JPH10315270A - Stress calculating method of nozzle for injection molder, and nozzle based thereon - Google Patents
Stress calculating method of nozzle for injection molder, and nozzle based thereonInfo
- Publication number
- JPH10315270A JPH10315270A JP14091697A JP14091697A JPH10315270A JP H10315270 A JPH10315270 A JP H10315270A JP 14091697 A JP14091697 A JP 14091697A JP 14091697 A JP14091697 A JP 14091697A JP H10315270 A JPH10315270 A JP H10315270A
- Authority
- JP
- Japan
- Prior art keywords
- stress
- nozzle
- cylinder
- face
- opening part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000002347 injection Methods 0.000 title description 5
- 239000007924 injection Substances 0.000 title description 5
- 239000011347 resin Substances 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims abstract description 10
- 238000012916 structural analysis Methods 0.000 claims abstract description 3
- 238000001746 injection moulding Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 abstract 1
- 230000013011 mating Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】応力が集中するため、破損し
易い構造の射出成形機用のノズルに関し、該ノズルの応
力を計算する方法とそれに基づいた、破損しないノズル
の構造を提案する。BACKGROUND OF THE INVENTION The present invention relates to a nozzle for an injection molding machine having a structure that is easily damaged due to concentration of stress, and proposes a method of calculating the stress of the nozzle and a structure of a nozzle that is not damaged based on the method.
【0002】[0002]
【従来の技術】内部に円錐状の溶融樹脂通路を有する射
出成形機用ノズルの該円錐状通路は複雑な形状であり開
口部端面角部における応力は、一般の材料力学による計
算で求めることは困難である。しかしながら当該部分の
応力は他の部分と比較して高くなり、その応力を求める
ことはノズルの設計上極めて重要なことである。そこで
従来は、該開口部端面を断面とする厚肉円筒における応
力を、公式により計算し、円錐形状に基づく経験値等よ
りなる低減係数を乗じて求めていた。2. Description of the Related Art A conical passage of a nozzle for an injection molding machine having a conical molten resin passage therein has a complicated shape, and the stress at the opening end face corner can be obtained by calculation based on general material mechanics. Have difficulty. However, the stress in this portion is higher than in other portions, and it is extremely important to determine the stress in designing the nozzle. Therefore, conventionally, the stress in a thick-walled cylinder having a cross section of the opening end face has been calculated by a formula, and the stress has been obtained by multiplying by a reduction coefficient such as an empirical value based on the conical shape.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記係
数設定は設計者による個人差があり、低減率を過大に設
定された場合は応力が小さいものとして設計され、ノズ
ルの当該箇所が破損することになる。逆に、低減率を過
小に設定されたときは応力が大きいものとして設計さ
れ、該ノズルや延いては加熱筒等の寸法が大きくなり原
価の高騰を招くのである。However, there is an individual difference between designers in setting the coefficient, and when the reduction rate is set to an excessively large value, the stress is designed to be small so that the corresponding portion of the nozzle may be damaged. Become. Conversely, when the reduction rate is set to be too small, the stress is designed to be large, and the dimensions of the nozzle and, consequently, the heating cylinder, etc., become large, leading to an increase in cost.
【0004】[0004]
【課題を解決するための手段】そこで本発明では、該開
口部端面を断面とする円筒を仮想し、該円筒における円
周方向応力を厚肉円筒の公式により求め、該値に構造解
析で求めた関数fを係数として乗じることにより前記開
口部端面角部の応力を求めるようにしたのである。ここ
で、関数fは、前記円錐状通路の角度が45°のとき、 f=1.6×t/d+0.4 (但し、0.1≦t/d
≦0.3)の式で表される。また、該t/dの値が0.
175以上であればt/dの変化に対する応力の変化が
少なく、窒化鋼等の一般的な材質でも破損しないノズル
を得ることが出来たのである。Accordingly, in the present invention, a cylinder having a cross section at the end face of the opening is imagined, the circumferential stress in the cylinder is determined by the formula of a thick cylinder, and the value is determined by structural analysis. The function f is multiplied as a coefficient to obtain the stress at the corner of the opening end face. Here, when the angle of the conical passage is 45 °, the function f is f = 1.6 × t / d + 0.4 (where 0.1 ≦ t / d
≦ 0.3). When the value of t / d is 0.
If it is 175 or more, a change in stress with respect to a change in t / d is small, and a nozzle which is not damaged even with a general material such as nitrided steel can be obtained.
【0005】[0005]
【発明の実施の形態】図面に基づいて本発明の詳細な説
明を行う。図1は本発明に関わるノズル1であり、図示
しない加熱筒の先端部に螺着する。2は球面を有する当
接部であり、図示しない金型に、前記加熱筒を含む射出
装置によって押圧されて、加熱筒内の溶融樹脂を金型の
キャビティに射出充填する。3は当接部2の中央部に穿
設した先端孔であり、角度αの円錐状通路4に連通して
溶融樹脂の通路となる。5はノズル1を加熱筒に螺着す
るための取付螺子である。6は円錐状通路4の開口側の
開口部端面であり、ノズル1を加熱筒に螺着したときに
加熱筒の端面と密着する。7は開口部端面角部であり、
射出時に円錐状通路の溶融樹脂に射出圧力が付加された
とき他の部位と比較して最も大きな応力が発生する部分
である。開口部端面6の外径寸法と内径寸法はそれぞれ
D(cm)、d(cm)で示し、(D−d)/2である
肉厚はt(cm)で表す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the drawings. FIG. 1 shows a nozzle 1 according to the present invention, which is screwed to a tip of a heating tube (not shown). Reference numeral 2 denotes a contact portion having a spherical surface, which is pressed against a mold (not shown) by an injection device including the heating cylinder to inject and fill a molten resin in the heating cylinder into a cavity of the mold. Reference numeral 3 denotes a distal end hole formed in the center of the contact portion 2, which communicates with the conical passage 4 having an angle α and serves as a passage for the molten resin. Reference numeral 5 denotes a mounting screw for screwing the nozzle 1 to the heating cylinder. Reference numeral 6 denotes an end face of the opening of the conical passage 4 on the opening side, which is in close contact with the end face of the heating cylinder when the nozzle 1 is screwed onto the heating cylinder. 7 is a corner of the opening end face;
When injection pressure is applied to the molten resin in the conical passage during injection, this is a portion where the largest stress is generated as compared with other portions. The outer diameter and inner diameter of the opening end face 6 are represented by D (cm) and d (cm), respectively, and the thickness of (D−d) / 2 is represented by t (cm).
【0006】前記ノズル1において、開口部端面角部7
における応力は、ノズル1が複雑な形状であるため、一
般の材料力学による計算で求めることは困難である。そ
こで、本発明では、まず該開口部端面6を断面とする円
筒を仮想し、該円筒における円周方向応力σを厚肉円筒
の公式により求める。ここでPは溶融樹脂の樹脂圧力
(kgf/cm2 )である。 σ=(D2 +d2 )/(D2 −d2 )×P ・・・ 次に式により求めた値を、dもしくはDの値を様々に
変化させて実行した数多くの構造解析により求めた前記
開口部端面角部の応力値群に一致せしめるための関数f
を見いだし、f値を係数として式に乗じて、開口部端
面の肉厚とその内径の比t/dが0.1から0.3の範
囲において前記開口部端面角部の応力が求められるよう
にしたのである。In the nozzle 1, the opening end face corner 7
Is difficult to calculate by calculation using general material mechanics because the nozzle 1 has a complicated shape. Therefore, in the present invention, first, a cylinder having a cross section of the opening end face 6 is imagined, and the circumferential stress σ in the cylinder is obtained by the thick cylinder formula. Here, P is the resin pressure (kgf / cm 2 ) of the molten resin. σ = (D 2 + d 2 ) / (D 2 −d 2 ) × P Next, the value obtained by the equation was obtained by a number of structural analyzes performed by changing the value of d or D variously. Function f for matching the stress value group at the opening end face corners
And multiplying the equation by using the f-value as a coefficient, so that the stress at the corner of the opening end face can be obtained when the ratio t / d between the thickness of the opening end face and its inner diameter is in the range of 0.1 to 0.3. It was.
【0007】したがって、開口部端面角部の応力σtを
求める本発明の応力計算式は、 σt=(D2 +d2 )/(D2 −d2 )×P×f ・・・ となり、円錐状通路の角度αが45゜のときのfは次の
式で表される。 f=1.6×t/d+0.4 ・・・ 但し、0.1≦t/d≦0.3である。なお、円錐状通
路の角度αが45゜以外のときも式は変わるが同様の
関数fを求めることが出来る。Accordingly, the stress calculation formula of the present invention for determining the stress σt at the corner of the opening end face is as follows: σt = (D 2 + d 2 ) / (D 2 −d 2 ) × P × f. When the angle α of the passage is 45 °, f is expressed by the following equation. f = 1.6 × t / d + 0.4 where 0.1 ≦ t / d ≦ 0.3. Although the equation changes when the angle α of the conical passage is other than 45 °, a similar function f can be obtained.
【0008】図2はt/d値を上記範囲で変化させたと
きの応力を式により計算しグラフ化したものである。
図2によれば、通常の射出成形機における最大射出圧力
2000kgf/cm2 において、t/d値が0.16
より小なるときに、ノズルの一般的な材質である窒化鋼
(SACM645)の許容応力4800kgf/cm2
を越えて応力が増加することがわかる。したがって、t
/d値は0.16より大きく、好ましくは0.17以上
とすることが、破損しないノズルを設計する上で必要で
ある。因にt/d=0.175のときの応力はP=20
00kgf/cm2 において4666kgf/cm2 で
ある。FIG. 2 is a graph in which the stress when the t / d value is changed in the above range is calculated by an equation and graphed.
According to FIG. 2, the t / d value is 0.16 at the maximum injection pressure of 2000 kgf / cm 2 in a normal injection molding machine.
When smaller, the allowable stress of nitrided steel (SACM645), which is a general material of the nozzle, is 4800 kgf / cm 2.
It can be seen that the stress increases beyond. Therefore, t
It is necessary that the / d value be greater than 0.16, preferably 0.17 or more, in designing a nozzle that does not break. The stress at t / d = 0.175 is P = 20
It is 4666 kgf / cm 2 at 00 kgf / cm 2 .
【0009】[0009]
【実施例】本発明の実施例を具体的に説明する。実施例
1のノズルにおいて、D=3.7cm、d=3.0c
m、t=0.35cm、t/d=0.117、P=17
50kgf/cm2 、材質:窒化鋼(SACM645)
のとき式によって求めた応力は4970kgf/cm
2 である。このとき実施例1のノズルは破損した。実施
例2のノズルにおいて、D=4.2cm、d=3.0c
m、t=0.6cm、t/d=0.2、P=1750k
gf/cm2 、材質:窒化鋼(SACM645)のとき
式によって求めた応力は3885kgf/cm2 であ
る。このとき実施例2のノズルは破損しなかった。EXAMPLES Examples of the present invention will be described specifically. In the nozzle of Example 1, D = 3.7 cm, d = 3.0c
m, t = 0.35 cm, t / d = 0.117, P = 17
50 kgf / cm 2 , material: nitrided steel (SACM645)
In the case of, the stress obtained by the equation is 4970 kgf / cm
2 At this time, the nozzle of Example 1 was broken. In the nozzle of Example 2, D = 4.2 cm, d = 3.0c
m, t = 0.6 cm, t / d = 0.2, P = 1750k
gf / cm 2 , Material: The stress determined by the equation when using nitrided steel (SACM645) is 3885 kgf / cm 2 . At this time, the nozzle of Example 2 was not broken.
【0010】[0010]
【発明の効果】従来、計算が困難であったノズルの応力
が容易に求められ、ノズルの設計が個人差なく迅速に実
行出来ると共に、破損しない範囲で最少寸法のノズルを
得ることが可能となる。As described above, the stress of the nozzle, which was conventionally difficult to calculate, can be easily obtained, the nozzle can be designed quickly without any individual difference, and the nozzle having the minimum size can be obtained within the range that does not damage the nozzle. .
【図1】本発明に係るノズルの断面図である。FIG. 1 is a sectional view of a nozzle according to the present invention.
【図2】本発明の計算式による応力とt/dの関係を示
すグラフである。FIG. 2 is a graph showing a relationship between stress and t / d according to a calculation formula of the present invention.
1 ノズル 2 当接部 3 先端孔 4 円錐状通路 5 取付螺子 6 開口部端面 7 開口部端面角部 D 開口部端面の外径 d 開口部端面の内径 t 開口部端面の肉厚 α 円錐状通路の角度 DESCRIPTION OF SYMBOLS 1 Nozzle 2 Contact part 3 Tip hole 4 Conical passage 5 Mounting screw 6 Opening end face 7 Opening end face corner D Outside diameter of opening end face d Inner diameter of opening end face t Thickness of opening end face α Conical passage Angle of
Claims (3)
出成形機用ノズルの該円錐状通路の開口部端面角部にお
ける応力を計算する方法であって、 該開口部端面を断面とする円筒を仮想し、該円筒におけ
る円周方向応力を厚肉円筒の公式により求め、該値に構
造解析で求めた関数fを係数として乗じることにより前
記開口部端面角部の応力を求めることを特徴とする、射
出成形機用ノズルの応力計算方法。1. A method for calculating a stress at a corner of an end face of an opening of a conical passage of a nozzle for an injection molding machine having a conical molten resin passage therein, the cylinder having a cross section of the end surface of the opening. The circumferential stress in the cylinder is determined by the formula for a thick cylinder, and the stress at the opening end face corner is obtained by multiplying the value by a function f determined by structural analysis as a coefficient. To calculate the stress of a nozzle for an injection molding machine.
記関数fが、 f=1.6×t/d+0.4 但し、0.1≦t/d(開口部端面の肉厚とその内径の
比)≦0.3 の式で表されることを特徴とする請求項1における射出
成形機用ノズルの応力計算方法。2. When the angle of the conical passage is 45 °, the function f is f = 1.6 × t / d + 0.4, where 0.1 ≦ t / d (the thickness of the opening end face and its thickness). The method for calculating stress of a nozzle for an injection molding machine according to claim 1, wherein the ratio is expressed by the following equation.
出成形機用ノズルにおいて、開口部端面の肉厚とその内
径の比であるt/dが0.175以上であることを特徴
とする射出成形機用ノズル。3. A nozzle for an injection molding machine having a conical molten resin passage therein, wherein the ratio of the thickness of the end face of the opening to the inner diameter thereof, t / d, is 0.175 or more. Nozzle for injection molding machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14091697A JPH10315270A (en) | 1997-05-14 | 1997-05-14 | Stress calculating method of nozzle for injection molder, and nozzle based thereon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14091697A JPH10315270A (en) | 1997-05-14 | 1997-05-14 | Stress calculating method of nozzle for injection molder, and nozzle based thereon |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10315270A true JPH10315270A (en) | 1998-12-02 |
Family
ID=15279809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14091697A Pending JPH10315270A (en) | 1997-05-14 | 1997-05-14 | Stress calculating method of nozzle for injection molder, and nozzle based thereon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10315270A (en) |
-
1997
- 1997-05-14 JP JP14091697A patent/JPH10315270A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7426998B2 (en) | Molding die assembly for rubber members and rubber member produced thereby | |
JP2000176059A (en) | Fixing structure and fixing method of head weight of golf club | |
EP1291098A3 (en) | Process for direct cooled metal casting | |
JP2001502407A (en) | Fixing screw with tapping screw | |
JPH10315270A (en) | Stress calculating method of nozzle for injection molder, and nozzle based thereon | |
EP1268096B1 (en) | Extrusion die | |
JPH07124633A (en) | Hollow material extrusion die | |
US6971436B2 (en) | Connecting method for wax patterns of a golf club head | |
JPH0839626A (en) | Injection mold | |
JP2766577B2 (en) | Mold for molding | |
JPH06304956A (en) | Blow molding gas nozzle | |
JPH069819Y2 (en) | Insert bracket | |
JPH05269518A (en) | Production of rectangular steel tube | |
JPS6234327Y2 (en) | ||
US20040211785A1 (en) | Molded tube with a sealed end | |
JPH0719389A (en) | Flanged lining tube joint and manufacture thereof | |
JPH0717462Y2 (en) | Joint molding equipment | |
JP2907385B2 (en) | Backfill method of frame adjustment hole in PC formwork | |
JPH0114411Y2 (en) | ||
JPS60164093A (en) | Joint and manufacture thereof | |
JP2001099127A (en) | Female screw structure and mounting hole structure for photoelectric switch | |
JPH05288176A (en) | Screw rotor for screw type pumping device | |
KR200224331Y1 (en) | Insert injection molding panel of vacuum pump | |
JPH07108576A (en) | Screw head for injection molding | |
JP2000097356A (en) | Reed valve and its manufacture |