JPH10314787A - Method for treatment of waste water containing ethanolamine - Google Patents
Method for treatment of waste water containing ethanolamineInfo
- Publication number
- JPH10314787A JPH10314787A JP12694397A JP12694397A JPH10314787A JP H10314787 A JPH10314787 A JP H10314787A JP 12694397 A JP12694397 A JP 12694397A JP 12694397 A JP12694397 A JP 12694397A JP H10314787 A JPH10314787 A JP H10314787A
- Authority
- JP
- Japan
- Prior art keywords
- ethanolamine
- tank
- hydrazine
- wastewater
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 title claims abstract description 160
- 239000002351 wastewater Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000011282 treatment Methods 0.000 title claims abstract description 35
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims abstract description 118
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 28
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 23
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims abstract description 13
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 12
- 238000005273 aeration Methods 0.000 claims abstract description 10
- 229940005654 nitrite ion Drugs 0.000 claims abstract description 6
- -1 nitrite ions Chemical class 0.000 claims description 40
- 244000005700 microbiome Species 0.000 claims description 35
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 12
- 239000005749 Copper compound Substances 0.000 claims description 11
- 150000001880 copper compounds Chemical class 0.000 claims description 11
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 9
- 230000000813 microbial effect Effects 0.000 claims description 9
- 238000004065 wastewater treatment Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 49
- 229910001868 water Inorganic materials 0.000 abstract description 49
- 241000894006 Bacteria Species 0.000 abstract description 32
- 238000002156 mixing Methods 0.000 abstract description 29
- 238000006243 chemical reaction Methods 0.000 abstract description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 22
- 229910001873 dinitrogen Inorganic materials 0.000 abstract description 11
- 239000011259 mixed solution Substances 0.000 abstract description 10
- 239000000243 solution Substances 0.000 abstract description 4
- 238000001556 precipitation Methods 0.000 abstract description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract 1
- 239000000159 acid neutralizing agent Substances 0.000 abstract 1
- 230000035764 nutrition Effects 0.000 abstract 1
- 235000016709 nutrition Nutrition 0.000 abstract 1
- 241000894007 species Species 0.000 abstract 1
- 238000006065 biodegradation reaction Methods 0.000 description 38
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 22
- 230000003472 neutralizing effect Effects 0.000 description 20
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 239000010802 sludge Substances 0.000 description 15
- 239000007800 oxidant agent Substances 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 14
- 238000007254 oxidation reaction Methods 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 235000015097 nutrients Nutrition 0.000 description 12
- 238000004062 sedimentation Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 230000001546 nitrifying effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 241000589774 Pseudomonas sp. Species 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 229910000365 copper sulfate Inorganic materials 0.000 description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 229910019093 NaOCl Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 1
- TYNVOQYGXDUHRX-UHFFFAOYSA-N 1-nitropyrazole Chemical compound [O-][N+](=O)N1C=CC=N1 TYNVOQYGXDUHRX-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000605122 Nitrosomonas Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000168053 Pseudomonas denitrificans (nomen rejiciendum) Species 0.000 description 1
- AZFNGPAYDKGCRB-XCPIVNJJSA-M [(1s,2s)-2-amino-1,2-diphenylethyl]-(4-methylphenyl)sulfonylazanide;chlororuthenium(1+);1-methyl-4-propan-2-ylbenzene Chemical compound [Ru+]Cl.CC(C)C1=CC=C(C)C=C1.C1=CC(C)=CC=C1S(=O)(=O)[N-][C@@H](C=1C=CC=CC=1)[C@@H](N)C1=CC=CC=C1 AZFNGPAYDKGCRB-XCPIVNJJSA-M 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004304 potassium nitrite Substances 0.000 description 1
- 235000010289 potassium nitrite Nutrition 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Removal Of Specific Substances (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子力発電プラン
ト、火力発電所等で使用され、熱交換器から排出される
エタノールアミンを含有する排水の処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating wastewater containing ethanolamine, which is used in a nuclear power plant, a thermal power plant and the like and discharged from a heat exchanger.
【0002】[0002]
【従来の技術】従来、原子力プラント等で使用される熱
交換器用冷却剤には、防錆剤としてヒドラジン(N2 H
4 )とアンモニア(NH3 )が併用添加されていた。し
かし、近年防錆効果のより大きい物質としてエタノール
アミンが注目されてきており、アンモニアに代わってエ
タノールアミンを用いることが研究されている。したが
って、今後このような用途には防錆剤としてヒドラジン
とエタノールアミンを併用するケースが予想される。2. Description of the Related Art Conventionally, hydrazine (N 2 H) has been used as a rust preventive for a heat exchanger coolant used in a nuclear power plant or the like.
4 ) and ammonia (NH 3 ) were added together. However, in recent years, ethanolamine has been attracting attention as a substance having a greater rust prevention effect, and the use of ethanolamine instead of ammonia has been studied. Therefore, it is expected that hydrazine and ethanolamine will be used in combination as rust inhibitors in such applications in the future.
【0003】エタノールアミンを含む防錆剤を、熱交換
器を通過する冷却剤中に添加した場合には、定常的また
は非定常的に熱交換器から排出されるブロー水中にエタ
ノールアミンを含有することになる。しかし、エタノー
ルアミンは環境上の規制物質であるCOD(化学的酸素
要求量)濃度を高めることになるため、排出前に何らか
の方法で処理しておく必要がある。When a rust preventive containing ethanolamine is added to a coolant passing through a heat exchanger, ethanolamine is contained in blow water discharged from the heat exchanger constantly or unsteadily. Will be. However, ethanolamine increases the concentration of COD (Chemical Oxygen Demand), which is an environmentally regulated substance, and therefore needs to be treated in some way before emission.
【0004】エタノールアミンの処理方法としては、湿
式触媒酸化法や液中燃焼法等が提案されているが、現時
点では未だ実用化されていない。また微生物による処理
方法についても報告されていない。そこで、これを克服
するため、本出願人(三菱重工業)は、先に排水中のエ
タノールアミンを分解する微生物としてシュードモナス
sp.にその能力を有することを見出し、シュードモナ
スsp.を好気的に作用させることによって、エタノー
ルアミンを分解する排水の処理方法を既に提案した(特
願平8−214445号、図5参照)。また、エタノー
ルアミンとヒドラジンが併用された場合、ヒドラジンが
還元剤であるため、その濃度が高くなると微生物活性を
阻害し、このため微生物によって排水を処理する場合に
は、微生物によるエタノールアミンの分解工程の前に、
ヒドラジン濃度を所定値以下にしておく必要がある。こ
れらの理由から前処理によってヒドラジンをあらかじめ
除去する排水の処理方法についても提案した(前記出願
に併記)。As a method for treating ethanolamine, a wet catalytic oxidation method, a submerged combustion method, and the like have been proposed, but have not yet been put to practical use at present. Also, there is no report on a treatment method using microorganisms. Then, in order to overcome this, the present applicant (Mitsubishi Heavy Industries) has previously reported Pseudomonas sp. As a microorganism that decomposes ethanolamine in wastewater. Found that it has the ability, and it was found that Pseudomonas sp. Has already been proposed (see Japanese Patent Application No. 8-214445, FIG. 5). In addition, when ethanolamine and hydrazine are used in combination, hydrazine is a reducing agent, and when the concentration thereof is high, the activity of microorganisms is inhibited. In front of,
It is necessary to keep the hydrazine concentration below a predetermined value. For these reasons, a method for treating wastewater in which hydrazine is removed in advance by pretreatment has also been proposed (also described in the aforementioned application).
【0005】この処理方法を図5に基づき説明する。な
お図5は前記出願明細書に記載されたものを模式的に示
したもので、各々の符号および名称はそこに記載された
ものと同一ではない。[0005] This processing method will be described with reference to FIG. FIG. 5 schematically shows what is described in the specification of the application, and the reference numerals and names are not the same as those described therein.
【0006】ヒドラジンが共存するエタノールアミン含
有排水aは中和槽11中に送られ、銅化合物j、例えば
硫酸銅をその濃度が0.1mg/リットル程度となるよう添
加し、水酸化ナトリウム等の中和剤bによってpH8〜
9に調整した後、さらに酸化剤k、例えば過酸化水素
を、過酸化水素:ヒドラジン(モル比)=2.4となる
よう添加することによって排水中のヒドラジンが窒素ガ
ス(N2 )と水(H2 O)に分解される。The ethanolamine-containing wastewater a in which hydrazine coexists is sent into the neutralization tank 11, and a copper compound j, for example, copper sulfate is added so that its concentration becomes about 0.1 mg / liter, and sodium hydroxide or the like is added. PH 8 or more depending on the neutralizing agent b
After adjusting to 9, the hydrazine in the wastewater is further reduced to nitrogen gas (N 2 ) and water by adding an oxidizing agent k, for example, hydrogen peroxide so that hydrogen peroxide: hydrazine (molar ratio) = 2.4. (H 2 O).
【0007】ヒドラジンが除去された排水は混合層12
に導かれ、栄養源c、例えばリン酸を排水中のBOD:
リン酸(重量比)=100:2となるよう添加して、水
酸化ナトリウム等の中和剤bによりpH7前後に調整し
た後、微生物であるシュードモナスsp.が生息するば
っ気槽13に流入する。なお、中和剤b、栄養源cの添
加は、混合槽12を設けず、中和槽11よりばっ気槽1
3に到る途中の配管内の排水中に添加する場合がある。[0007] The wastewater from which hydrazine has been removed is mixed with the mixed layer 12.
The BOD in the wastewater is guided by a nutrient c, eg phosphoric acid:
Phosphoric acid (weight ratio) = 100: 2 was added and the pH was adjusted to about 7 with a neutralizing agent b such as sodium hydroxide, and then the microorganism Pseudomonas sp. Flows into the aeration tank 13 where the inhabitants live. In addition, the neutralizing agent b and the nutrient source c are not provided in the mixing tank 12 but in the aeration tank 1
In some cases, it is added to the wastewater in the pipe on the way to 3.
【0008】ばっ気槽13に流入した混合液dは、必要
により適宜水で希釈し、空気mでばっ気することによ
り、該混合液d中のエタノールアミンが炭酸ガス(CO
2 )、水(H2 O)、アンモニア(NH3 )に分解さ
れ、さらにこのアンモニアが硝化菌によって最終的に硝
酸イオン(NO3 - )にまで分解される。そして、これ
らの分解処理を終えた生物処理水iは沈殿槽14に送ら
れ、余剰汚泥gを除去した後、処理水lとして系外へ排
出される。The mixed solution d flowing into the aeration tank 13 is appropriately diluted with water as required, and is aerated with air m, whereby ethanolamine in the mixed solution d is converted into carbon dioxide (CO 2).
2 ), water (H 2 O) and ammonia (NH 3 ), and this ammonia is finally decomposed by nitrifying bacteria to nitrate ions (NO 3 − ). Then, the biologically treated water i after these decomposition treatments is sent to the sedimentation tank 14, where excess sludge g is removed, and then discharged out of the system as treated water l.
【0009】[0009]
【発明が解決しようとする課題】しかし、この処理方法
によれば前段の除去工程でヒドラジンが除去できるが、
ここで好気性雰囲気のもとにエタノールアミンとヒドラ
ジンの一部が反応し、生分解することのできない、1H
−イミダゾール、ピペラジン、ジメチルピペラジン、ニ
トロ−1Hピラゾールおよびその他未だ確認されていな
いものを含めた難分解物質が副生成する。これらの物質
はいずれもCODとして出現するもので、その結果を表
1に示す。However, according to this processing method, hydrazine can be removed in the preceding removal step.
Here, ethanolamine and a part of hydrazine react under an aerobic atmosphere and cannot be biodegraded.
-By-products of persistent substances, including imidazole, piperazine, dimethylpiperazine, nitro-1H pyrazole and other unidentified substances. All of these substances appear as COD, and the results are shown in Table 1.
【0010】[0010]
【表1】 (注)ETA=エタノールアミン CODMn:COD測定に用いる酸化剤として過マンガン
酸カリウムを使用[Table 1] (Note) ETA = ethanolamine COD Mn : Potassium permanganate is used as an oxidizing agent for COD measurement
【0011】表1は、微生物としてシュードモナスs
p.を用いてエタノールアミンを分解処理した際の実験
結果で、実験No.1は排水中にヒドラジンが存在する
場合、実験No.2は排水中にヒドラジンが存在しない
場合を示す。表1に示すように、後段の生物処理工程で
はエタノールアミンが分解するものの、この生物処理水
中にCODが残存し、見かけ上の処理性能を悪化させる
という弊害のあることが判明した。Table 1 shows that Pseudomonas s.
p. Is the experimental result when ethanolamine was decomposed by using No. Experiment No. 1 was conducted when hydrazine was present in the wastewater. 2 shows the case where hydrazine does not exist in the waste water. As shown in Table 1, although ethanolamine is decomposed in the subsequent biological treatment step, it has been found that COD remains in the biologically treated water, which has a detrimental effect on apparent treatment performance.
【0012】本発明は、こうした従来技術に有する問題
点を解消すべくなされたもので、簡素で且つ効率的な排
水の処理プロセスを提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and provides a simple and efficient wastewater treatment process.
【0013】[0013]
【課題を解決するための手段】嫌気性微生物のうち、通
性嫌気性細菌といわれているものには亜硝酸イオンまた
は硝酸イオン共存下で有機物分解能力を有する脱窒菌
(脱窒素菌)があり、これらの微生物は一般的に馴養と
いう手段によって阻害物質に対する耐性を獲得し、耐性
濃度が高くなる性質がある。本発明者等は、こうした性
質に着目し研究した結果、脱窒菌もエタノールアミンを
分解する能力を有するとともに、この脱窒菌も馴養する
ことによってヒドラジンに対する十分な耐性を獲得でき
ることを見出すに到った。[Means for Solving the Problems] Among anaerobic microorganisms, there are denitrifying bacteria (denitrifying bacteria) which have the ability to decompose organic substances in the presence of nitrite or nitrate ions, among those called facultative anaerobic bacteria. In general, these microorganisms have the property of acquiring resistance to an inhibitor by acclimation and increasing the resistance concentration. The inventors of the present invention have focused on such properties, and as a result, have found that while denitrifying bacteria also have the ability to degrade ethanolamine, sufficient resistance to hydrazine can be obtained by acclimating this denitrifying bacterium. .
【0014】すなわち本発明はこれらの知見に基づき完
成したエタノールアミンを含有する排水の処理方法であ
り、その特徴は以下に挙げられる。これらの特徴を単独
でまたは適当に組み合わせることによって本発明のエタ
ノールアミンを含有する排水の処理方法を提供する。 (1)エタノールアミンを含有する排水を、亜硝酸イオ
ンおよび/または硝酸イオン共存下嫌気性条件下で微生
物処理してエタノールアミンを分解除去する工程を含
む。 (2)エタノールアミンを含有する排水を、亜硝酸イオ
ンおよび/または硝酸イオン共存下嫌気性条件下で微生
物処理した後、さらに好気性条件下で微生物処理する工
程を含む。 (3)共存する亜硝酸イオンおよび/または硝酸イオン
の一部または全部が、好気性条件下で微生物処理するこ
とによって生じるものである。 (4)エタノールアミンを含有する排水が、ヒドラジン
を含有するものである。 (5)さらに生物処理水中のヒドラジンを除去する工程
を含む。 (6)嫌気性条件下での微生物処理に用いる微生物が、
ヒドラジン耐性の嫌気性微生物である。 (7)嫌気性条件下での微生物処理するにあたり、その
前段工程で該排水に酸素を含む気体と接触させることな
く薬品を混合処理する。 (8)ヒドラジンを除去する工程が、銅化合物を添加し
てばっ気処理するものである。 (9)ヒドラジンを除去する工程が、過酸化水素又は次
亜塩素酸ソーダによる分解処理によるものである。That is, the present invention is a method for treating wastewater containing ethanolamine which has been completed based on these findings, and the features thereof are as follows. The present invention provides a method for treating wastewater containing ethanolamine according to the present invention by combining these features alone or in a suitable combination. (1) A step of subjecting wastewater containing ethanolamine to microbial treatment under anaerobic conditions in the presence of nitrite ions and / or nitrate ions to decompose and remove ethanolamine. (2) a step of treating the wastewater containing ethanolamine with microorganisms under anaerobic conditions in the presence of nitrite ions and / or nitrate ions, and further treating with microorganisms under aerobic conditions. (3) Some or all of the coexisting nitrite ions and / or nitrate ions are generated by microbial treatment under aerobic conditions. (4) The wastewater containing ethanolamine contains hydrazine. (5) The method further includes a step of removing hydrazine in the biologically treated water. (6) Microorganisms used for microbial treatment under anaerobic conditions
It is a hydrazine-resistant anaerobic microorganism. (7) In treating microorganisms under anaerobic conditions, the wastewater is mixed with a chemical without contacting the wastewater with a gas containing oxygen in the preceding step. (8) In the step of removing hydrazine, a copper compound is added and aeration treatment is performed. (9) The step of removing hydrazine is performed by a decomposition treatment using hydrogen peroxide or sodium hypochlorite.
【0015】[0015]
【発明の実施の形態】本発明の対象となる排水は、例え
ば、原子力発電プラント、火力発電所等で使用され、熱
交換器から排出されるエタノールアミンを含有する排水
である。排水は、ヒドラジンを含んでも含まなくてもよ
い。DETAILED DESCRIPTION OF THE INVENTION The wastewater to be used in the present invention is, for example, wastewater containing ethanolamine discharged from a heat exchanger, which is used in nuclear power plants, thermal power plants and the like. The wastewater may or may not contain hydrazine.
【0016】エタノールアミンおよびヒドラジンを含有
する排水は、貯留槽を経て混合槽に流入する。ここでC
ODの原因物質生成を抑制するため空気等の酸素を含む
気体と接触しないようにしてpHを6〜8となるよう中
和剤と、微生物生育用の栄養源を添加したのち、生物分
解槽へ導く。ここで用いる中和剤としては、水酸化ナト
リウム、水酸化カリウム、水酸化カルシウム等のアルカ
リ剤が挙げられる。このうち、経済性、発生汚泥量等を
考慮すれば、水酸化ナトリウムが最も有利である。また
栄養源cとしては、リン酸又はリン酸塩が挙げられ、リ
ン酸塩としては、具体的には、リン酸二水素ナトリウ
ム、リン酸二水素カリウム、リン酸水素二ナトリウム、
リン酸水素二カリウム等が挙げられる。混合槽では、排
水と空気をできるだけ接触させないように薬品を混合処
理するするため、混合槽における混合操作は、空気等に
よる流体攪拌ではなく機械攪拌することが好ましい。例
えば、空気によって攪拌した場合、空気中の酸素と排水
とが接触することによってエタノールアミンとヒドラジ
ンとが反応し、上述のように生物難分解物質が発生し、
CODとして出現するため、見かけ上の生物処理性能を
悪化させる結果となる。また、排水に空気中の酸素が溶
解すると、後続の生物分解槽で嫌気性条件が保たれず、
生物脱窒反応が阻害される。なお、ここで、混合する薬
品とは、中和剤、栄養源をいう。The wastewater containing ethanolamine and hydrazine flows into the mixing tank via the storage tank. Where C
After adding a neutralizing agent and a nutrient source for growing microorganisms so that the pH does not come into contact with oxygen-containing gas such as air in order to suppress the formation of the causative substance of OD so that the pH becomes 6 to 8, Lead. Examples of the neutralizing agent used here include alkali agents such as sodium hydroxide, potassium hydroxide, and calcium hydroxide. Of these, sodium hydroxide is most advantageous in consideration of economy, generated sludge amount, and the like. Examples of the nutrient c include phosphoric acid or phosphate, and specific examples of the phosphate include sodium dihydrogen phosphate, potassium dihydrogen phosphate, disodium hydrogen phosphate,
And dipotassium hydrogen phosphate. In the mixing tank, in order to mix the chemicals so that the wastewater and the air are not brought into contact with each other as much as possible, it is preferable that the mixing operation in the mixing tank be mechanical stirring rather than fluid stirring using air or the like. For example, when stirring with air, ethanolamine and hydrazine react by contacting oxygen and drainage in the air, and a biodegradable substance is generated as described above,
Appearing as COD, results in poor apparent biological treatment performance. In addition, when oxygen in the air dissolves in the wastewater, anaerobic conditions cannot be maintained in the subsequent biodegradation tank,
Biological denitrification is inhibited. Here, the chemicals to be mixed refer to a neutralizing agent and a nutrient source.
【0017】生物分解槽ではpHを8〜9.5となるよ
う中和剤を添加し、亜硝酸イオンまたは硝酸イオン共存
下、嫌気性条件のもとに微生物の作用によってエタノー
ルアミンが次式で示すように窒素ガス、水、炭酸ガスお
よびアンモニウムイオン(アンモニア)に分解する。 NH2 CH2 CH2 OH + 2NO3 - → N2 + 2OH- + H2 O + 2CO2 + NH3 3NH2 CH2 CH2 OH + 10NO2 - → 5N2 + 10OH- + H2 O + 6CO2 + 3NH3 In the biodegradation tank, a neutralizing agent is added to adjust the pH to 8 to 9.5, and ethanolamine is converted into the following formula by the action of microorganisms under anaerobic conditions in the presence of nitrite ions or nitrate ions. As shown, it decomposes into nitrogen gas, water, carbon dioxide gas and ammonium ions (ammonia). NH 2 CH 2 CH 2 OH + 2NO 3 − → N 2 + 2OH − + H 2 O + 2CO 2 + NH 3 3NH 2 CH 2 CH 2 OH + 10NO 2 − → 5N 2 + 10OH − + H 2 O + 6CO 2 + 3NH 3
【0018】ここで用いる中和剤は、混合槽で用いる記
述の中和剤と同様なものを用いることができる。亜硝酸
イオンまたは硝酸イオンの供給源としては、亜硝酸塩ま
たは硝酸塩が用いられるが、具体的には、硝酸塩として
硝酸ナトリウム、硝酸カリウム、亜硝酸塩として亜硝酸
ナトリウム、亜硝酸カリウムが挙げられる。後述する生
物酸化槽を用いる場合には、生物酸化槽で生成する亜硝
酸イオンまたは硝酸イオンを返送して用いる。ここで、
亜硝酸イオンまたは硝酸イオン共存下、嫌気性条件下で
用いる微生物としては、Pseudomonas(シュードモナ
ス)denitrificans 等の脱膣菌が挙げられる。排水中の
ヒドラジン濃度が高い場合、上述のようにヒドラジンは
脱膣菌の分解能力を阻害するため、馴養によってヒドラ
ジンに対する耐性を獲得した脱膣菌を用いることが好ま
しい。The neutralizing agent used here may be the same as the neutralizing agent described in the mixing tank. As a source of nitrite ion or nitrate ion, nitrite or nitrate is used. Specific examples include sodium nitrate and potassium nitrate as nitrate, and sodium nitrite and potassium nitrite as nitrite. When a biological oxidation tank described later is used, nitrite ions or nitrate ions generated in the biological oxidation tank are returned and used. here,
Examples of microorganisms used under anaerobic conditions in the presence of nitrite ions or nitrate ions include devaginal bacteria such as Pseudomonas denitrificans. When the concentration of hydrazine in the wastewater is high, hydrazine inhibits the ability to degrade vaginalis as described above. Therefore, it is preferable to use vaginalis that has acquired resistance to hydrazine by acclimation.
【0019】また生物分解槽の後段に生物酸化槽を設け
た場合には、この生物酸化槽にpHを7〜8.5となる
よう中和剤を添加するとともに空気を供給することによ
って次式に示すように反応する。 NH2 CH2 CH2 OH + 5/2O2 → 2CO2 + 2H2 O+ NH3 N2 H4 + O2 → N2 + 2H2 O (NH3 + H2 O→ NH4 + + OH- ) NH4 + + 3/2O2 → NO2 - + 2H+ + H2 O NO2 - +1/2O2 → NO3 - ここで用いる中和剤は、混合槽で用いる既述の中和剤と
同様なものを用いることができる。生物分解槽で生成し
たアンモニアの一部が微生物の作用によって資化される
とともに、余剰となったアンモニウムイオンは硝化反応
によって硝酸イオンにまで酸化される。この硝酸イオン
を生物分解槽に返送することによって前記エタノールア
ミン分解用に利用することができる。なお、「資化」と
は、微生物の体内に取り込んで体の一部とすることであ
る。ここで用いる微生物としては、ニトロソモナス(Ni
trosomonas)やニトロバクター(Nitrobactor )等の亜
硝酸菌や硝酸菌、またシュードモナス(Pseudomonas
s.p. )等のエタノールアミン分解菌である。生物酸化
槽としては、浮遊生物方式と付着生物方式のいずれも用
いることがきる。When a biological oxidation tank is provided after the biological decomposition tank, a neutralizing agent is added to the biological oxidation tank so that the pH becomes 7 to 8.5, and air is supplied to the biological oxidation tank. React as shown. NH 2 CH 2 CH 2 OH + 5 / 2O 2 → 2CO 2 + 2H 2 O + NH 3 N 2 H 4 + O 2 → N 2 + 2H 2 O (NH 3 + H 2 O → NH 4 + + OH -) NH 4 + + 3 / 2O 2 → NO 2 - + 2H + + H 2 O NO 2 - + 1 / 2O 2 → NO 3 - neutralizing agent used here, as with previously described neutralizing agents for use in the mixing vessel Can be used. A part of the ammonia generated in the biodegradation tank is assimilated by the action of microorganisms, and the surplus ammonium ions are oxidized to nitrate ions by a nitrification reaction. By returning this nitrate ion to the biodegradation tank, it can be used for the ethanolamine decomposition. In addition, assimilation means taking in a microorganism and making it into a part of the body. The microorganism used here is Nitrosomonas (Ni
nitrites and nitrites such as trosomonas and Nitrobactor, and Pseudomonas
sp) and other ethanolamine-degrading bacteria. As the biological oxidation tank, any of a floating organism system and an attached organism system can be used.
【0020】生物分解槽で反応後の生物処理液は、必要
により沈殿分離して汚泥分を取り除いたのち、反応槽に
導いて空気でばっ気し、もしくは必要により酸化剤およ
び触媒として銅化合物を添加することによって残留する
ヒドラジンを分解する。触媒として用いる銅化合物とし
ては、硫酸銅、塩化銅等が挙げられる。酸化剤として
は、過酸化水素、次亜塩素酸ナトリウムが挙げられる。
酸化剤としては、過酸化水素を添加した場合は、次式の
ように反応して窒素ガスと水に分解する。 N2 H4 + 2H2 O2 → N2 + 4H2 O その後、反応後の処理水(最終処理水)は系外に排出す
る。The biological treatment liquid after the reaction in the biodegradation tank is settled and separated as necessary to remove sludge, and then guided to the reaction tank and aerated with air, or if necessary, an oxidizing agent and a copper compound as a catalyst are added. To decompose the remaining hydrazine. Examples of the copper compound used as the catalyst include copper sulfate and copper chloride. Examples of the oxidizing agent include hydrogen peroxide and sodium hypochlorite.
When hydrogen peroxide is added as an oxidizing agent, it reacts as shown in the following formula to decompose into nitrogen gas and water. N 2 H 4 + 2H 2 O 2 → N 2 + 4H 2 O Thereafter, the treated water after the reaction (final treated water) is discharged out of the system.
【0021】以上、貯留槽、混合槽、生物分解槽と分け
て記載したが、混合槽と生物分解槽を単一の槽で行う態
様も可能である。また、混合槽を設けず、貯留槽から生
物分解槽へ到る途中の配管内の排水中に、中和剤および
栄養源を添加する態様も可能である。このほか、各槽ご
とに別個に処理する態様ではなく、いくつかの槽に分け
て行う処理を一つの槽で行ったり、すべての処理を一つ
の槽で行うこともできる。すなわち、本発明は上述した
ものに限られず、さまざまな態様を取り得る。As described above, the storage tank, the mixing tank, and the biodegradation tank are separately described. However, an embodiment in which the mixing tank and the biodegradation tank are performed in a single tank is also possible. Further, a mode in which a neutralizing agent and a nutrient source are added to the drainage in the pipe on the way from the storage tank to the biodegradation tank without providing the mixing tank is also possible. In addition, instead of performing the processing separately for each tank, processing performed in several tanks may be performed in one tank, or all processing may be performed in one tank. That is, the present invention is not limited to the above, and can take various aspects.
【0022】[0022]
【実施例】本発明の実施例1および2を、以下図面に従
って説明する。 実施例1 図1は、PWR原子力発電所の二次系のブロー水を対象
とした本発明の第1実施例における処理方法の一例を示
す工程図である。PWRプラントの二次系では、熱交換
器内に不純物が流入して蓄積し、熱交換性能が低下する
ことを防止するため、定期的にイオン交換樹脂によって
冷却剤を浄化した。二次系の冷却剤ブロー水をイオン交
換樹脂によってある期間浄化すると、エタノールアミン
を含む不純物が吸着され、やがてイオン交換性能が低下
する。このイオン交換樹脂にはカチオン系とアニオン系
とがあり、それぞれ水酸化ナトリウム(NaOH)と塩
酸(HCl)によって樹脂を再生、賦活する。このとき
の再生排水としては、NaOHベースとHClベースの
エタノールアミン含有排水が発生した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 and 2 of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 is a process chart showing an example of a treatment method in a first embodiment of the present invention for blow water of a secondary system of a PWR nuclear power plant. In the secondary system of the PWR plant, in order to prevent impurities from flowing into and accumulating in the heat exchanger and reduce the heat exchange performance, the coolant was periodically purified with an ion exchange resin. If the secondary-system coolant blow water is purified by an ion exchange resin for a certain period, impurities including ethanolamine are adsorbed, and the ion exchange performance eventually decreases. The ion exchange resin includes a cation type and an anion type, and the resin is regenerated and activated by sodium hydroxide (NaOH) and hydrochloric acid (HCl), respectively. At this time, NaOH-based and HCl-based ethanolamine-containing wastewater was generated as the recycled wastewater.
【0023】これらの排水中にはいずれもヒドラジンが
含まれた状態で排水aとして貯留タンク1に送られ、一
旦貯留したのち混合槽2に導入した。混合槽2では、排
水のpHを6〜8好ましくは7±0.5となるよう中和
剤bを添加して調整するとともに、栄養源cを添加して
混合した。Each of these wastewaters was sent to the storage tank 1 as wastewater a with hydrazine contained therein, and once stored, introduced into the mixing tank 2. In the mixing tank 2, the pH of the wastewater was adjusted to 6 to 8, preferably 7 ± 0.5 by adding a neutralizing agent b, and a nutrient source c was added and mixed.
【0024】貯留タンク1および混合槽2では、排水と
空気をできるだけ接触させないようにし、このため混合
槽2における混合操作は、空気等による流体攪拌ではな
く機械攪拌することが好ましい。例えば、空気によって
攪拌した場合、空気中の酸素と排水とが接触することに
よってエタノールアミンとヒドラジンとが反応し、従来
技術の項で述べたと同様の生物難分解物質が発生し、C
ODとして出現するため、見かけ上の生物処理性能を悪
化させる結果となった。また、排水に空気中の酸素が溶
解すると、後続の生物分解槽3で嫌気性条件が保たれ
ず、生物脱窒反応が阻害された。In the storage tank 1 and the mixing tank 2, the waste water and the air are prevented from contacting with each other as much as possible. For this reason, it is preferable that the mixing operation in the mixing tank 2 is mechanical stirring, not fluid stirring with air or the like. For example, when agitating with air, the oxygen in the air comes into contact with the wastewater, and ethanolamine and hydrazine react with each other to generate the same hardly biodegradable substances as described in the section of the prior art.
Since it appears as OD, the apparent biological treatment performance was deteriorated. Further, when oxygen in the air was dissolved in the wastewater, the anaerobic condition was not maintained in the subsequent biodegradation tank 3, and the biological denitrification reaction was inhibited.
【0025】ここに混合槽2において添加する中和剤b
としては水酸化ナトリウム等のアルカリ剤、また栄養源
cとしてはリン酸又はリン酸塩等が適しその添加量はリ
ンとして排水中のBOD100重量部に対して2重量部
程度であった。Here, the neutralizing agent b added in the mixing tank 2
An alkaline agent such as sodium hydroxide or the like, and a phosphoric acid or a phosphate as a nutrient source c were suitable, and the amount of phosphorus added was about 2 parts by weight based on 100 parts by weight of BOD in the wastewater.
【0026】次いで混合槽2から出た混合液dを生物分
解槽3に導いた。生物分解槽3内では、該混合液dが前
記のヒドラジン耐性エタノールアミン分解脱窒菌を優占
種とする微生物液中に混入し、ここに亜硝酸塩または硝
酸塩eを添加した。このときのpHは8.0〜9.5好
ましくはその範囲内の9.0程度が適当で、このpH値
を保持するため前記と同様に中和剤bで調整した。生物
分解槽3内に添加する前記亜硝酸塩または硝酸塩eのう
ち、亜硝酸塩の場合はエタノールアミン/NO 2 - −N
が0.5〜2.0(重量比)、好ましくは1.0〜1.
3程度、また硝酸塩の場合はエタノールアミン/NO3
- −N(重量比)が1.5〜2.5、好ましくは1.9
〜2.2程度が適当であった。生物分解槽3内での攪拌
は、生物脱窒反応によって発生する窒素ガスfによって
ガス攪拌されるが、必要に応じて機械攪拌するようにし
てもよい。なお、NO2 −NおよびNO3 −Nは、亜硝
酸性窒素、硝酸性窒素を表し、それぞれ窒素を表すが、
母体の化合物が何かを示している。例えば、NO3 −N
=1000mgは、N(窒素)として1000mg/リッ
トル存在することを意味する。Next, the mixed solution d discharged from the mixing tank 2 is
The solution was led to the tank 3. In the biodegradation tank 3, the mixture d is
Dominant hydrazine-resistant ethanolamine-degrading denitrifying bacteria
Mixed into the seed microbial fluid, where nitrite or nitrate
The acid salt e was added. The pH at this time is preferably 8.0 to 9.5.
More preferably, about 9.0 within the range is appropriate.
Was adjusted with the neutralizing agent b in the same manner as described above. Creature
The nitrite or nitrate e added to the decomposition tank 3
In the case of nitrite, ethanolamine / NO Two --N
Is 0.5 to 2.0 (weight ratio), preferably 1.0 to 1.
About 3 and ethanolamine / NO for nitrateThree
--N (weight ratio) is 1.5 to 2.5, preferably 1.9.
About 2.2 was suitable. Agitation in biodegradation tank 3
Is caused by the nitrogen gas f generated by the biological denitrification reaction.
Gas is agitated, but mechanical agitation should be used if necessary.
You may. Note that NOTwo-N and NOThree-N is nitrite
Represents acidic nitrogen and nitrate nitrogen, each representing nitrogen,
Indicates what the parent compound is. For example, NOThree-N
= 1000 mg is 1000 mg / liter as N (nitrogen).
Torr means that there is.
【0027】ここでエタノールアミンはこの微生物の作
用によって窒素ガス(N2 )、水(H2 O)、炭酸ガス
(CO2 )およびアンモニウムイオン(NH4 + )に分
解され、さらに生成したアンモニウムイオンの一部が脱
窒菌によって資化された。Here, ethanolamine is decomposed into nitrogen gas (N 2 ), water (H 2 O), carbon dioxide gas (CO 2 ) and ammonium ions (NH 4 + ) by the action of the microorganism, and further produces ammonium ions. Was partially assimilated by denitrifying bacteria.
【0028】なお、この反応に際して、当初はヒドラジ
ンが80mg/リットル程度存在することによって、エタノ
ールアミンの分解が阻害されたが、この微生物を約1ヶ
月間馴養した結果、ヒドラジンが200mg/リットル程度
存在する場合でもエタノールアミンの分解が阻害され
ず、ヒドラジン耐性を獲得できることが確認された。こ
の場合、ヒドラジンは微生物により生分解されてアンモ
ニウムイオンとなった。In this reaction, the presence of about 80 mg / liter of hydrazine initially inhibited the decomposition of ethanolamine. However, as a result of acclimating the microorganism for about one month, about 200 mg / liter of hydrazine was present. In this case, it was confirmed that the decomposition of ethanolamine was not inhibited and hydrazine resistance could be obtained. In this case, hydrazine was biodegraded by microorganisms to ammonium ions.
【0029】生物分解槽3内で反応後の生物処理液は、
次に沈殿槽4に導いて沈降させ、微生物を含むフロック
と上澄水とに分離した。沈降した微生物フロックの一部
は返送汚泥gとして生物分解槽3に返送し、生物分解槽
3内の微生物濃度をほぼ一定に維持させるとともに、残
部は余剰汚泥hとして系外に排出した。The biological treatment liquid after the reaction in the biodegradation tank 3 is:
Next, it was led to the sedimentation tank 4 for sedimentation, and separated into floc containing microorganisms and supernatant water. A part of the sedimented microbial floc was returned to the biodegradation tank 3 as returned sludge g, and the microorganism concentration in the biodegradation tank 3 was kept almost constant, and the remainder was discharged out of the system as surplus sludge h.
【0030】一方、分離後の上澄水は生物処理水iとし
て反応槽5に導き、空気mによってばっ気処理してヒド
ラジンを分解した。その際、必要により酸化剤kを添加
することによってこの反応を促進し、反応時間を短縮さ
せることができた。酸化剤kとしては、過酸化水素又は
次亜塩素酸ナトリウム等が使用することができ、ヒドラ
ジン1モル当たりの添加量は、過酸化水素の場合2.4
モル以上、次亜塩素酸ナトリウムの場合2モル以上が適
当であった。また生物処理水h中の銅イオンが0.1m
g/リットルに満たない場合には、硫酸銅等の銅化合物jを
0.1〜0.3mg/リットルとなるよう添加することによ
り、ヒドラジン酸化分解時の触媒として作用させ、さら
に反応を促進させることができた。On the other hand, the supernatant water after separation was led to the reaction tank 5 as biologically treated water i, and aerated with air m to decompose hydrazine. At this time, this reaction was promoted by adding an oxidizing agent k as needed, and the reaction time could be shortened. As the oxidizing agent k, hydrogen peroxide or sodium hypochlorite can be used, and the amount added per mol of hydrazine is 2.4 in the case of hydrogen peroxide.
More than 2 moles was appropriate in the case of sodium hypochlorite. In addition, copper ion in biological treatment water h is 0.1 m
When the amount is less than g / liter, a copper compound j such as copper sulfate is added in an amount of 0.1 to 0.3 mg / liter to act as a catalyst during oxidative decomposition of hydrazine and further promote the reaction. I was able to.
【0031】前記エタノールアミン(ETA)とヒドラ
ジンを含有する排水を本実施例の方法によって処理した
ときの実験結果を表2に示す。Table 2 shows the experimental results when the wastewater containing ethanolamine (ETA) and hydrazine was treated by the method of this embodiment.
【表2】 (注)1.ETA=エタノールアミン 2.生物処理水:24時間生物分解を行った処理水 3.酸化剤:空気に代えて過酸化水素(H2 O2 )、次
亜塩素酸ナトリウム(NaOCl)で酸化処理した場合
も、ほぼ同様の結果を得た。[Table 2] (Note) 1. ETA = ethanolamine 2. 2. Biologically treated water: treated water that has undergone biodegradation for 24 hours. Oxidizing agent: In the case of oxidizing with hydrogen peroxide (H 2 O 2 ) or sodium hypochlorite (NaOCl) instead of air, almost the same results were obtained.
【0032】実施例2 図2は、実施例1で述べたと同様、PWR原子力発電所
の二次系のブロー水を対象とする本発明の第2実施例の
処理方法を示す工程図である。図中、貯留タンク1、混
合槽2および反応槽5は図1に示したものと同じもので
あり、これらは実施例1で述べたと同一の作用を有す
る。ここに本実施例では図1に示す浮遊生物方式の生物
分解槽3および沈殿槽4に代えて付着生物方式の生物分
解槽3′を採用した。Embodiment 2 FIG. 2 is a process diagram showing a treatment method of a second embodiment of the present invention for the blow water of the secondary system of the PWR nuclear power plant, as described in the first embodiment. In the figure, a storage tank 1, a mixing tank 2 and a reaction tank 5 are the same as those shown in FIG. 1, and they have the same action as described in the first embodiment. Here, in the present embodiment, a biodegradation tank 3 'of an attached organism type is employed in place of the biodegradation tank 3 and the sedimentation tank 4 of the floating organism type shown in FIG.
【0033】実施例1の場合と同様に、エタノールアミ
ンとヒドラジンを含む排水aは一旦貯留タンク1に貯留
したのち混合槽2に導入した。混合槽2では、中和剤b
で排水aのpHを調整するとともに、栄養源cを添加し
て排水と空気中の酸素とをできるだけ接触させることな
く混合した。As in the case of Example 1, waste water a containing ethanolamine and hydrazine was once stored in the storage tank 1 and then introduced into the mixing tank 2. In the mixing tank 2, the neutralizing agent b
The pH of the waste water a was adjusted by adding the nutrient c, and the waste water and oxygen in the air were mixed as much as possible without contact.
【0034】次いで混合液dを生物分解槽3′に導い
た。この生物分解槽3′内にはプラスチックろ材または
砂等の充填材が充填されて、そこに脱窒菌が付着して生
息し、実施例1の場合と同様に亜硝酸塩または硝酸塩e
の共存下、該混合液d中に含まれるエタノールアミンが
脱窒菌の作用によって窒素ガス、水、炭酸ガスおよびア
ンモニウムイオンに分解され、さらに生成したアンモニ
ウムイオンの一部が脱窒菌によって資化された。またこ
の過程で発生するろ材から剥離した汚泥は余剰汚泥とし
て系外に排出した(図示省略)。Next, the mixture d was led to the biodegradation tank 3 '. The biodegradation tank 3 'is filled with a filler such as a plastic filter medium or sand, to which denitrifying bacteria adhere and inhabit. As in the case of the first embodiment, nitrite or nitrate e is used.
, Ethanolamine contained in the mixed solution d was decomposed into nitrogen gas, water, carbon dioxide gas and ammonium ions by the action of denitrifying bacteria, and a part of the produced ammonium ions was assimilated by the denitrifying bacteria. . The sludge separated from the filter medium generated in this process was discharged out of the system as excess sludge (not shown).
【0035】生物分解槽3′から出た生物処理水iは反
応槽5に導き、空気mによってばっ気処理するととも
に、必要により過酸化水素、次亜塩素酸ナトリウム等の
酸化剤kおよび触媒として硫酸銅等の銅化合物jを添加
することによって排水中のヒドラジンを分解した。ここ
に、銅化合物iおよび過酸化水素jの添加量や、その際
の反応機構および処理条件等は実施例1の場合と全く同
様であった。本実施例の方法によって処理したときの実
験結果を表2に示す。The biologically treated water i which has flowed out of the biodegradation tank 3 'is led to the reaction tank 5 where it is subjected to aeration treatment with air m and, if necessary, as an oxidizing agent k such as hydrogen peroxide or sodium hypochlorite and a catalyst. Hydrazine in wastewater was decomposed by adding a copper compound j such as copper sulfate. Here, the addition amounts of the copper compound i and the hydrogen peroxide j, and the reaction mechanism and processing conditions at that time were exactly the same as those in Example 1. Table 2 shows the experimental results when the treatment was performed by the method of the present embodiment.
【0036】実施例3 図3は、実施例1、2で述べたと同様、PWR原子力発
電所の二次系のブロー水を対象とする本発明の第3実施
例の処理方法を示す工程図である。図中、貯留タンク
1、混合槽2、生物分解槽3および反応槽5は図1に示
したものと同じものであり、これらは実施例1で述べた
と同一の作用を有する。ここに本実施例では図1に示す
生物分解槽3の後段に生物酸化槽6を加えた。Third Embodiment FIG. 3 is a process chart showing a treatment method of a third embodiment of the present invention for blow water of a secondary system of a PWR nuclear power plant, as described in the first and second embodiments. is there. In the figure, a storage tank 1, a mixing tank 2, a biodegradation tank 3, and a reaction tank 5 are the same as those shown in FIG. 1, and have the same functions as those described in the first embodiment. Here, in the present embodiment, a biological oxidation tank 6 is added to the subsequent stage of the biodegradation tank 3 shown in FIG.
【0037】実施例1、2の場合と同様に、エタノール
アミンとヒドラジンを含む排水aは一旦貯留タンク1に
貯留したのち混合槽2に導入し、中和剤bで排水aのp
Hを調整するとともに、栄養源cを添加して排水と空気
中の酸素とをできるだけ接触させることなく混合した。As in the case of Examples 1 and 2, the waste water a containing ethanolamine and hydrazine is temporarily stored in the storage tank 1, then introduced into the mixing tank 2, and the waste water a is neutralized with the neutralizing agent b.
While adjusting H, the nutrient source c was added to mix the drainage and oxygen in the air as little as possible.
【0038】次いでこの混合液dを生物分解槽3に導
き、実施例1の場合と同様に亜硝酸塩または硝酸塩eの
共存下、嫌気性条件のもとに脱窒菌によって排水中に含
まれるエタノールアミンが窒素ガス、水、炭酸ガスおよ
びアンモニウムイオンに分解し、アンモニウムイオンは
さらに脱窒菌によって資化された。Next, the mixture d was introduced into the biodegradation tank 3 and ethanolamine contained in the wastewater by denitrifying bacteria under anaerobic conditions in the presence of nitrite or nitrate e in the same manner as in Example 1. Was decomposed into nitrogen gas, water, carbon dioxide gas and ammonium ions, which were further assimilated by denitrifying bacteria.
【0039】なお、亜硝酸塩または硝酸塩eの注入量
は、後記生物酸化処理水nに含まれる亜硝酸塩と硝酸塩
の量によって適用量となるよう調整した。ここに返送量
が増加すれば、亜硝酸塩または硝酸塩eの量は少なくす
ることができるが、生物分解槽3および生物酸化槽6の
装置容量が増大することになる。The injection amount of nitrite or nitrate e was adjusted so as to be applied according to the amounts of nitrite and nitrate contained in the biologically-oxidized water n. If the return amount increases, the amount of nitrite or nitrate e can be reduced, but the capacity of the biodegradation tank 3 and the biological oxidation tank 6 increases.
【0040】こうして生物分解槽3での処理液は生物酸
化槽6に導き、好気性微生物、例えばエタノールアミン
分解菌や硝化菌が生息する微生物液中に混入したのち、
空気m′によってばっ気した。ここで生物分解槽3の処
理液中に残存するエタノールアミンおよびヒドラジン
は、前記エタノールアミン分解菌や硝化菌等好気性微生
物の作用で窒素ガス、水、炭酸ガスおよびアンモニウム
イオンに分解し、さらに残存するアンモニウムイオンの
一部は、これら微生物によって資化されるとともに、こ
れと平行して残りのアンモニウムイオンは硝化菌の硝化
反応によって、硝酸イオンにまで酸化した。その際のp
Hは7.0〜8.5、好ましくは7.5〜8.0程度が
適当で中和剤bによって調整した。In this way, the treatment liquid in the biodegradation tank 3 is led to the biooxidation tank 6 and mixed into a microorganism liquid in which aerobic microorganisms such as ethanolamine decomposing bacteria and nitrifying bacteria inhabit.
Aerated with air m '. Here, the ethanolamine and hydrazine remaining in the treatment liquid in the biodegradation tank 3 are decomposed into nitrogen gas, water, carbon dioxide gas, and ammonium ions by the action of the aerobic microorganisms such as the ethanolamine-decomposing bacteria and nitrifying bacteria, and further remain. Some of these ammonium ions were assimilated by these microorganisms, and in parallel with this, the remaining ammonium ions were oxidized to nitrate ions by the nitrification reaction of nitrifying bacteria. P at that time
H is suitably in the range of 7.0 to 8.5, preferably about 7.5 to 8.0, and was adjusted by the neutralizing agent b.
【0041】生物酸化槽6を出た生物酸化処理水nは、
その一部を前記生物分解槽3に返送して該槽内でエタノ
ールアミンを嫌気性条件のもとに脱窒菌を用いて分解除
去する際の亜硝酸イオン源もしくは硝酸イオン源として
利用し、残部を実施例1の場合と同様に沈殿槽4に導い
た。ここの生物酸化処理水nの生物分解槽3への返送量
は、前記混合液dに対して100〜200%程度が適当
であった。The biologically oxidized water n that has exited the biological oxidation tank 6 is
A part thereof is returned to the biodegradation tank 3 and is used as a nitrite ion source or a nitrate ion source when ethanolamine is decomposed and removed using denitrifying bacteria under anaerobic conditions in the tank. Was introduced into the precipitation tank 4 in the same manner as in Example 1. The amount of the bio-oxidized water n returned to the biodegradation tank 3 was appropriately about 100 to 200% based on the mixed solution d.
【0042】そして沈殿槽4に導入された生物酸化処理
水nは沈降分離して反応槽5へ導くとともに、沈殿した
微生物フロックの一部は返送汚泥gとして前記生物分解
槽3に返送し、残部は余剰汚泥hとして系外に排出し
た。The biologically oxidized water n introduced into the sedimentation tank 4 is settled and separated and led to the reaction tank 5, and a part of the precipitated microbial floc is returned to the biodegradation tank 3 as returned sludge g. Was discharged out of the system as surplus sludge h.
【0043】反応槽5では沈降分離後の生物酸化処理水
nに酸化剤kおよび銅化合物jを添加して、さらに空気
mでばっ気することにより残留するヒドラジンを分解除
去したのち、処理水lとして系外に排出した。In the reaction tank 5, an oxidizing agent k and a copper compound j are added to the biologically oxidized water n after sedimentation and separation, and the remaining hydrazine is decomposed and removed by aeration with air m. It was discharged outside the system.
【0044】本実施例の方法によって処理したときの実
験結果を表3に示す。Table 3 shows the experimental results when the treatment was performed by the method of this embodiment.
【表3】 (注)1.ETA=エタノールアミン 2.生物分解槽出口水:24時間生物分解を行った処理
水 3.酸化剤:空気に代えて過酸化水素(H2 O2 )、次
亜塩素酸ナトリウム(NaOCl)で酸化処理した場合
も、ほぼ同様の結果を得た。[Table 3] (Note) 1. ETA = ethanolamine 2. 2. Biodegradation tank outlet water: treated water subjected to biodegradation for 24 hours Oxidizing agent: In the case of oxidizing with hydrogen peroxide (H 2 O 2 ) or sodium hypochlorite (NaOCl) instead of air, almost the same results were obtained.
【0045】実施例4 図4は、実施例1〜3で述べたと同様、PWR原子力発
電所の二次系のブロー水を対象とする本発明の第4実施
例の処理方法を示す工程図である。図中、貯留タンク
1、混合槽2、生物酸化槽3′および反応槽5は図3に
示したものと同じものであり、これらは実施例3で述べ
たと同一の作用を有する。ここに本実施では浮遊生物方
式の生物分解槽3および沈殿槽4に代えて付着生物方式
の生物分解槽3′を採用した。Embodiment 4 FIG. 4 is a process diagram showing a treatment method according to a fourth embodiment of the present invention for the blow water of the secondary system of the PWR nuclear power plant as described in Embodiments 1 to 3. is there. In the figure, a storage tank 1, a mixing tank 2, a biological oxidation tank 3 'and a reaction tank 5 are the same as those shown in FIG. 3, and they have the same action as described in the third embodiment. Here, in the present embodiment, a biodegradation tank 3 'of an attached organism type is employed in place of the biodegradation tank 3 and the sedimentation tank 4 of the floating organism type.
【0046】実施例1〜3の場合と同様に、エタノール
アミンとヒドラジンを含む排水aは一旦貯留タンク1に
貯留したのち混合槽2に導入した。混合槽2では、中和
剤bで排水aのpHを調整するとともに、栄養源cを添
加して排水と空気中の酸素とをできるだけ接触させるこ
となく混合した。次いで混合液dを生物分解槽3′に導
き、実施例2と同様、充填材に付着して生息する脱窒菌
によって亜硝酸塩または硝酸塩eの共存下、排水中に含
まれるエタノールアミンが脱窒菌によって窒素ガス、
水、炭酸ガスおよびアンモニウムイオンに分解され、さ
らに生成したアンモニウムイオンの一部が脱窒菌によっ
て資化された。またこの過程で発生するろ材から剥離し
た汚泥は余剰汚泥として系外に排出した(図示省略)。
なお、実施例3と同様、亜硝酸塩または硝酸塩eの注入
量は後記酸化処理水n′の量によって適当量となるよう
に調整した。As in the case of Examples 1 to 3, the waste water a containing ethanolamine and hydrazine was once stored in the storage tank 1 and then introduced into the mixing tank 2. In the mixing tank 2, the pH of the waste water a was adjusted with the neutralizing agent b, and the nutrient source c was added to mix the waste water with oxygen in the air as little as possible. Next, the mixed solution d was led to the biodegradation tank 3 ', and as in Example 2, ethanolamine contained in the wastewater was reduced by denitrifying bacteria in the presence of nitrite or nitrate e by denitrifying bacteria attached to the filler and inhabiting. Nitrogen gas,
It was decomposed into water, carbon dioxide and ammonium ions, and some of the generated ammonium ions were assimilated by the denitrifying bacteria. The sludge separated from the filter medium generated in this process was discharged out of the system as excess sludge (not shown).
As in Example 3, the injection amount of nitrite or nitrate e was adjusted to an appropriate amount depending on the amount of the oxidized water n 'described later.
【0047】こうして生物分解槽3′での生物処理水i
を生物酸化槽6に導き、空気m′でばっ気することによ
り、エタノールアミン分解菌や硝化菌等好気性微生物の
作用で、残存するエタノールアミンおよびヒドラジンが
窒素ガス、水、炭酸ガスおよびアンモニウムイオンに分
解し、さらに残留するアンモニウムイオンの一部はこれ
ら微生物によって資化されるとともに、これと平行して
残りのアンモニウムイオンは硝化菌の硝化反応によって
硝酸イオンにまで酸化した。またこの過程で発生するろ
材から剥離した汚泥は余剰汚泥として系外に排出した
(図示省略)。Thus, the biologically treated water i in the biodegradation tank 3 '
Is introduced into the biological oxidation tank 6 and aerated with air m ′, whereby the remaining ethanolamine and hydrazine are converted into nitrogen gas, water, carbon dioxide gas and ammonium ions by the action of aerobic microorganisms such as ethanolamine-decomposing bacteria and nitrifying bacteria. The microorganisms were decomposed and part of the remaining ammonium ions were assimilated by these microorganisms, and in parallel with this, the remaining ammonium ions were oxidized to nitrate ions by the nitrification reaction of nitrifying bacteria. The sludge separated from the filter medium generated in this process was discharged out of the system as excess sludge (not shown).
【0048】生物酸化槽6を出た生物酸化処理水n′
は、その一部を前記生物分解槽3′に返送して該槽内で
エタノールアミンを嫌気性条件のもとに脱窒菌を用いて
分解除去する際の亜硝酸イオン源もしくは硝酸イオン源
として利用し、残部は実施例2の場合と同様に反応槽5
に導いて酸化剤kおよび銅化合物jを添加するとともに
空気mでばっ気して残留するヒドラジンを分解除去した
のち、処理水lとして系外へ排出した。なお、生物酸化
処理水nの生物分解槽3への返送量は、前記混合液dに
対して100〜200%程度が適当であった。また、そ
れ以外の反応機構や処理条件等は実施例3の場合と全く
同様であった。本実施例の方法によって処理したときの
実験結果を表3に示す。The biologically oxidized water n 'that has exited the biological oxidation tank 6
Is used as a nitrite ion source or a nitrate ion source when ethanolamine is decomposed and removed using a denitrifying bacterium under anaerobic conditions in the biodegradation tank 3 '. The remaining part is the same as in Example 2,
After addition of an oxidizing agent k and a copper compound j, the mixture was aerated with air m to decompose and remove the remaining hydrazine, and then discharged out of the system as treated water l. The amount of the biologically oxidized water n returned to the biodegradation tank 3 was appropriately about 100 to 200% based on the mixed solution d. The other reaction mechanisms and processing conditions were exactly the same as in Example 3. Table 3 shows the experimental results when the treatment was performed by the method of the present embodiment.
【0049】[0049]
【発明の効果】前記した構成によって本発明は次の効果
を奏する。 (1)排水中に含有するエタノールアミンを、嫌気性条
件下で脱窒菌によって処理する工程を含むため、好気性
条件下でのみ処理する場合と比べて極めて効率的にエタ
ノールアミンを分解除去することができる。 (2)排水中に含有するエタノールアミンを、前段で嫌
気性条件下で脱窒菌によって大部分を分解し、後段で好
気性条件下で残存分のみを分解させるため、従来法のよ
うな好気性処理のみの場合と比べて硝化反応がはるかに
進行しやすく、それによって生物反応槽を小型化するこ
とができ、またそれに伴ってブロワ等の周辺装置を小型
化することができ、その結果動力費等も少なくてすみ、
極めて経済的である。 (3)エタノールアミンを嫌気性条件下もしくは好気性
条件下で微生物処理することにより生成するアンモニウ
ムイオンを硝酸菌によって硝酸イオンに変換し、この硝
酸イオンをエタノールアミンの分解に利用すれば、外部
から新たに亜硝酸イオンまたは硝酸イオンを添加する必
要がない。このため薬品費用を節減できるだけでなく排
水処理にあたっての窒素負荷量をも低減化することがで
きるので、排水の窒素規制にも対応することができる。 (4)ヒドラジン耐性のエタノールアミン分解脱窒菌を
使用して処理することによって、ヒドラジンに阻害され
ることなくエタノールアミンを効率よく分解除去するこ
とができる。その際、低濃度のヒドラジン共存は、嫌気
性条件下での脱窒反応の阻害要因となる空気中からの酸
素の溶解を低減化する作用があるため、脱窒反応にとっ
てはむしろ好都合となる。 (5)微生物によって処理する前段で排水中に空気等の
酸素を含む気体を介入させないため、エタノールアミン
とヒドラジンとが共存するにもかかわらず生物難分解性
物質が生成することなく、生物処理水中のCODの低減
化にきわめて有効である。 (6)生物処理水中にヒドラジンが残留した場合でも、
銅イオン存在下で空気によるばっ気、もしくは過酸化水
素(H2 O2 )、次亜塩酸ナトリウム(NaOCl)等
の酸化剤を添加することによって容易に分解除去するこ
とができる。 (7)このような効果と相俟って、従来の処理方法に比
べ処理工程全体が簡単となり、経済的なプロセスを実現
することができる。According to the above configuration, the present invention has the following effects. (1) Since the method includes a step of treating ethanolamine contained in wastewater with denitrifying bacteria under anaerobic conditions, it is possible to decompose and remove ethanolamine more efficiently than in the case of treating only under aerobic conditions. Can be. (2) The most part of the ethanolamine contained in the wastewater is decomposed by denitrifying bacteria under anaerobic conditions in the first stage and only the remaining components are decomposed in the second stage under aerobic conditions. The nitrification reaction proceeds much more easily than in the case of treatment alone, whereby the size of the biological reaction tank can be reduced, and the peripheral devices such as the blower can be reduced accordingly, resulting in lower power costs. Etc.
Extremely economical. (3) Ammonium ions generated by microbial treatment of ethanolamine under anaerobic or aerobic conditions are converted into nitrate ions by nitric acid bacteria, and this nitrate ion is used for the decomposition of ethanolamine. There is no need to add new nitrite or nitrate ions. For this reason, not only can the chemical cost be reduced, but also the nitrogen load in the wastewater treatment can be reduced, so that it is possible to comply with the wastewater nitrogen regulation. (4) By treating with a hydrazine-resistant ethanolamine-degrading denitrifying bacterium, ethanolamine can be efficiently decomposed and removed without being inhibited by hydrazine. At that time, the coexistence of hydrazine at a low concentration has an effect of reducing the dissolution of oxygen from the air, which is a factor inhibiting the denitrification reaction under anaerobic conditions, and is therefore more convenient for the denitrification reaction. (5) Since oxygen-containing gas such as air does not intervene in the wastewater before the treatment with microorganisms, biodegradable substances are not generated despite the coexistence of ethanolamine and hydrazine. This is extremely effective in reducing the COD. (6) Even if hydrazine remains in the biological treatment water,
It can be easily decomposed and removed by aeration with air in the presence of copper ions or by adding an oxidizing agent such as hydrogen peroxide (H 2 O 2 ) or sodium hypochlorite (NaOCl). (7) In combination with such effects, the entire processing steps are simplified as compared with the conventional processing method, and an economical process can be realized.
【図1】図1は、本発明の第1実施例に係る工程説明図
である。FIG. 1 is a process explanatory view according to a first embodiment of the present invention.
【図2】図2は、本発明の第2実施例に係る工程説明図
である。FIG. 2 is a process explanatory diagram according to a second embodiment of the present invention.
【図3】図3は、本発明の第3実施例に係る工程説明図
である。FIG. 3 is a process explanatory view according to a third embodiment of the present invention.
【図4】図4は、本発明の第4実施例に係る工程説明図
である。FIG. 4 is a process explanatory view according to a fourth embodiment of the present invention.
【図5】図5は、従来技術の処理方法に係る工程説明図
である。FIG. 5 is an explanatory diagram of a process according to a conventional processing method.
1 貯留タンク 2 混合槽 3,3′ 生物分解槽 4 沈殿槽 5 反応槽 6 生物酸化槽 11 中和槽 12 混合槽 13 ばっ気槽 14 沈殿槽 a エタノールアミン含有排水 b,b′ 中和剤 c 栄養源 d 混合液 e 亜硝酸塩または硝酸塩 f 窒素(N2 )ガス g 返送汚泥 h 余剰汚泥 i 生物処理水 j 銅化合物 k 酸化剤 l 処理水(最終処理水) m,m′ 空気 n,n′ 生物酸化処理水Reference Signs List 1 storage tank 2 mixing tank 3, 3 'biodegradation tank 4 sedimentation tank 5 reaction tank 6 biological oxidation tank 11 neutralization tank 12 mixing tank 13 aeration tank 14 sedimentation tank a ethanolamine-containing wastewater b, b' neutralizer c Nutrient source d Mixed solution e Nitrite or nitrate f Nitrogen (N 2 ) gas g Return sludge h Excess sludge i Biologically treated water j Copper compound k Oxidant l Treated water (final treated water) m, m 'Air n, n' Bio-oxidized water
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神吉 秀起 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 福永 和雄 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 岩本 健 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 三木 津義 兵庫県高砂市荒井町新浜二丁目8番19号 高菱エンジニアリング株式会社内 (72)発明者 平田 俊雄 兵庫県高砂市荒井町新浜二丁目8番19号 高菱エンジニアリング株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideki Kamiyoshi 5-1-1-16 Komatsu-dori, Hyogo-ku, Kobe-shi, Hyogo Prefecture Inside Shinryo High-Tech Co., Ltd. (72) Kazuo Fukunaga Komatsu-dori, Hyogo-ku, Kobe-shi, Hyogo 5-1-1-16 Shinryo High-Tech Co., Ltd. (72) Inventor Ken Iwamoto 5-1-1-16 Komatsu-dori, Hyogo-ku, Hyogo-ku, Hyogo Prefecture Shinryo High-Tech Co., Ltd. (72) Inventor Tsuyoshi Miki Takasago, Hyogo Prefecture Takaishi Engineering Co., Ltd. (72) Takashi Engineering Co., Ltd. (72) Inventor Toshio Hirata 2-819 Niihama Araimachi, Takasago City, Hyogo Prefecture
Claims (9)
硝酸イオンおよび/または硝酸イオン共存下嫌気性条件
下で微生物処理し、上記エタノールアミンを分解除去す
るエタノールアミンを含有する排水の処理方法。1. A method for treating wastewater containing ethanolamine, wherein the wastewater containing ethanolamine is treated with microorganisms under anaerobic conditions in the presence of nitrite ions and / or nitrate ions to decompose and remove the ethanolamine.
硝酸イオンおよび/または硝酸イオン共存下嫌気性条件
下で微生物処理した後、さらに好気性条件下で微生物処
理する工程を含むエタノールアミンを含有する排水の処
理方法。2. Ethanolamine containing a step of subjecting wastewater containing ethanolamine to microbial treatment under anaerobic conditions in the presence of nitrite ions and / or nitrate ions, and then to microbial treatment under aerobic conditions. Wastewater treatment method.
オンが、上記好気性条件下で微生物処理する工程によっ
て生成したもの、またはそれを含む請求項2に記載のエ
タノールアミンを含有する排水の処理方法。3. The method for treating a wastewater containing ethanolamine according to claim 2, wherein the nitrite ion and / or nitrate ion is produced by the step of treating microorganisms under the aerobic condition or contains the same. .
項1〜3のいずれかに記載のエタノールアミン含有する
排水の処理方法。4. The method for treating wastewater containing ethanolamine according to claim 1, wherein the wastewater contains hydrazine.
を含む請求項4に記載のエタノールアミンを含有する排
水の処理方法。5. The method for treating wastewater containing ethanolamine according to claim 4, further comprising a step of removing the hydrazine.
が、ヒドラジン耐性の嫌気性微生物である請求項4また
は請求項5に記載のエタノールアミンを含有する排水処
理方法。6. The method for treating wastewater containing ethanolamine according to claim 4, wherein the microorganism used under the anaerobic condition is a hydrazine-resistant anaerobic microorganism.
に、上記排水を酸素を含む気体と接触させることなく薬
品を混合処理する請求項1〜6のいずれかに記載のエタ
ノールアミンを含有する排水の処理方法。7. The ethanolamine according to any one of claims 1 to 6, wherein a chemical is mixed and treated without bringing the wastewater into contact with a gas containing oxygen before the microorganism treatment under the anaerobic condition. Wastewater treatment method.
合物を添加してばっ気処理するものである請求項5〜7
のいずれかに記載のエタノールアミンを含有する排水の
処理方法。8. The method according to claim 5, wherein the step of removing hydrazine is an aeration treatment by adding a copper compound.
A method for treating wastewater containing ethanolamine according to any one of the above.
化水素又は次亜塩素酸ソーダによる分解処理によるもの
である請求項5〜8のいずれかに記載のエタノールアミ
ンを含有する排水処理方法。9. The wastewater treatment method containing ethanolamine according to claim 5, wherein the step of removing hydrazine is performed by a decomposition treatment with hydrogen peroxide or sodium hypochlorite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12694397A JPH10314787A (en) | 1997-05-16 | 1997-05-16 | Method for treatment of waste water containing ethanolamine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12694397A JPH10314787A (en) | 1997-05-16 | 1997-05-16 | Method for treatment of waste water containing ethanolamine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10314787A true JPH10314787A (en) | 1998-12-02 |
Family
ID=14947744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12694397A Ceased JPH10314787A (en) | 1997-05-16 | 1997-05-16 | Method for treatment of waste water containing ethanolamine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10314787A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1652824A1 (en) * | 2004-11-01 | 2006-05-03 | Hitachi Plant Engineering & Construction Co., Ltd. | Method and apparatus for treating ammonium-containing liquid |
EP1695941A1 (en) * | 2005-02-28 | 2006-08-30 | Hitachi Plant Engineering & Construction Co., Ltd. | Process and equipment for treating ammonium containing liquid |
JP2006297374A (en) * | 2005-03-25 | 2006-11-02 | Sharp Corp | Method and apparatus for wastewater treatment |
JP2008279385A (en) * | 2007-05-11 | 2008-11-20 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
JP2008279383A (en) * | 2007-05-11 | 2008-11-20 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
KR101365135B1 (en) * | 2012-02-17 | 2014-02-19 | (주) 테크윈 | Apparatus and method for nitrogen wastewater treatment |
-
1997
- 1997-05-16 JP JP12694397A patent/JPH10314787A/en not_active Ceased
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7407579B2 (en) | 2004-11-01 | 2008-08-05 | Hitachi Plant Technologies, Ltd. | Method and apparatus for treating ammonium-containing liquid |
EP1652824A1 (en) * | 2004-11-01 | 2006-05-03 | Hitachi Plant Engineering & Construction Co., Ltd. | Method and apparatus for treating ammonium-containing liquid |
US7550083B2 (en) | 2005-02-28 | 2009-06-23 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
EP1840091A1 (en) * | 2005-02-28 | 2007-10-03 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
US7537698B2 (en) | 2005-02-28 | 2009-05-26 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
US7540959B2 (en) | 2005-02-28 | 2009-06-02 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
EP1695941A1 (en) * | 2005-02-28 | 2006-08-30 | Hitachi Plant Engineering & Construction Co., Ltd. | Process and equipment for treating ammonium containing liquid |
US7550082B2 (en) | 2005-02-28 | 2009-06-23 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
US7575679B2 (en) | 2005-02-28 | 2009-08-18 | Hitachi Plant Technologies, Ltd. | Process and equipment for treating ammonium containing liquid |
JP2006297374A (en) * | 2005-03-25 | 2006-11-02 | Sharp Corp | Method and apparatus for wastewater treatment |
JP2008279385A (en) * | 2007-05-11 | 2008-11-20 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
JP2008279383A (en) * | 2007-05-11 | 2008-11-20 | Kurita Water Ind Ltd | Anaerobic treatment method and anaerobic treatment apparatus |
KR101365135B1 (en) * | 2012-02-17 | 2014-02-19 | (주) 테크윈 | Apparatus and method for nitrogen wastewater treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706185B2 (en) | Biological method of phosphorus removal and biological phosphorus-removing apparatus | |
JP2000015288A (en) | Wastewater treatment method and apparatus | |
JP4649911B2 (en) | Treatment of organic matter and nitrogen-containing wastewater | |
JP4106203B2 (en) | How to remove nitrogen from water | |
JP2004230338A (en) | Method for removing ammoniacal nitrogen compounds from wastewater | |
JPH10314787A (en) | Method for treatment of waste water containing ethanolamine | |
JP3202510B2 (en) | Equipment for treating wastewater containing nitrogen and fluorine | |
JP4419418B2 (en) | Nitrogen-containing wastewater treatment method | |
JPH10118664A (en) | Treatment of waste water containing cyan compound and organic matter | |
JPH11156391A (en) | Treating method for ethanolamine-containing waste water | |
JP2001058197A (en) | Treatment of wastewater | |
JPH11156392A (en) | Treating method for ethanolamine-containing waste water | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JPH08318292A (en) | Waste water treatment method and apparatus | |
JP3736397B2 (en) | Method for treating organic matter containing nitrogen component | |
JPH1133586A (en) | Treatment method for wastewater containing ethanolamine | |
JP3837757B2 (en) | Method for treating selenium-containing water | |
KR100322252B1 (en) | Biological Treatment Systems and Methods for Removing Nitrogen and Phosphorus in Municipal Wastewater | |
JP3837760B2 (en) | Treatment method of flue gas desulfurization waste water | |
JP3271326B2 (en) | Biological phosphorus removal method and apparatus | |
JP2003053382A (en) | Nitrification and denitrification treatment method | |
JP3139337B2 (en) | Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds | |
JPH1152094A (en) | Method for treating drain containing ethanolamine | |
JP3944981B2 (en) | Method for treating selenium and nitrogen-containing water | |
JP2720096B2 (en) | Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050530 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060929 |
|
AA92 | Notification of invalidation |
Free format text: JAPANESE INTERMEDIATE CODE: A971092 Effective date: 20061017 |