cm3 未満
の型内発泡成形体を得ようとした場合、成形時に収縮、
変形が起こりやすく、不良品の割合が高くなり生産性が
低くなるので好ましくない。型内発泡成形体の密度が
0.090g/cm3 を超えると型内発泡成形体の特徴
である軽量性が損なわれるため好ましくない。
The foam molded article of the present invention is obtained by in-mold foam molding using the foam particles obtained as described above. In order to make the foamed particles into an in-mold foam molded article, for example, a) the foamed particles are subjected to a pressure treatment with an inorganic gas to impregnate the particles with the inorganic gas, apply a predetermined internal pressure, and then fill the mold. , Steam and the like (Japanese Patent Publication No. Sho 51-22951)
), B) a method of compressing the foamed particles at a gas pressure, filling the mold and heating and fusing the particles with steam or the like utilizing the recovery force of the particles (Japanese Patent Publication No. 53-33996). sell.
The density of the in-mold foam molded article is 0.012 to 0.090 g /
cm 3 range. When trying to obtain an in-mold foam molded article having a density of less than 0.012 g / cm 3 ,
It is not preferable because deformation is likely to occur, the percentage of defective products increases, and productivity decreases. If the density of the in-mold foam molded article exceeds 0.090 g / cm 3 , the lightness characteristic of the in-mold foam molded article is impaired, which is not preferable.

【0027】[0027]

【実施例】以下、実施例及び比較例に基づき本発明を更
に詳しく説明するが、これらは何ら本発明を限定するも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but these do not limit the present invention at all.

【0028】実施例1〜9及び比較例1〜8 表1に示す融点、MI、及び半結晶化時間をもつプロピ
レン系ランダム共重合体のペレット(1粒重量約1.8
mg)100重量部に対して、水300重量部、第三リ
ン酸カルシウム2.0重量部、n−パラフィンスルホン
酸ソーダ0.05重量部、イソブタン9〜12重量部を
耐圧容器内に仕込み、攪拌しながら表1記載の発泡温度
まで昇温し、20分間保持した後、イソブタンを追加圧
入することにより容器内圧を表1記載の発泡圧力に調整
し、10分間保持した。その後、イソブタンを圧入しな
がら温度と容器内圧力を一定に保持しつつ、耐圧容器下
部のバブルを開いて水分散物を開口径4mmφのオリフ
ィス板を通して大気圧下に放出して発泡粒子を得た。得
られた発泡粒子の発泡倍率を表1に示す。次に、得られ
た発泡粒子に空気を含浸させた後、270×290×6
0mmのブロック金型に充填し、表1に示す水蒸気圧
(成形圧力)で加熱することにより成形体を得た。得ら
れた成形体の物性として、成形体の融着率、表面外観、
剛性(圧縮強度)を下記の方法により評価した。結果を
表1に示す。
Examples 1 to 9 and Comparative Examples 1 to 8 Pellets of a propylene-based random copolymer having a melting point, MI, and half-crystallization time shown in Table 1 (each particle having a weight of about 1.8)
mg) 100 parts by weight, 300 parts by weight of water, 2.0 parts by weight of tricalcium phosphate, 0.05 parts by weight of sodium n-paraffin sulfonate, and 9 to 12 parts by weight of isobutane are charged into a pressure-resistant container and stirred. While the temperature was raised to the foaming temperature shown in Table 1 and maintained for 20 minutes, isobutane was additionally injected to adjust the internal pressure of the container to the foaming pressure shown in Table 1, and held for 10 minutes. Thereafter, while maintaining the temperature and the pressure in the container constant while injecting isobutane, the bubble at the bottom of the pressure-resistant container was opened, and the aqueous dispersion was discharged under atmospheric pressure through an orifice plate having an opening diameter of 4 mm to obtain foamed particles. . Table 1 shows the expansion ratio of the obtained expanded particles. Next, after impregnating the obtained foamed particles with air, 270 × 290 × 6
A molded body was obtained by filling a 0 mm block mold and heating at a steam pressure (molding pressure) shown in Table 1. As physical properties of the obtained molded body, the fusion rate of the molded body, surface appearance,
The rigidity (compression strength) was evaluated by the following method. Table 1 shows the results.

【0029】融着率:成形体の表面にナイフで約5mm
の深さのクラックを入れた後、このクラックに沿って成
形体を割り、破断面を観測し、粒子の全個数に対する材
料破壊した粒子数の割合を求めた。 ◎:融着率80%以上 ○:融着率60〜80%未満 △:融着率30〜60%未満 ×:融着率30%未満 通常、成形体として満足すべき融着率の水準は60%以
上である。
Fusion rate: about 5 mm with a knife on the surface of the molded body
, A molded body was divided along the cracks, the fracture surface was observed, and the ratio of the number of particles in which the material was broken to the total number of particles was determined. ◎: fusion rate of 80% or more ○: fusion rate of less than 60 to less than 80% △: fusion rate of less than 30 to less than 60% ×: fusion rate of less than 30% Usually, the level of fusion rate that is satisfactory as a molded article is: 60% or more.

【0030】表面外観:次の尺度で成形体表面を評価し
た。 ○:表面に凹凸がなく、各粒子間隙もほとんどない。 △:表面に凹凸はないが、各粒子間隙がやや目立つ。 ×:表面に凹凸があり、各粒子間隙が極めて大きい。
Surface appearance: The molded product surface was evaluated according to the following scale. :: There are no irregularities on the surface and there is almost no gap between the particles. Δ: There are no irregularities on the surface, but the gaps between the particles are somewhat noticeable. ×: The surface has irregularities, and the gap between the particles is extremely large.

【0031】剛性(圧縮強度):NDS−Z0504に
準拠し、50mm×50mm×25mmのテストピース
サンプルを10mm/分で圧縮し、50%圧縮時の圧縮
応力(20℃)を求めた。
Rigidity (compressive strength): A test piece sample of 50 mm × 50 mm × 25 mm was compressed at 10 mm / min according to NDS-Z0504, and the compressive stress at 50% compression (20 ° C.) was determined.

【0032】[0032]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発泡粒子についての示差走査熱量計によるD
SC曲線であって、基材樹脂が本来有していた結晶状態
に基づく吸熱ピーク(低温ピーク)の融解熱量α(J/
g)と低温ピークより高温側に現れる吸熱ピーク(高温
ピーク)の融解熱量β(J/g)とを求め方を示すもの
である。
FIG. 1. Differential scanning calorimetry D for expanded particles.
An SC curve showing an endothermic peak (low-temperature peak) based on the crystal state originally possessed by the base resin, the heat of fusion α (J /
g) and the heat of fusion β (J / g) of the endothermic peak (high-temperature peak) appearing on the higher temperature side than the low-temperature peak.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:04 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29K 105: 04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 融点が149〜157℃、MIが1〜2
0g/10分であって、かつ半結晶化時間が45秒以下
であるエチレン−プロピレンランダム共重合体を基材樹
脂とすることを特徴とするポリプロピレン系樹脂予備発
泡粒子。
1. Melting point: 149 to 157 ° C., MI: 1 to 2
Pre-expanded polypropylene resin particles characterized by using, as a base resin, an ethylene-propylene random copolymer having 0 g / 10 min and a half-crystallization time of 45 seconds or less.
【請求項2】 融点が149〜157℃、MIが1〜2
0g/10分であって、かつ半結晶化時間が55秒以下
であるエチレン−プロピレン−1−ブテンランダム共重
合体を基材樹脂とすることを特徴とするポリプロピレン
系樹脂予備発泡粒子。
2. Melting point: 149 to 157 ° C., MI: 1 to 2
Pre-expanded polypropylene resin particles, characterized by using an ethylene-propylene-1-butene random copolymer having a base crystallization time of 0 g / 10 min and a half-crystallization time of 55 seconds or less.
【請求項3】 融点が149〜157℃、MIが1〜2
0g/10分であって、かつ半結晶化時間が60秒以下
であるプロピレン−1−ブテンランダム共重合体を基材
樹脂とすることを特徴とするポリプロピレン系樹脂予備
発泡粒子。
3. Melting point: 149 to 157 ° C., MI: 1 to 2
Pre-expanded polypropylene resin particles, characterized by using a propylene-1-butene random copolymer having a base crystallization time of 0 g / 10 min and a half-crystallization time of 60 seconds or less.
【請求項4】 示差走査熱量計によって40℃から20
0℃まで10℃/分の速度で昇温した時に得られるDS
C曲線において、基材樹脂が本来有していた結晶状態に
基づく吸熱ピークの融解熱量(α)〔J/g〕、このピ
ークより高温側に現れる吸熱ピークの融解熱量(β)
〔J/g〕が下記条件式(1)を満足する請求項1〜請
求項3のいずれかに記載のポリプロピレン系樹脂予備発
泡粒子。 【数1】
4. From 40 ° C. to 20 by differential scanning calorimetry.
DS obtained when the temperature is raised to 0 ° C at a rate of 10 ° C / min.
In the C curve, the heat of fusion (α) [J / g] of the endothermic peak based on the crystal state originally possessed by the base resin, and the heat of fusion (β) of the endothermic peak appearing on the higher temperature side than this peak
The polypropylene resin pre-expanded particles according to any one of claims 1 to 3, wherein [J / g] satisfies the following conditional expression (1). (Equation 1)
【請求項5】 請求項1〜請求項4のいずれかに記載の
ポリプロピレン系樹脂予備発泡粒子の少なくとも1種類
を用いて成形されてなる密度0.012〜0.090g
/cm3 の型内発泡成形体。
5. A density of 0.012 to 0.090 g formed by using at least one kind of the pre-expanded polypropylene resin particles according to claim 1. Description:
/ Cm 3 in-mold foam molded article.
JP12602297A 1997-05-15 1997-05-15 Polypropylene resin pre-expanded particles and in-mold expanded molded article Expired - Lifetime JP3600930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12602297A JP3600930B2 (en) 1997-05-15 1997-05-15 Polypropylene resin pre-expanded particles and in-mold expanded molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12602297A JP3600930B2 (en) 1997-05-15 1997-05-15 Polypropylene resin pre-expanded particles and in-mold expanded molded article

Publications (2)

Publication Number Publication Date
JPH10316791A true JPH10316791A (en) 1998-12-02
JP3600930B2 JP3600930B2 (en) 2004-12-15

Family

ID=14924779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12602297A Expired - Lifetime JP3600930B2 (en) 1997-05-15 1997-05-15 Polypropylene resin pre-expanded particles and in-mold expanded molded article

Country Status (1)

Country Link
JP (1) JP3600930B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226621A (en) * 2001-02-01 2002-08-14 Kanegafuchi Chem Ind Co Ltd Polyolefin resin pre-expanded particle and its manufacturing method
US6576693B2 (en) * 2001-08-02 2003-06-10 Kaneka Corporation Pre-expanded particles of polypropylene resin and inmolded foamed article using the same
WO2003097728A1 (en) * 2002-05-21 2003-11-27 Kaneka Corporation Method of in-mold foam molding for polyolefin based resin foamed article
JP2005298769A (en) * 2004-04-16 2005-10-27 Kaneka Corp Polypropylenic resin pre-expanded particle and in-mold expansion molded product
WO2006016478A1 (en) * 2004-08-11 2006-02-16 Kaneka Corporation Process for producing polypropylene resin foam molding
WO2006075491A1 (en) * 2005-01-12 2006-07-20 Kaneka Corporation Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
JP2006240284A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product
JP2007023172A (en) * 2005-07-19 2007-02-01 Kaneka Corp Method for producing pre-expanded particle of polypropylene resin
JP2008119981A (en) * 2006-11-14 2008-05-29 Kaneka Corp Composite foamed molded article
US8337962B2 (en) 2010-03-12 2012-12-25 Fujifilm Corporation Resin film and method for producing it, polarizer and liquid crystal display device
JP2013010355A (en) * 2005-02-01 2013-01-17 Kaneka Corp Thermoplastic resin in-mold foamed molded product, and method for manufacturing the same
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JP2015108033A (en) * 2013-12-03 2015-06-11 株式会社カネカ Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
CN112867596A (en) * 2018-11-06 2021-05-28 陶氏环球技术有限责任公司 Additive manufacturing of olefin block copolymers and articles made therefrom

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226621A (en) * 2001-02-01 2002-08-14 Kanegafuchi Chem Ind Co Ltd Polyolefin resin pre-expanded particle and its manufacturing method
JP4519335B2 (en) * 2001-02-01 2010-08-04 株式会社カネカ Polyolefin resin pre-expanded particles and method for producing the same
US6576693B2 (en) * 2001-08-02 2003-06-10 Kaneka Corporation Pre-expanded particles of polypropylene resin and inmolded foamed article using the same
WO2003097728A1 (en) * 2002-05-21 2003-11-27 Kaneka Corporation Method of in-mold foam molding for polyolefin based resin foamed article
JP2005298769A (en) * 2004-04-16 2005-10-27 Kaneka Corp Polypropylenic resin pre-expanded particle and in-mold expansion molded product
US8088835B2 (en) 2004-08-11 2012-01-03 Kaneka Corporation Method for producing expansion-molded polypropylene-based resin article
WO2006016478A1 (en) * 2004-08-11 2006-02-16 Kaneka Corporation Process for producing polypropylene resin foam molding
JPWO2006016478A1 (en) * 2004-08-11 2008-05-01 株式会社カネカ Method for producing polypropylene resin foam molding
EP1790683A4 (en) * 2004-08-11 2009-08-05 Kaneka Corp Process for producing polypropylene resin foam molding
WO2006075491A1 (en) * 2005-01-12 2006-07-20 Kaneka Corporation Pre-expanded polypropylene resin particle and molded object obtained by in-mold expansion
US8569390B2 (en) 2005-01-12 2013-10-29 Kaneka Corporation Polypropylene resin pre-expanded particles and in-mold foamed articles prepared therefrom
JP5219375B2 (en) * 2005-01-12 2013-06-26 株式会社カネカ Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP2006240284A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product
JP2013010355A (en) * 2005-02-01 2013-01-17 Kaneka Corp Thermoplastic resin in-mold foamed molded product, and method for manufacturing the same
JP2007023172A (en) * 2005-07-19 2007-02-01 Kaneka Corp Method for producing pre-expanded particle of polypropylene resin
JP2008119981A (en) * 2006-11-14 2008-05-29 Kaneka Corp Composite foamed molded article
US8337962B2 (en) 2010-03-12 2012-12-25 Fujifilm Corporation Resin film and method for producing it, polarizer and liquid crystal display device
US8394309B2 (en) 2010-03-12 2013-03-12 Fujifilm Corporation Resin film and method for producing it, polarizer and liquid crystal display device
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
US9493622B2 (en) 2012-11-27 2016-11-15 Kaneka Corporation Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
JPWO2014084165A1 (en) * 2012-11-27 2017-01-05 株式会社カネカ POLYPROPYLENE RESIN FOAM PARTICLE, POLYPROPYLENE RESIN IN-MOLD FOAM MOLDING AND METHOD FOR PRODUCING THEM
JP2015108033A (en) * 2013-12-03 2015-06-11 株式会社カネカ Polypropylene resin pre-expanded particles and polypropylene resin in-mold foam-molded product obtained from the polypropylene resin pre-expanded particles
CN112867596A (en) * 2018-11-06 2021-05-28 陶氏环球技术有限责任公司 Additive manufacturing of olefin block copolymers and articles made therefrom
CN112867596B (en) * 2018-11-06 2023-09-19 陶氏环球技术有限责任公司 Additive manufacturing of olefin block copolymers and articles made therefrom

Also Published As

Publication number Publication date
JP3600930B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US4626555A (en) Polypropylene foamed particles
JP3600930B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded article
JPH08277340A (en) Polypropylene homopolymer expanded particles and expanded particle molded products
JP4077788B2 (en) Method for producing expanded polypropylene resin particles
WO2017030124A1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles, method for producing polypropylene resin in-mold foam-molded article, and polypropylene resin in-mold foam-molded article
JPH0422175B2 (en)
JPS63183832A (en) Manufacture of polypropylene resin in-mold foam molding
JPH0629334B2 (en) Method for producing linear low-density polyethylene resin in-mold foam molding
JP5058557B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP5219375B2 (en) Polypropylene resin pre-expanded particles, and in-mold foam moldings
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPH10147661A (en) Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP2005298769A (en) Polypropylenic resin pre-expanded particle and in-mold expansion molded product
JPH0657435B2 (en) In-mold foam molding of polypropylene resin
JP5064745B2 (en) Polypropylene resin pre-expanded particles with reduced friction noise
JP3461583B2 (en) Method for producing foamed molded article in polypropylene resin mold
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JP3526660B2 (en) In-mold foaming particles and in-mold foam molding
JP2007217597A (en) Method for producing polypropylene resin pre-expanded particles
JP2790791B2 (en) Method for producing foamed molded article in polypropylene resin mold
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JP4455706B2 (en) Method for producing expanded polypropylene resin particles for molding
JP3628169B2 (en) Method for producing polyolefin resin pre-expanded particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term