JPH1031390A - Electrophotographic device - Google Patents
Electrophotographic deviceInfo
- Publication number
- JPH1031390A JPH1031390A JP8955297A JP8955297A JPH1031390A JP H1031390 A JPH1031390 A JP H1031390A JP 8955297 A JP8955297 A JP 8955297A JP 8955297 A JP8955297 A JP 8955297A JP H1031390 A JPH1031390 A JP H1031390A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heating roller
- temp
- contact
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fixing For Electrophotography (AREA)
- Control Of Resistance Heating (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子写真プロセス
を用いる複写機、プリンタ、ファクシミリなどの電子写
真装置に関し、特に、加熱ローラを用いる定着装置を備
えた電子写真装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus using an electrophotographic process, such as a copying machine, a printer, and a facsimile, and more particularly to an electrophotographic apparatus having a fixing device using a heating roller.
【0002】[0002]
【従来の技術】従来より、電子写真プロセスを用いる複
写機、プリンタ、ファクシミリなどの電子写真装置にお
いては、省エネルギー化が求められている。この省エネ
ルギー化として、定着を行う通紙時のみ加熱ローラのヒ
ータに通電を行い、それ以外の時には予熱を行わないよ
うにする方式が多く検討されている。この方式では予熱
を行わないため、ユーザが使いたいときにすぐに装置を
立ち上げる必要があり、極力立上り時間を短くしたこと
に特徴がある。しかしながら、この定着装置に用いられ
る温度検知方式が、従来の定着装置で多く用いられてい
る接触型のサーミスタでは、温度の応答速度が遅く、し
かも加熱ローラ表面の離型層との摩擦により離型層を摩
耗させることがある。このため接触型のサーミスタを用
いた場合には、加熱ローラ表面の離型層の劣化による耐
久性の低下が問題となる。そこでこの対策として、加熱
ローラ等の被検体表面に接触せずに温度を検知すること
ができる非接触型の温度センサ(以下、非接触温度セン
サと言う)を用いた定着装置が提案されている(特開昭
60−51872号公報参照)。非接触温度センサとし
ては上記公報に記載されている非接触熱起電型赤外線温
度センサ等があるが、この非接触温度センサは応答速度
が速いという特徴もあり、近年の電子写真装置の要求に
合致するものであった。2. Description of the Related Art Conventionally, there has been a demand for energy saving in electrophotographic apparatuses such as copiers, printers, and facsimile machines using an electrophotographic process. In order to save energy, many systems have been studied in which a heater of a heating roller is energized only when paper is passed for fixing, and preheating is not performed at other times. In this method, since no preheating is performed, it is necessary to start up the apparatus immediately when the user wants to use the apparatus, and the method is characterized in that the rise time is shortened as much as possible. However, the temperature detection method used in this fixing device is a contact-type thermistor that is often used in conventional fixing devices, and the response speed of the temperature is slow, and furthermore, the release is caused by friction with the release layer on the surface of the heating roller. May wear the layer. For this reason, when a contact-type thermistor is used, there is a problem in that durability is reduced due to deterioration of the release layer on the surface of the heating roller. Therefore, as a countermeasure, a fixing device using a non-contact type temperature sensor (hereinafter, referred to as a non-contact temperature sensor) capable of detecting the temperature without contacting the surface of the subject such as a heating roller has been proposed. (See JP-A-60-51872). As the non-contact temperature sensor, there is a non-contact thermoelectric type infrared temperature sensor described in the above publication, but this non-contact temperature sensor also has a feature that its response speed is fast. It was a match.
【0003】しかしながら、非接触温度センサの出力は
被検体温度に対してリニアではなく、またセンサ自体の
温度変化(環境温度変化)によって、その出力カーブ自
体が変化するという特性を有している。However, the output of the non-contact temperature sensor is not linear with respect to the temperature of the subject, and has a characteristic that the output curve itself changes due to a temperature change (change in environmental temperature) of the sensor itself.
【0004】従来、非接触温度センサが用いられて実用
化されているものとしては、エアコンの室温検知がその
代表例として挙げられるが、そのセンサの環境温度の変
化と、室温の変化はほぼ同レベル(10℃〜30℃)で
あり、複写機などの電子写真装置の機内温度の変化(1
0℃〜80℃)や、被検体である加熱ローラの温度変化
(10℃〜200℃)に比べて非常に小さいため、非接
触温度センサの出力カーブと、センサ自身の温度と被検
体の温度の温度差との関係は一義的に決定してもほとん
ど不具合がなかった。しかしながら、電子写真装置の機
内温度の変化は10℃〜80℃と大きいため、非接触温
度センサを定着装置の加熱ローラの温度検知に用いる場
合は、センサ自身の温度変化(自己温度変化)により非
接触温度センサの出力カーブの変化が大きくなり実用に
耐えなかった。Conventionally, a non-contact temperature sensor has been put to practical use by detecting the room temperature of an air conditioner as a typical example. However, the change in the ambient temperature of the sensor and the change in the room temperature are almost the same. Level (10 ° C. to 30 ° C.) and changes in the temperature inside the electrophotographic apparatus such as a copying machine (1
0 ° C. to 80 ° C.) and the temperature change of the heating roller (10 ° C. to 200 ° C.), which is very small. Therefore, the output curve of the non-contact temperature sensor, the temperature of the sensor itself, and the temperature of the subject There was almost no problem even if the relationship with the temperature difference was uniquely determined. However, since the change in the internal temperature of the electrophotographic apparatus is as large as 10 ° C. to 80 ° C., when the non-contact temperature sensor is used for detecting the temperature of the heating roller of the fixing device, the non-contact temperature sensor may be affected by the temperature change of the sensor itself (self temperature change). The change of the output curve of the contact temperature sensor became large and was not practical.
【0005】前述の特開昭60−51872号公報記載
の技術では、センサ自身の温度変化により非接触温度セ
ンサの出力カーブの変化が大きく生ずるということに気
づかず、ただ、センサの自己温度のみの補正を行うと共
に不足の補正を補正レベル以上に高くするというラフな
設定を行っていた。また、特開平5−159790号公
報記載の技術では、非接触温度センサと接触温度センサ
との組合せにより温度誤差を補正する演算を行うとい
う、非常に複雑な方式を取っていた。In the technique described in Japanese Patent Application Laid-Open No. 60-51872, it is not noticed that the output curve of the non-contact temperature sensor greatly changes due to the temperature change of the sensor itself. Rough settings were made such that the correction was made and the insufficient correction was made higher than the correction level. Further, the technique described in Japanese Patent Application Laid-Open No. 5-159790 has adopted a very complicated method of performing a calculation for correcting a temperature error by a combination of a non-contact temperature sensor and a contact temperature sensor.
【0006】ここで図3は、従来の方式ではどの程度の
温度誤差が発生するかを示すグラフである。このグラフ
は、ある非接触温度センサの環境温度を30℃としたと
き、その出力がほぼ被検体である加熱ローラの温度に正
確に対応するようにした出力の変換テーブルを用いて、
環境温度を30℃、40℃、50℃、60℃、70℃、
80℃の6種類として、加熱ローラの温度を室温から2
00℃まで変化させ、出力を温度に変換したときの被検
体の実温度と非接触温度センサによる検知温度の差(温
度誤差)をプロットしたものである。図3のグラフから
明らかなように、従来方式では環境温度変化の影響を受
け、温度誤差が大きいことがわかる。FIG. 3 is a graph showing how much temperature error occurs in the conventional method. This graph uses an output conversion table whose output corresponds exactly to the temperature of the heating roller, which is almost the subject, when the environmental temperature of a certain non-contact temperature sensor is 30 ° C.
Environmental temperature 30 ℃, 40 ℃, 50 ℃, 60 ℃, 70 ℃,
The temperature of the heating roller is 2
The difference (temperature error) between the actual temperature of the subject and the temperature detected by the non-contact temperature sensor when the output is converted to a temperature by changing the temperature to 00 ° C. is plotted. As is clear from the graph of FIG. 3, it is understood that the conventional method has a large temperature error due to the influence of the environmental temperature change.
【0007】以上のように、従来の電子写真装置では、
定着装置の加熱ローラの温度検知に非接触温度センサを
用いた場合に、環境温度変化の影響を受け、検知温度と
実際の温度との温度誤差が大きく、加熱ローラの温度を
正確に検知できなくなるという問題が生じていた。As described above, in the conventional electrophotographic apparatus,
When a non-contact temperature sensor is used to detect the temperature of the heating roller of the fixing device, the temperature error between the detected temperature and the actual temperature is large due to the influence of the environmental temperature change, and the temperature of the heating roller cannot be accurately detected. The problem had arisen.
【0008】そこで本出願人は先に、定着装置から輻射
される赤外線を非接触温度測定手段で受光して定着装置
の温度を測定し、非接触温度測定手段自身の温度を自己
温度測定手段で測定し、この自己温度測定手段の温度測
定結果と非接触温度測定手段の温度測定結果に基づいて
定着装置の温度制御を行う定着装置の温度制御方法にお
いて、非接触温度測定手段の温度測定結果と自己温度測
定手段の温度測定結果をそれぞれデジタル値に変換して
換算テーブルでこれらの2つのデジタル値に対応した温
度データに換算し、この換算結果に基づく測定値に応じ
て定着装置の温度制御を行う温度制御方法を提案した
(特開平7−77892号公報)。Therefore, the applicant of the present invention first measures the temperature of the fixing device by receiving infrared rays radiated from the fixing device by the non-contact temperature measuring means, and measures the temperature of the non-contact temperature measuring means by the self-temperature measuring means. Measuring the temperature of the fixing device based on the temperature measurement result of the self-temperature measuring device and the temperature measurement result of the non-contact temperature measuring device. The temperature measurement results of the self-temperature measuring means are converted into digital values, and converted into temperature data corresponding to these two digital values in a conversion table, and the temperature of the fixing device is controlled in accordance with the measured values based on the conversion results. A proposed temperature control method has been proposed (Japanese Patent Application Laid-Open No. 7-77892).
【0009】[0009]
【発明が解決しようとする課題】特開平7−77892
号公報記載の温度制御方法では、定着装置の温度を測定
する際に、非接触型の温度測定手段(非接触温度セン
サ)を用いているが、前述したように非接触温度センサ
で検知(測定)された温度は補正が必要なため、非接触
温度センサ内に設けられている自己温度測定手段による
自己温度(値)と検知結果(値)とを換算テーブルによ
って換算(補正)し、その補正値により定着装置の温度
制御を行っている。SUMMARY OF THE INVENTION Japanese Patent Application Laid-Open No. 7-77892
In the temperature control method described in Japanese Patent Application Laid-Open No. H11-157, a non-contact type temperature measuring means (non-contact temperature sensor) is used when measuring the temperature of the fixing device. Since the corrected temperature needs to be corrected, the self-temperature (value) by the self-temperature measuring means provided in the non-contact temperature sensor and the detection result (value) are converted (corrected) by a conversion table, and the correction is performed. The temperature of the fixing device is controlled based on the value.
【0010】しかし、換算テーブルを作成するには一つ
づつデータを作成する必要があり、精度を上げようとす
ると、その分テーブルを細かくしなくてはならず、テー
ブル作成の作業量の増大、テーブルのデータを保存して
おくメモリの増大を招く。また、検知温度が作成したテ
ーブルの範囲を越えるような場合は対処ができない。こ
の点に対しては作成するテーブルの範囲を広げればよい
が、この場合も上述したようにテーブル作成の作業量の
増大、テーブルのデータを保存しておくメモリの増大を
招くことは避けられない。特に定着装置のように加熱時
の温度変化が激しい場合にはこれらの不具合が顕著に現
れる。However, in order to create a conversion table, it is necessary to create data one by one. In order to increase the accuracy, the table must be made finer, and the work required for creating the table increases. This causes an increase in the memory for storing the table data. Further, when the detected temperature exceeds the range of the created table, no measure can be taken. In this regard, the range of the table to be created may be increased, but in this case, as described above, an increase in the amount of work for creating the table and an increase in the memory for storing the data of the table are inevitable. . In particular, when the temperature changes greatly during heating as in the case of a fixing device, these disadvantages appear remarkably.
【0011】本発明は上記事情に鑑みなされたものであ
って、その解決しようとする課題は、上記のような換算
テーブルを用いずに、自己温度の検知出力(値)と非接
触温度センサの検知出力(値)とを関連した関数により
補正する制御を行うことにより、電子写真装置機内の環
境温度変化によらず、非接触温度センサを用いて定着装
置の加熱ローラの温度を正確に検知できる手段を備えた
電子写真装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a problem to be solved is to use a non-contact temperature sensor and a self-temperature detection output (value) without using the above conversion table. By performing control to correct the detection output (value) with a function related to the temperature, the temperature of the heating roller of the fixing device can be accurately detected using the non-contact temperature sensor regardless of the environmental temperature change in the electrophotographic apparatus. An object of the present invention is to provide an electrophotographic apparatus provided with means.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
の手段として、請求項1記載の発明は、加熱ローラを用
いる定着装置を備えた電子写真装置であって、非接触で
前記加熱ローラの温度を検知する非接触温度センサを有
し、その非接触温度センサの検知出力により前記加熱ロ
ーラの温度を制御する電子写真装置において、前記非接
触温度センサは自己温度検知手段を有し、非接触温度セ
ンサの検知出力は、自己温度と被検体である加熱ローラ
温度との温度差に応じて検知出力されるものであり、そ
の検知出力をT0 、自己温度出力をT1 としたとき、加
熱ローラ温度(または加熱ローラ温度の代用特性)T
を、T0 の多次式(2次以上)、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3+・・・ と、T1の関数式、 C(T1),f(T1),g(T1),h(T1),・・・ (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3+・・・) (定数A,α,β,γは0を含まない実数)として認識
して、Tの値を基に加熱ローラの温度を制御する。これ
により、電子写真装置機内の環境温度変化によらず加熱
ローラ温度を正確に検知でき、加熱ローラ温度を安定的
に制御することが可能となる。According to another aspect of the present invention, there is provided an electrophotographic apparatus having a fixing device using a heating roller, wherein the fixing device includes a heating roller. In an electrophotographic apparatus having a non-contact temperature sensor for detecting a temperature and controlling the temperature of the heating roller by a detection output of the non-contact temperature sensor, the non-contact temperature sensor has a self-temperature detecting means, The detection output of the temperature sensor is detected and output according to the temperature difference between the self-temperature and the temperature of the heating roller as the subject. When the detection output is T0 and the self-temperature output is T1, the heating roller temperature (Or substitute characteristic of heating roller temperature) T
Is expressed by the following equation: T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 +... And a functional expression of T1, C (T1), f (T1), g (T1), h (T1), etc. (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3 +... (Constants A, α, β, and γ are real numbers not including 0), and the temperature of the heating roller is controlled based on the value of T. As a result, the temperature of the heating roller can be accurately detected irrespective of the environmental temperature change in the electrophotographic apparatus, and the temperature of the heating roller can be controlled stably.
【0013】また、請求項2記載の発明では、請求項1
記載の電子写真装置において、T0の多次式は3次式以
下であって、T1 の関数式は3次式以下であるため、制
御にかかる負担を小さくして、電子写真装置機内の環境
温度変化によらず加熱ローラ温度を正確に検知でき、加
熱ローラ温度を安定的に制御することが可能となる。Further, according to the invention described in claim 2, according to claim 1,
In the electrophotographic apparatus described above, the polynomial expression of T0 is less than the cubic expression and the functional expression of T1 is the cubic expression or less. The heating roller temperature can be accurately detected regardless of the change, and the heating roller temperature can be stably controlled.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0015】図1は本発明が実施される電子写真装置の
一構成例を示すプリンタ(あるいは複写機やファクシミ
リの作像部)の概略断面図である。図1において、符号
1は像担持体であるドラム状の感光体であり、この感光
体1の周囲には、作像プロセスを行うための、帯電装置
2、書込ユニット3、現像装置4、転写搬送装置5、ク
リーニング装置6、除電装置7等の部材が配設されてい
る。作像動作が開始されると、感光体1の表面は帯電装
置2により順次帯電され、書込ユニット3からの照射光
によりドット単位あるいはライン単位で静電潜像が書き
込まれる。この書込ユニット3としては、レーザ光を走
査して書き込みを行うものや、LEDアレイにより書き
込みを行うものなどが用いられる。感光体1上に形成さ
れた静電潜像は、現像装置4のトナーにより顕像化され
た後、給紙ユニット11から給紙ローラ12により給紙
され、レジストローラ13を介して所定のタイミングで
感光体1と転写搬送装置5の間の転写部に搬送されてき
た転写紙に転写される。トナー像が転写された転写紙は
転写搬送装置5で定着装置8に搬送され、定着装置8の
加熱ローラ9と加圧ローラ10とによる定着処理が施さ
れた後、搬送ローラにより排紙トレイに排出される。ま
た、トナー像転写後の感光体1は、クリーニング装置7
で残留トナーが除去され、除電装置7で除電される。FIG. 1 is a schematic sectional view of a printer (or an image forming section of a copying machine or a facsimile) showing an example of the configuration of an electrophotographic apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes a drum-shaped photoconductor serving as an image carrier. Around the photoconductor 1, a charging device 2, a writing unit 3, a developing device 4, Members such as a transfer / transport device 5, a cleaning device 6, and a static eliminator 7 are provided. When the image forming operation is started, the surface of the photoreceptor 1 is sequentially charged by the charging device 2, and the electrostatic latent image is written in dot units or line units by the irradiation light from the writing unit 3. As the writing unit 3, a unit that performs writing by scanning a laser beam, a unit that performs writing by using an LED array, or the like is used. The electrostatic latent image formed on the photoreceptor 1 is visualized by the toner of the developing device 4, then fed from a paper feed unit 11 by a paper feed roller 12, and is fed through a registration roller 13 at a predetermined timing. Is transferred to the transfer paper conveyed to the transfer section between the photoreceptor 1 and the transfer conveyance device 5. The transfer paper on which the toner image has been transferred is conveyed to the fixing device 8 by the transfer conveyance device 5, subjected to a fixing process by the heating roller 9 and the pressure roller 10 of the fixing device 8, and then transferred to the paper discharge tray by the conveyance roller. Is discharged. The photosensitive member 1 after the transfer of the toner image is cleaned by a cleaning device 7.
, The residual toner is removed, and the charge is removed by the charge removing device 7.
【0016】以上のような構成、動作のプリンタにおい
て、定着装置8の加熱ローラ9の温度(表面温度)を検
知するために、定着装置8と感光体1の間のスペースに
は非接触温度センサ(例えば赤外線温度センサ)14が
配置されており、定着装置8のカバーの側面に空いた開
口部を通して加熱ローラ9をにらんでいる。In the printer having the above configuration and operation, a non-contact temperature sensor is provided in a space between the fixing device 8 and the photosensitive member 1 in order to detect the temperature (surface temperature) of the heating roller 9 of the fixing device 8. (For example, an infrared temperature sensor) 14 is disposed, and the heating roller 9 is viewed through the opening provided on the side surface of the cover of the fixing device 8.
【0017】図2は、図1に示すプリンタの定着装置周
りの概要を表わす図である。ここでは加熱ローラ9には
立上りの速い自己発熱型の加熱ローラを用いた例を示す
が、ハロゲンランプ等のヒータを内蔵したタイプのもの
でもかまわない。加熱ローラ9の両端部に設けられた電
極部16には給電ブラシ15が摺接し、該給電ブラシ1
5を介して交流電源17及びトライアック18が接続さ
れており、トライアック18は制御回路19からの信号
により加熱ローラ9への通電を制御する。非接触温度セ
ンサ14の出力(検知出力T0 、自己温度出力T1 共)
は制御回路19に入力され、制御回路19は、その非接
触温度センサ14の出力から加熱ローラ温度を検出し、
設定温度に対して加熱ローラ9の温度がどのようになっ
ているかによりトライアック18を制御し、加熱ローラ
9の発熱を制御している。FIG. 2 is a diagram showing an outline around the fixing device of the printer shown in FIG. Here, an example in which a self-heating type heating roller with a fast rise is used as the heating roller 9 is shown, but a type incorporating a heater such as a halogen lamp may be used. The power supply brush 15 is in sliding contact with the electrode portions 16 provided at both ends of the heating roller 9.
An AC power supply 17 and a triac 18 are connected via the control unit 5, and the triac 18 controls energization to the heating roller 9 by a signal from a control circuit 19. Output of non-contact temperature sensor 14 (both detection output T0 and self-temperature output T1)
Is input to the control circuit 19, and the control circuit 19 detects the temperature of the heating roller from the output of the non-contact temperature sensor 14,
The triac 18 is controlled according to the temperature of the heating roller 9 with respect to the set temperature, and the heat generation of the heating roller 9 is controlled.
【0018】より具体的に説明すると、制御回路19
は、公知のマイクロコンピュータやメモリ(RAM,R
OM)、入出力回路、各種制御信号発生回路等を備えた
構成となっている。非接触温度センサ14は自己温度検
知手段(例えば、センサのケース内に自己温度検知用の
サーミスタ等が配設されている)を有しており、非接触
温度センサ14の検知出力は、自己温度と、被検体であ
る加熱ローラ温度(ローラ表面温度)との温度差に応じ
て検知出力されるものであるから、その検知出力T0
と、自己温度出力T1 が制御回路19に入力される。そ
して制御回路19は、検知出力T0 と自己温度出力T1
が入力されると、加熱ローラ温度(または加熱ローラ温
度の代用特性)Tを、T0 の多次式(2次以上)、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3+・・・ と、T1の関数式、 C(T1),f(T1),g(T1),h(T1),・・・ (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3+・・・) (定数A,α,β,γは0を含まない実数)として認識
して、Tの値を基にトライアック18を制御し、加熱ロ
ーラ9の温度を制御する。More specifically, the control circuit 19
Is a known microcomputer or memory (RAM, R
OM), an input / output circuit, various control signal generation circuits, and the like. The non-contact temperature sensor 14 has a self-temperature detecting means (for example, a thermistor or the like for detecting the self-temperature is provided in the case of the sensor). Is detected and output in accordance with the temperature difference between the temperature of the subject and the temperature of the heating roller (roller surface temperature).
Then, the self-temperature output T1 is input to the control circuit 19. Then, the control circuit 19 detects the detection output T0 and the self-temperature output T1.
Is input, the heating roller temperature (or the substitute property of the heating roller temperature) T is calculated by a polynomial expression of T0 (second or higher order), T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 +... And a functional expression of T1, C (T1), f (T1), g (T1), h (T1), etc. (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3 +... (Constants A, α, β, and γ are real numbers not including 0), control the triac 18 based on the value of T, and control the temperature of the heating roller 9.
【0019】図4は、本発明を実施した場合の効果を示
すグラフで、非接触温度センサ14より求められる加熱
ローラ温度(または加熱ローラ温度の代用特性)Tを、
T0の3次式、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3 と、T1 の関数式、 C(T1),f(T1),g(T1),h(T1) (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3+δT1^4) (それぞれT1 の4次式)で求めて、加熱ローラ9の実
温度との差を図3と対応して示したものである。図4の
グラフから明らかなように、特に加熱ローラの制御温度
である180℃〜200℃において、温度誤差は約±1
deg と非常に小さな誤差となり、環境温度変化によら
ず、加熱ローラの温度を正確に検知することができる。FIG. 4 is a graph showing the effect when the present invention is carried out. The heating roller temperature (or the substitute property of the heating roller temperature) T obtained by the non-contact temperature sensor 14 is shown in FIG.
The cubic expression of T0, T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 and a functional expression of T1, C (T1), f (T1), g (T1), h (T1) (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3 + δT1 ^ 4) The difference between the actual temperature of the heating roller 9 and the difference between the actual temperature and the actual temperature of the heating roller 9 is shown in FIG. As is clear from the graph of FIG. 4, the temperature error is about ± 1 especially at 180 ° C. to 200 ° C. which is the control temperature of the heating roller.
This is a very small error of deg, and the temperature of the heating roller can be accurately detected regardless of the environmental temperature change.
【0020】尚、図5は、図4のグラフを得る基となる
関数式C(T1),f(T1),g(T1),h(T1)と、そのグ
ラフを示したものであり、各グラフで縦軸yが各関数式
より得られる値、横軸xがT1に相当している。FIG. 5 shows the function formulas C (T1), f (T1), g (T1) and h (T1) from which the graph of FIG. 4 is obtained, and its graph. In each graph, the vertical axis y corresponds to a value obtained from each function formula, and the horizontal axis x corresponds to T1.
【0021】次に、図6、図7は、本発明の請求項2を
実施した場合の効果を示した図であり、図6が図4に、
図7が図5にそれぞれ対応している。本例では、非接触
温度センサ14より求められる加熱ローラ温度(または
加熱ローラ温度の代用特性)Tを、T0 の3次式、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3 と、T1 の関数式、 C(T1),f(T1),g(T1),h(T1) (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3) (それぞれT1の3次式)で求めたものであり、T0 の
多次式とT1 の関数式を3次式以下としても、図6に示
されるように、特に加熱ローラの制御温度である180
℃〜200℃において、温度誤差は約±3deg 以下と電
子写真方式の定着装置の温度制御としては、許容できる
程度の誤差に納めることができる。Next, FIGS. 6 and 7 are diagrams showing the effect of the second embodiment of the present invention, and FIG.
FIG. 7 corresponds to FIG. In this example, the heating roller temperature T (or the substitute property of the heating roller temperature) T obtained by the non-contact temperature sensor 14 is represented by a cubic expression of T0, T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 and a functional expression of T1, C (T1), f (T1), g (T1), h (T1) (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3) (Each cubic expression of T1). Even if the polynomial expression of T0 and the function expression of T1 are less than the cubic expression, as shown in FIG. 180 which is the temperature
The temperature error is about ± 3 deg. C. or less in a temperature range of from about ° C. to about 200 ° C., which is an acceptable level of temperature control for an electrophotographic fixing device.
【0022】以上のように、本発明では、換算テーブル
を用いずに、自己温度の検知出力(値)と非接触温度セ
ンサの検知出力(値)とを関連した関数により補正する
制御を行うものである。これは、従来の換算テーブルを
用いて制御を行う方式では、予め換算テーブルを作成し
ておかなければならず、換算テーブルを作成するには一
つづつデータを作成する必要があり、精度を上げようと
すると、その分テーブルを細かくしなくてはならず、テ
ーブル作成の作業量の増大、テーブルのデータを保存し
ておくメモリの増大を招くこと、また、検知温度が作成
したテーブルの範囲を越えるような場合は対処ができな
いこと(この点に対しては作成するテーブルの範囲を広
げればよいが、この場合も上述したようにテーブル作成
の作業量の増大、テーブルのデータを保存しておくメモ
リの増大を招くことが避けられない)等の不具合があ
り、特に定着装置のように加熱時の温度変化が激しい場
合にはこれらの不具合が顕著に現れるという点を踏まえ
たものである。As described above, in the present invention, the control for correcting the detection output (value) of the self-temperature and the detection output (value) of the non-contact temperature sensor by using a related function without using the conversion table. It is. This is because, in the conventional control method using a conversion table, it is necessary to create a conversion table in advance, and to create a conversion table, it is necessary to create data one by one. If this is done, the table must be made finer accordingly, resulting in an increase in the amount of work for creating the table, an increase in the memory for storing the data of the table, and the range of the table created by the detected temperature. It is not possible to cope with the case where the number exceeds the limit (for this point, the range of the table to be created may be expanded, but also in this case, the amount of work for creating the table is increased, and the data of the table is stored. It is unavoidable that the increase in memory is unavoidable). Particularly, when the temperature changes greatly during heating as in a fixing device, these problems are remarkably exhibited. It is obtained based on the.
【0023】すなわち、本発明者らは「加熱ローラ温度
Tを検知出力T0 の多次式で、且つ各T0 の項の係数は
自己温度出力T1 の関数式で」表わすことができないか
どうかを試み、実際の定着装置において確認作業を行っ
て前述の本発明に至ったものである。以下、その確認作
業の具体的な手順について述べる。That is, the present inventors have attempted to determine whether or not the heating roller temperature T cannot be represented by a polynomial expression of the detected output T0, and the coefficient of each T0 term can be represented by a function expression of the self-temperature output T1. This is the result of the present invention described above by performing a checking operation in an actual fixing device. Hereinafter, a specific procedure of the confirmation work will be described.
【0024】[1]加熱ローラの表面温度Tを、別途に
サーミスタや熱電対等で計測する。 非接触温度センサの出力値を計測する。 非接触温度センサの自己温度を計測する。 これらの計測結果の一例を表1に示す。尚、実際の計測
では、加熱ローラ温度Tを180〜30(℃)の間で変
化させ、例えば180,150,120,90,60,
30(℃)として多数の計測を行っており、またセンサ
自己温度T1 が40,60,70(℃)の時にも計測を
行っているが、表1では省略している。[1] The surface temperature T of the heating roller is separately measured by a thermistor, a thermocouple or the like. The output value of the non-contact temperature sensor is measured. The self-temperature of the non-contact temperature sensor is measured. Table 1 shows an example of these measurement results. In actual measurement, the temperature T of the heating roller is changed between 180 and 30 (° C.), for example, 180, 150, 120, 90, 60,
A large number of measurements are performed at 30 (° C.), and measurements are also performed when the sensor self-temperature T 1 is 40, 60, and 70 (° C.), but is omitted in Table 1.
【0025】[0025]
【表1】 [Table 1]
【0026】[2]次に、Tの補正式を何次式にするかを
決定(仮定)する。ここでは3次式として計算した。す
なわち、加熱ローラ温度Tを、T0 の3次式、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3 と、T1 の関数式、 C(T1),f(T1),g(T1),h(T1) (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3) (それぞれT1の3次式)で表わす。[2] Next, it is determined (assumed) that the correction formula for T should be what order. Here, it was calculated as a cubic equation. That is, the heating roller temperature T is expressed by the cubic expression of T0, T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 and a functional expression of T1, C (T1), f (T1), g (T1), h (T1) (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3) (Each cubic expression of T1).
【0027】[3]上記の式に計測したT1,T0を代入し
係数を関数化する。すなわち、あるセンサ自己温度T
1、例えばT1=30℃の時の各係数C(30),f(30),g
(30),h(30)を求める。具体的には、T1=30℃に固
定し、T1=30℃の時のデータ(表1)を使って下記
の連立方程式を解く。 180(℃)=C(30)+f(30)×1.8+g(30)×1.82+h(30)×1.83 150(℃)=C(30)+f(30)×1.6+g(30)×1.62+h(30)×1.63 : 150(℃)=C(30)+f(30)×0.3+g(30)×0.32+h(30)×0.33 [3] The measured coefficients T1 and T0 are substituted into the above equation to convert the coefficients into functions. That is, a certain sensor self temperature T
1, for example, each coefficient C (30), f (30), g at T1 = 30 ° C.
(30) and h (30) are obtained. Specifically, T1 is fixed at 30 ° C., and the following simultaneous equations are solved using the data at T1 = 30 ° C. (Table 1). 180 (° C) = C (30) + f (30) × 1.8 + g (30) × 1.8 2 + h (30) × 1.8 3 150 (° C) = C (30) + f (30) × 1.6 + g (30) × 1.6 2 + h (30) × 1.6 3 : 150 (° C.) = C (30) + f (30) × 0.3 + g (30) × 0.3 2 + h (30) × 0.3 3
【0028】以上の式(加熱ローラ表面温度Tの数だけ
式ができる)の内、係数C,f,g,hの数の式の組み
合わせにより、1つずつの係数C,f,g,hが求まる
が、その組み合わせを変えて、それぞれの係数C,f,
g,hの平均値を求め係数値とする。また、センサ自己
温度T1を別の温度に変えて(T1=40℃,50℃・・
・80℃)、それぞれの係数値C,f,g,hを求め
る。このようにして求めたのが、図5、図7に示すグラ
フのプロット点である。そして、上記で求めた各係数の
プロット点から、T1 の関数式C(T1),f(T1),g
(T1),h(T1)の近似式を求める(図5,図7のグラフ
の上に書かれた近似式)。Among the above equations (formulas can be formed by the number of heating roller surface temperatures T), coefficients C, f, g, h are obtained by combining the equations of the numbers of coefficients C, f, g, h. Can be obtained, and by changing the combination, each coefficient C, f,
The average value of g and h is determined as a coefficient value. Also, changing the sensor self-temperature T1 to another temperature (T1 = 40 ° C., 50 ° C.
80 ° C.), and obtain the respective coefficient values C, f, g, and h. The plot points of the graphs shown in FIGS. 5 and 7 are obtained in this manner. Then, from the plot points of the coefficients obtained above, the function formulas C (T1), f (T1), and g of T1 are obtained.
An approximate expression of (T1), h (T1) is obtained (an approximate expression written on the graphs of FIGS. 5 and 7).
【0029】[4]次に、上記で求めた関数式から得られ
る加熱ローラ温度(計算値)T’と、実際の加熱ローラ
温度(実測値)Tとを比較し、確認する。まず、実機で
センサの自己温度T1 を計測する(T1=YY(YY:計測
温度))。そして、実際の加熱ローラ表面温度Tの時の
非接触温度センサ出力T0 を計測する。次に、センサ自
己温度T1=YYを、[3]の手順で求めた関数式の近似式
に入力して係数C(YY),f(YY),g(YY),h(YY)の値を
求める。そして、求めた係数を、加熱ローラ温度Tを検
知出力T0 の多次式(例えば3次式)で表わした式、 T’=C(T1)+f(T1)×T0+g(T1)×T0^2+h
(T1)×T0^3 に入れ、非接触温度センサの検知出力T0 より計算で加
熱ローラ表面温度T’を求める。すなわち、 T’=C(YY)+f(YY)×T0+g(YY)×T02+h(YY)×
T03 であり、例えば、T1=30℃、T0=1.8Vの時、 T’=C(30)+f(30)×1.8+g(30)×1.82+h(30)×
1.83≒179.5(℃) となる。これを色々な実際の加熱ローラ表面温度T、セ
ンサ自己温度T1 の時にそれぞれT’を求めて、縦軸に
T−T’(温度誤差)、横軸にローラ温度Tをとってプ
ロットしたのが図4、図6に示したグラフである。[4] Next, the heating roller temperature (calculated value) T 'obtained from the function formula obtained above and the actual heating roller temperature (actual measurement value) T are compared and confirmed. First, the self temperature T1 of the sensor is measured by an actual machine (T1 = YY (YY: measured temperature)). Then, the non-contact temperature sensor output T0 at the actual heating roller surface temperature T is measured. Next, the sensor self-temperature T1 = YY is input to the approximate expression of the functional expression obtained in the procedure of [3], and the values of the coefficients C (YY), f (YY), g (YY) and h (YY) are obtained. Ask for. The obtained coefficient is expressed by a polynomial expression (for example, a cubic expression) of the detection output T0 of the heating roller temperature T. T '= C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h
(T1) × T0 ^ 3, and the heating roller surface temperature T 'is calculated from the detection output T0 of the non-contact temperature sensor. That, T '= C (YY) + f (YY) × T0 + g (YY) × T0 2 + h (YY) ×
T0 is 3, for example, T1 = 30 ° C., when T0 = 1.8V, T '= C (30) + f (30) × 1.8 + g (30) × 1.8 2 + h (30) ×
1.8 3 ≒ 179.5 (° C.). This is plotted by obtaining T 'at various actual heating roller surface temperatures T and sensor self-temperatures T1, taking TT' (temperature error) on the vertical axis and the roller temperature T on the horizontal axis. 7 is a graph shown in FIGS.
【0030】以上の確認作業の結果(図4、図6)から
実際の定着装置に採用しても実質的に問題のない程度の
誤差に収まることが確認された。From the results of the above-described checking work (FIGS. 4 and 6), it was confirmed that the error could be set within a range that would cause substantially no problem even when employed in an actual fixing device.
【0031】[0031]
【発明の効果】以上説明したように、請求項1記載の電
子写真装置では、非接触温度センサは自己温度検知手段
を有し、非接触温度センサの検知出力は、自己温度と被
検体である加熱ローラ温度との温度差に応じて検知出力
されるものであり、その検知出力をT0 、自己温度出力
をT1 としたとき、加熱ローラ温度(または加熱ローラ
温度の代用特性)Tを、T0 の多次式(2次以上)、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3+・・・ と、T1の関数式、 C(T1),f(T1),g(T1),h(T1),・・・ (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3+・・・) (定数A,α,β,γは0を含まない実数)として認識
して、Tの値を基に加熱ローラの温度を制御するので、
電子写真装置機内の環境温度変化によらず加熱ローラ温
度を正確に検知でき、加熱ローラ温度を安定的に制御す
ることができる。また、換算テーブルを用いずに、自己
温度の検知出力(値)と非接触温度センサの検知出力
(値)とを関連した関数により補正する制御を行うの
で、制御にかかる負担を小さくすることができる。As described above, in the electrophotographic apparatus according to the first aspect, the non-contact temperature sensor has the self-temperature detecting means, and the detection outputs of the non-contact temperature sensor are the self-temperature and the subject. When the detected output is T0 and the self-temperature output is T1, the temperature of the heated roller (or a substitute characteristic of the temperature of the heated roller) T is represented by T0. Polynomial (second order or higher), T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 +... And a functional expression of T1, C (T1), f (T1), g (T1), h (T1), etc. (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
T1 ^ 3 + ...) (constants A, α, β, and γ are real numbers not including 0), and the temperature of the heating roller is controlled based on the value of T.
The temperature of the heating roller can be accurately detected irrespective of the environmental temperature change in the electrophotographic apparatus, and the temperature of the heating roller can be controlled stably. Further, since the control for correcting the detection output (value) of the self-temperature and the detection output (value) of the non-contact temperature sensor using a related function is performed without using the conversion table, the load on the control can be reduced. it can.
【0032】請求項2記載の電子写真装置では、請求項
1に記載の電子写真装置において、T0 の多次式は3次
式以下であって、T1 の関数式は3次式以下であるた
め、制御にかかる負担をより小さくしながら、電子写真
装置機内の環境温度変化によらず加熱ローラ温度を正確
に検知でき、加熱ローラ温度を安定的に制御することが
できる。In the electrophotographic apparatus according to the second aspect, in the electrophotographic apparatus according to the first aspect, the polynomial of T0 is less than a cubic and the functional equation of T1 is less than a cubic. Further, the heating roller temperature can be accurately detected irrespective of the environmental temperature change in the electrophotographic apparatus, and the heating roller temperature can be controlled stably, while reducing the burden on the control.
【図1】本発明が実施される電子写真装置の一構成例を
示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one configuration example of an electrophotographic apparatus in which the present invention is implemented.
【図2】図1に示す電子写真装置の定着装置周りの概略
構成を示す図である。FIG. 2 is a diagram showing a schematic configuration around a fixing device of the electrophotographic apparatus shown in FIG.
【図3】従来技術による非接触温度センサの検知誤差を
主に表わす図であって、環境温度を変えた場合の加熱ロ
ーラ温度に対する非接触温度センサの検知温度誤差の変
化を示すグラフである。FIG. 3 is a graph mainly showing a detection error of a non-contact temperature sensor according to the related art, and is a graph showing a change in a detection temperature error of the non-contact temperature sensor with respect to a heating roller temperature when an environmental temperature is changed.
【図4】本発明の実施例による作用効果を主に表わす図
であって、環境温度を変えた場合の加熱ローラ温度に対
する非接触温度センサの検知温度誤差の変化を示すグラ
フである。FIG. 4 is a graph mainly showing the operation and effect of the embodiment of the present invention, and is a graph showing a change in a detection temperature error of a non-contact temperature sensor with respect to a heating roller temperature when an environmental temperature is changed.
【図5】図4のグラフを得る基となる関数式C(T1),
f(T1),g(T1),h(T1)と、そのグラフを示す図で
ある。FIG. 5 is a functional equation C (T1), which is a basis for obtaining the graph of FIG.
It is a figure which shows f (T1), g (T1), h (T1), and its graph.
【図6】本発明の別の実施例による作用効果を主に表わ
す図であって、環境温度を変えた場合の加熱ローラ温度
に対する非接触温度センサの検知温度誤差の変化を示す
グラフである。FIG. 6 is a graph mainly showing an operation and effect according to another embodiment of the present invention, and is a graph showing a change in a detection temperature error of a non-contact temperature sensor with respect to a heating roller temperature when an environmental temperature is changed.
【図7】図6のグラフを得る基となる関数式C(T1),
f(T1),g(T1),h(T1)と、そのグラフを示す図で
ある。FIG. 7 is a functional equation C (T1), which is a basis for obtaining the graph of FIG.
It is a figure which shows f (T1), g (T1), h (T1), and its graph.
1 感光体(像担持体) 2 帯電装置 3 書込ユニット 4 現像装置 4 転写搬送装置 6 クリーニング装置 7 除電装置 8 定着装置 9 加熱ローラ 10 加圧ローラ 11 給紙ユニット 12 給紙ローラ 13 レジストローラ 14 非接触温度センサ 15 給電ブラシ 16 電極部 17 交流電源 18 トライアック 19 制御回路 DESCRIPTION OF SYMBOLS 1 Photoreceptor (image carrier) 2 Charging device 3 Writing unit 4 Developing device 4 Transfer transport device 6 Cleaning device 7 Static elimination device 8 Fixing device 9 Heating roller 10 Pressure roller 11 Paper supply unit 12 Paper supply roller 13 Registration roller 14 Non-contact temperature sensor 15 Power supply brush 16 Electrode unit 17 AC power supply 18 Triac 19 Control circuit
Claims (2)
写真装置であって、非接触で前記加熱ローラの温度を検
知する非接触温度センサを有し、その非接触温度センサ
の検知出力により前記加熱ローラの温度を制御する電子
写真装置において、 前記非接触温度センサは自己温度検知手段を有し、非接
触温度センサの検知出力は、自己温度と被検体である加
熱ローラ温度との温度差に応じて検知出力されるもので
あり、その検知出力をT0 、自己温度出力をT1 とした
とき、加熱ローラ温度(または加熱ローラ温度の代用特
性)Tを、T0 の多次式(2次以上)、 T=C(T1)+f(T1)×T0+g(T1)×T0^2+h(T
1)×T0^3+・・・ と、T1の関数式、 C(T1),f(T1),g(T1),h(T1),・・・ (例:f(T1)=定数A+α×T1+β×T1^2+γ×
T1^3+・・・) (定数A,α,β,γは0を含まない実数)として認識
して、Tの値を基に加熱ローラの温度を制御することを
特徴とする電子写真装置。1. An electrophotographic apparatus comprising a fixing device using a heating roller, comprising: a non-contact temperature sensor for detecting a temperature of the heating roller in a non-contact manner; In the electrophotographic apparatus that controls the temperature of the heating roller, the non-contact temperature sensor has a self-temperature detecting unit, and a detection output of the non-contact temperature sensor is based on a temperature difference between the self-temperature and the temperature of the heating roller that is a subject. When the detection output is T0 and the self-temperature output is T1, the heating roller temperature (or a substitute characteristic of the heating roller temperature) T is expressed by a polynomial (second or higher order) of T0. , T = C (T1) + f (T1) × T0 + g (T1) × T0 ^ 2 + h (T
1) × T0 ^ 3 +... And a functional expression of T1, C (T1), f (T1), g (T1), h (T1), etc. (Example: f (T1) = constant A + α × T1 + β × T1 ^ 2 + γ ×
An electrophotographic apparatus characterized by recognizing T1 ^ 3 + (constants A, α, β, and γ are real numbers not including 0) and controlling the temperature of the heating roller based on the value of T.
0 の多次式は3次式以下であって、T1 の関数式は3次
式以下であることを特徴とする電子写真装置。2. The electrophotographic apparatus according to claim 1, wherein T
An electrophotographic apparatus, wherein a polynomial of 0 is less than a cubic, and a functional formula of T1 is less than a cubic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8955297A JPH1031390A (en) | 1996-04-09 | 1997-04-08 | Electrophotographic device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-86660 | 1996-04-09 | ||
JP8666096 | 1996-04-09 | ||
JP8955297A JPH1031390A (en) | 1996-04-09 | 1997-04-08 | Electrophotographic device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1031390A true JPH1031390A (en) | 1998-02-03 |
Family
ID=26427766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8955297A Pending JPH1031390A (en) | 1996-04-09 | 1997-04-08 | Electrophotographic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1031390A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006259744A (en) * | 2005-03-17 | 2006-09-28 | Toshiba Corp | Fixing device, heating device control method, and non-contact temperature detecting device |
US7177563B2 (en) | 2004-09-21 | 2007-02-13 | Kabushiki Kaisha Toshiba | Apparatus for fixing toner on transferred material |
US7242880B2 (en) | 2005-03-17 | 2007-07-10 | Kabushiki Kaisha Toshiba | Fixing apparatus and heating apparatus control method |
JP2008046340A (en) * | 2006-08-15 | 2008-02-28 | Ricoh Co Ltd | Fixation control method and unit, and image forming apparatus |
US7558499B2 (en) | 2006-05-31 | 2009-07-07 | Kabushiki Kaisha Toshiba | Fixing apparatus and image forming apparatus |
-
1997
- 1997-04-08 JP JP8955297A patent/JPH1031390A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7177563B2 (en) | 2004-09-21 | 2007-02-13 | Kabushiki Kaisha Toshiba | Apparatus for fixing toner on transferred material |
JP2006259744A (en) * | 2005-03-17 | 2006-09-28 | Toshiba Corp | Fixing device, heating device control method, and non-contact temperature detecting device |
US7242880B2 (en) | 2005-03-17 | 2007-07-10 | Kabushiki Kaisha Toshiba | Fixing apparatus and heating apparatus control method |
US7248808B2 (en) | 2005-03-17 | 2007-07-24 | Kabushiki Kaisha Toshiba | Heating apparatus, heating apparatus control method and noncontact thermal sensing device |
US7389080B2 (en) | 2005-03-17 | 2008-06-17 | Kabushiki Kaisha Toshiba | Heating apparatus, heating apparatus control method and noncontact thermal sensing device |
US7641385B2 (en) | 2005-03-17 | 2010-01-05 | Kabushiki Kaisha Toshiba | Heating apparatus, heating apparatus control method and noncontact thermal sensing device |
US7558499B2 (en) | 2006-05-31 | 2009-07-07 | Kabushiki Kaisha Toshiba | Fixing apparatus and image forming apparatus |
US7787790B2 (en) | 2006-05-31 | 2010-08-31 | Kabushiki Kaisha Toshiba | Fixing apparatus and image forming apparatus |
US8000623B2 (en) | 2006-05-31 | 2011-08-16 | Kabushiki Kaisha Toshiba | Fixing apparatus and image forming apparatus |
JP2008046340A (en) * | 2006-08-15 | 2008-02-28 | Ricoh Co Ltd | Fixation control method and unit, and image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7894735B2 (en) | Fixing device of image forming apparatus | |
US9213278B2 (en) | Image forming apparatus | |
US5819136A (en) | Temperature control for a fixing device | |
US5497218A (en) | Three point thermistor temperature set up | |
EP0222120B1 (en) | Environmental sensor control device for a heated fuser in a xerographic copier | |
JPH09281843A (en) | Electrophotographic device | |
US20020044789A1 (en) | Image heating device with temperature sensors provided in sheet passing portion and non-sheet passing portion | |
JP7154854B2 (en) | Image forming apparatus and fixing device | |
JPH1031390A (en) | Electrophotographic device | |
JP2004151471A (en) | Image forming apparatus and its control method | |
US20160327890A1 (en) | Image forming apparatus | |
JP6468832B2 (en) | Image forming apparatus | |
JP6988257B2 (en) | Fixing device and image forming device | |
JP6083213B2 (en) | Image forming apparatus | |
JP6907808B2 (en) | Fixing device and image forming device | |
US11294312B2 (en) | Image forming apparatus to accurately determine temperature of heating member | |
JP6160118B2 (en) | Image forming apparatus | |
US11604426B2 (en) | Image forming apparatus configured to control target temperature of fixing device based on edge position of sheet, and method for controlling image forming apparatus | |
JP2004093651A (en) | Fixing device and image forming apparatus including the same | |
JP2004205570A (en) | Image forming apparatus and its control method | |
JP2000259038A (en) | Image forming device | |
KR100547142B1 (en) | Ambient temperature control method of fuser with heater lamp | |
JP5239288B2 (en) | Image forming apparatus and fixing device control method | |
JP2004325637A (en) | Image forming apparatus | |
JP2000259035A (en) | Image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040423 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A02 | Decision of refusal |
Effective date: 20041130 Free format text: JAPANESE INTERMEDIATE CODE: A02 |