JPH1030949A - Water-level detector of positive-characteristic thermistor type - Google Patents
Water-level detector of positive-characteristic thermistor typeInfo
- Publication number
- JPH1030949A JPH1030949A JP20429696A JP20429696A JPH1030949A JP H1030949 A JPH1030949 A JP H1030949A JP 20429696 A JP20429696 A JP 20429696A JP 20429696 A JP20429696 A JP 20429696A JP H1030949 A JPH1030949 A JP H1030949A
- Authority
- JP
- Japan
- Prior art keywords
- water level
- positive
- temperature
- characteristic thermistor
- negative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、定温度発熱中の正
特性サーミスタの、気中,液中における熱放散の違いを
電圧変化に換算して水位を検知する、正特性サーミスタ
式水位検知装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive-characteristic thermistor-type water level detecting device for detecting a water level of a positive-characteristic thermistor generating heat at a constant temperature by converting a difference in heat dissipation between air and liquid into a voltage change. About.
【0002】[0002]
【従来の技術】検知素子として熱線や負特性サーミスタ
を用いた水位検知装置の代わりに、近年では、定温度発
熱機能を有する正特性サーミスタを検知素子とした正特
性サーミスタ式水位検知装置が利用されるようになって
きた。これは、正特性サーミスタの特徴である自己温度
制御機能により、特別な駆動回路を必要としないためで
ある。2. Description of the Related Art In recent years, a positive-characteristic thermistor-type water level detecting device using a positive-characteristic thermistor having a constant-temperature heating function as a detecting element has been used instead of a water-level detecting device using a hot wire or a negative-characteristic thermistor as a detecting element. It has become. This is because a special drive circuit is not required due to the self-temperature control function which is a feature of the positive temperature coefficient thermistor.
【0003】正特性サーミスタを用いた水位検知回路と
して、特開昭60−14126号公報には、正特性サー
ミスタの出力電圧と基準電圧を比較器で比較したものが
開示されている。これは、キュリー温度に自己加熱され
た正特性サーミスタの検知素子が、気中から液中に入る
と、熱放散定数が大きいため冷却作用により自己発熱量
が抑えられ正特性サーミスタの自己加熱温度が気中より
も低い温度で一定に保たれる。このとき、正特性サーミ
スタの抵抗値が小さくなるため、正特性サーミスタの出
力電圧は大きくなる。この電圧変化と基準電圧との比較
値により、水位を検知するものである。As a water level detection circuit using a positive temperature coefficient thermistor, Japanese Patent Application Laid-Open No. Sho 60-14126 discloses a circuit in which an output voltage of a positive temperature coefficient thermistor is compared with a reference voltage by a comparator. This is because when the sensing element of the positive temperature coefficient thermistor self-heated to the Curie temperature enters the liquid from the air, the heat dissipation constant is large, so the self-heating amount is suppressed by the cooling action, and the self-heating temperature of the positive temperature coefficient thermistor is lowered. It is kept constant at a lower temperature than the air. At this time, since the resistance value of the positive characteristic thermistor decreases, the output voltage of the positive characteristic thermistor increases. The water level is detected based on a comparison value between the voltage change and the reference voltage.
【0004】一方、特開昭52−22948号公報に
は、検知素子として正特性サーミスタを用い、温度補償
素子として負特性サーミスタを前記正特性サーミスタに
直列に接続した構成の温度検知部を、リレーの励磁コイ
ルに直列に接続した水位検知装置が開示されている。正
特性サーミスタと負特性サーミスタは直列に接続されて
いるので、抵抗値が互いに反比例する相関関係が保たれ
ている。これにより、周囲温度が変化しても、水位検知
部の出力電圧の変化を小さく抑えることができる。前記
水位検知部が液中に位置した状態での出力電圧は、気中
に位置した状態よりも熱放散定数の違いにより小さな値
となる。この出力電圧の中間にリレー動作電圧を設定す
ることによって水位検知を行なうものである。On the other hand, Japanese Patent Laid-Open Publication No. 52-22948 discloses a relay having a structure in which a positive temperature coefficient thermistor is used as a detection element and a negative temperature coefficient thermistor is connected in series with the positive temperature coefficient thermistor as a temperature compensation element. A water level detecting device connected in series to the exciting coil of the above is disclosed. Since the positive characteristic thermistor and the negative characteristic thermistor are connected in series, the correlation that the resistance values are inversely proportional to each other is maintained. Thus, even when the ambient temperature changes, the change in the output voltage of the water level detection unit can be suppressed to a small value. The output voltage when the water level detector is located in the liquid is smaller than that in the air due to the difference in heat dissipation constant. The water level is detected by setting the relay operating voltage in the middle of the output voltage.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前記従
来の正特性サーミスタ式水位検知回路によると次のよう
な問題があった。正特性サーミスタの検知素子は、チタ
ン酸バリウム等の半導体セラミックスからなり、自己温
度制御機能を有しており、理想的には、気中,液中各々
の出力特性が周囲温度により大きく変化しないはずであ
る。図4は、横軸に周囲温度,縦軸に正特性サーミスタ
と直列に接続された分圧抵抗の端子電圧とした、正特性
サーミスタの温度依存性を示したグラフであるが、この
図に示すように、検知素子の絶縁被覆や構造上の熱的非
対象により、狭い温度範囲でしか正確な水位検知ができ
ないという欠点があった。However, the above-mentioned conventional positive characteristic thermistor type water level detecting circuit has the following problems. The sensing element of the positive temperature coefficient thermistor is made of semiconductor ceramics such as barium titanate and has a self-temperature control function. Ideally, the output characteristics of air and liquid should not change significantly with ambient temperature. It is. FIG. 4 is a graph showing the temperature dependence of the positive temperature coefficient thermistor, where the horizontal axis represents the ambient temperature, and the vertical axis represents the terminal voltage of the voltage dividing resistor connected in series with the positive temperature coefficient thermistor. As described above, there has been a drawback that accurate water level detection can be performed only in a narrow temperature range due to the insulating coating of the sensing element and thermal asymmetrical structure.
【0006】水位検知が可能な温度範囲が狭いというこ
とは、例えば出力電圧V1 =5.0Vを気中,液中の判
定レベルとすると、水位検知が可能な温度範囲は0℃〜
約45℃となり、使用環境がかなり限定されてしまう。
また、前述後者の従来技術では、温度補償素子を設けて
検知素子と温度的に相関関係をもたせることで、ある程
度の温度範囲まで水位検知が可能となっているが、出力
特性が周囲温度の変化に一定でなく傾きが生じてしまう
ため、更に広い温度範囲を要求すると、誤検知が生じて
しまう。正特性サーミスタと負特性サーミスタの素子の
特性が特殊なものを選びかつ詳細なマッチングを行なえ
れば誤検知は生じないはずなのだが、実際には不可能に
近い。The fact that the temperature range in which the water level can be detected is narrow means that, for example, when the output voltage V 1 = 5.0 V is determined as the air / liquid determination level, the temperature range in which the water level can be detected is 0 ° C.
The temperature is about 45 ° C., and the use environment is considerably limited.
In the latter conventional technique, the water level can be detected up to a certain temperature range by providing a temperature compensating element and correlating the temperature with the detecting element. When the temperature is required to be wider, an erroneous detection occurs. If the characteristics of the element of the positive characteristic thermistor and the characteristic of the negative characteristic thermistor are selected and detailed matching can be performed, erroneous detection should not occur, but it is almost impossible in practice.
【0007】本発明はこのような従来の欠点を解決する
ためになされたものであり、その目的とするところは、
周囲温度が変化しても気中,液中各々の出力特性が殆ど
一定であるような、温度補償回路を有した正特性サーミ
スタ式水位検知装置を提供することにある。The present invention has been made to solve such a conventional disadvantage, and the object thereof is to
It is an object of the present invention to provide a positive temperature coefficient thermistor type water level detecting device having a temperature compensating circuit in which the output characteristics of air and liquid are almost constant even when the ambient temperature changes.
【0008】[0008]
【課題を解決するための手段】前記課題を解決するべく
本発明による正特性サーミスタ式水位検知装置は、水位
検知用センサと温度補償用センサとからなる水位検知部
と、温度補償回路を有する水位検知回路との組み合わせ
によって構成される水位検知装置において、前記水位検
知部は、前記水位検知用センサに正特性サーミスタを用
い、前記温度補償用センサに負特性サーミスタを用いた
水位検知部であり、前記水位検知回路は、温度依存性を
有する前記正特性サーミスタが定温度に自己加熱された
状態で、前記負特性サーミスタを含む抵抗器のみで構成
された合成抵抗回路網と直列に接続された水位検知回路
であることを特徴とするものである。さらに前記水位検
知部は、前記正特性サーミスタと、前記負特性サーミス
タとが、電気的絶縁状態を保ち、かつ、略同一高さに設
置された構造であることを特徴とするものである。SUMMARY OF THE INVENTION In order to solve the above problems, a positive temperature coefficient thermistor type water level detecting device according to the present invention has a water level detecting section comprising a water level detecting sensor and a temperature compensating sensor, and a water level having a temperature compensating circuit. In a water level detection device configured by a combination with a detection circuit, the water level detection unit is a water level detection unit using a positive characteristic thermistor for the water level detection sensor, using a negative characteristic thermistor for the temperature compensation sensor, The water level detection circuit is configured such that, in a state where the temperature-dependent positive temperature coefficient thermistor is self-heated to a constant temperature, a water level connected in series with a combined resistance network composed only of resistors including the negative temperature coefficient thermistor It is a detection circuit. Further, the water level detection section is characterized in that the positive characteristic thermistor and the negative characteristic thermistor have a structure in which they are kept in an electrically insulated state and are installed at substantially the same height.
【0009】[0009]
【発明の実施の形態】上記構成による本発明の正特性サ
ーミスタ式水位検知装置の水位検知回路における温度補
償回路としては、次のようなものが考えられる。まず、
図5において、電流をI1,周囲温度をT,気中の熱放
散定数をCとすると、これらの間には、一般式 P=I1 2・R=C(Tc−T) Tcはサーミスタの自己加熱温度,Rはサーミスタの抵
抗値,より、 I1=f(T,C)=g(a/T)・f(C) という関係があると見做すことができる。ここでf,g
はTの函数であり、aは定数である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The following can be considered as a temperature compensation circuit in a water level detection circuit of a positive temperature coefficient thermistor type water level detection device of the present invention having the above-described configuration. First,
5, current I 1, the ambient temperature T, the heat dissipation constant in air is C, between these, the general formula P = I 1 2 · R = C (Tc-T) Tc thermistor The self-heating temperature R and the resistance value of the thermistor R can be considered to have a relationship of I 1 = f (T, C) = g (a / T) · f (C). Where f, g
Is a function of T and a is a constant.
【0010】また、電流I1の変化は、周囲温度Tの変
化に反比例するので、温度補償のために感熱抵抗素子を
使用することを考えれば周囲温度Tの変化を抵抗の変化
と見做すことができる。ここで、周囲温度Tによる影響
を補正するために、温度変化に対して反比例する抵抗値
変化を示す負特性サーミスタを使用することを考えてみ
ると、周囲温度Tの変化は、 R=Ro exp[B(1/T−1/To)] の式より、負特性サーミスタの抵抗値Rの変化に置き換
えることができる。Further, change of the current I 1 is inversely proportional to the change in the ambient temperature T, be regarded as a change in resistance to changes in ambient temperature T given that the use of heat-sensitive resistive element for temperature compensation be able to. Here, considering the use of a negative temperature coefficient thermistor exhibiting a resistance value change that is inversely proportional to a temperature change in order to correct the influence of the ambient temperature T, the change in the ambient temperature T is represented by R = Ro exp From the equation [B (1 / T-1 / To)], it can be replaced with a change in the resistance value R of the negative characteristic thermistor.
【0011】したがって、正特性サーミスタの電流I1
の周囲温度Tによる影響を、負特性サーミスタの抵抗値
Rに置き換えてみると次式のようになる。 I1=g(a/T)・f(C)=h(R)・f(C) ここで、hは函数である。このような気中における温度
特性を補正するには、 I1'=[h(R)・f(C)]・h-1(R)=f(C) なる演算で補正することができる。ここで、h(R)=
R,h-1(R)=1/Rとして置き換えてみると一目瞭
然である。ここで、1/Rなる演算を電子回路で行なう
には、周囲温度Tが変化したとき電流I1によって得ら
れた電圧V1を出力電圧Voが一定となるよう、R4・
V1/(R4+R)となる負特性サーミスタを使用する
ことが考えられる。ここで、R4は負特性サーミスタと
の分圧抵抗である。Therefore, the current I 1 of the positive temperature coefficient thermistor
When the effect of the ambient temperature T is replaced with the resistance value R of the negative characteristic thermistor, the following expression is obtained. I 1 = g (a / T) · f (C) = h (R) · f (C) where h is a function. In order to correct such temperature characteristics in the air, the temperature characteristics can be corrected by the following calculation: I 1 ′ = [h (R) · f (C)] · h −1 (R) = f (C) Here, h (R) =
It is obvious at a glance when replacing as R, h -1 (R) = 1 / R. Here, 1 / R becomes operational to perform in an electronic circuit, such that the voltages V 1 obtained by the current I 1 when the ambient temperature T changes the output voltage Vo is constant, R 4 ·
It is conceivable to use a negative characteristic thermistor that satisfies V 1 / (R 4 + R). Here, R 4 is a voltage dividing resistance with the negative characteristic thermistor.
【0012】これによって、容易に1/Rの演算が実現
できるが、負特性サーミスタだけの温度補償では、正特
性サーミスタに流れる電流の周囲温度による変動を補償
しきれず、測定誤差が大きくなってしまう。そこで、温
度補償回路を、負特性サーミスタを含む合成抵抗回路網
によって構成することで、周囲温度による測定誤差を極
めて少なくしている。Thus, the 1 / R calculation can be easily realized, but the temperature compensation using only the negative characteristic thermistor cannot completely compensate for the fluctuation of the current flowing through the positive characteristic thermistor due to the ambient temperature, and the measurement error increases. . Therefore, by configuring the temperature compensation circuit with a combined resistance network including a negative temperature coefficient thermistor, the measurement error due to the ambient temperature is extremely reduced.
【0013】前記正特性サーミスタ及び負特性サーミス
タの構造としては、チップ素子がホウケイ酸ガラス等に
て封止されたガラス封止型のものが、あらゆる環境にお
いて特性が非常に安定しているので好ましい。As the structure of the positive temperature coefficient thermistor and the negative temperature coefficient thermistor, a glass-sealed type in which the chip element is sealed with borosilicate glass or the like is preferable because the characteristics are very stable in all environments. .
【0014】該サーミスタは、気中,液中に置かれるた
め防水構造が要求され、短絡しないようにサーミスタを
モールド材により電気的絶縁処理を施す必要がある。前
記モールド材としては、耐熱性,疎水性に優れたフッ素
系樹脂が好ましく、低温であれば、オレフィン系樹脂が
経済的である。また、SUS,Al等の金属ケースを用
いて応答性を早くすることも可能である。Since the thermistor is placed in the air or liquid, a waterproof structure is required, and the thermistor must be electrically insulated with a molding material so as not to cause a short circuit. As the molding material, a fluorine-based resin excellent in heat resistance and hydrophobicity is preferable, and at a low temperature, an olefin-based resin is economical. It is also possible to use a metal case such as SUS or Al to make the response faster.
【0015】水位検知部の該サーミスタの位置関係は、
広温度範囲において気中,液中の温度が極端に違っても
誤検知することなく、全ての条件で良い特性を得るため
には、略同一高さに設置する必要がある。これには保持
具を用いることが考えられるが、正特性サーミスタが自
己加熱している熱を負特性サーミスタがあまり拾わない
ように熱絶縁物を用いるのが望ましい。The positional relationship of the thermistor of the water level detecting section is as follows:
In order to obtain good characteristics under all conditions without erroneous detection even if the temperature in the air or liquid is extremely different in a wide temperature range, it is necessary to install them at substantially the same height. For this purpose, it is conceivable to use a holder, but it is desirable to use a thermal insulator so that the negative-characteristic thermistor does not pick up much heat generated by the positive-characteristic thermistor.
【0016】[0016]
【実施例】以下、図面を参照して本発明を更に詳しく説
明する。図2に、本発明の一実施例として使用した水位
検知部の水位検知用センサ1と温度補償用センサ2の構
造を示す。符号11はチタン酸バリウム系セラミック素
子(キュリー温度200℃)をガラス封止した正特性サ
ーミスタ、符号21はMn,Co,Ni等の遷移金属酸
化物を混合,焼結したものをガラス封止した負特性サー
ミスタである。前記正特性サーミスタ11および負特性
サーミスタ21の両端部にはPTFE絶縁電線13がカ
シメ端子12により接続されており、これらがフッ素系
樹脂のモールド材14によりそれぞれモールドされ、水
位検知用センサ1と温度補償用センサ2を構成してい
る。前記水位検知用センサ1と温度補償用センサ2は、
保持具3により略同一高さに一定距離を保った状態で固
定されている。本実施例では前記モールド材14に、内
部にPFA,外部にPTFEのフッ素系樹脂収縮チュー
ブを使用した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the drawings. FIG. 2 shows the structure of the water level detection sensor 1 and the temperature compensation sensor 2 of the water level detection unit used as one embodiment of the present invention. Reference numeral 11 denotes a positive temperature coefficient thermistor in which a barium titanate-based ceramic element (Curie temperature: 200 ° C.) is glass-sealed, and reference numeral 21 denotes a glass-sealed material obtained by mixing and sintering a transition metal oxide such as Mn, Co, and Ni. It is a negative characteristic thermistor. A PTFE insulated wire 13 is connected to both ends of the positive temperature coefficient thermistor 11 and the negative temperature coefficient thermistor 21 by caulking terminals 12, and these are molded by a fluororesin molding material 14, respectively. The compensating sensor 2 is configured. The water level detecting sensor 1 and the temperature compensating sensor 2
The holder 3 is fixed at a substantially same height while maintaining a certain distance. In the present embodiment, a fluorine-based resin shrink tube made of PFA inside and PTFE outside is used for the molding material 14.
【0017】次に、図1および図4を参照して、本発明
の正特性サーミスタ式水位検知回路について説明する。
図1は本発明の一実施例を示した正特性サーミスタ式水
位検知装置の回路図であり、電源Eに正特性サーミスタ
THp,抵抗R1,半固定抵抗VRの順に直列に接続さ
れ、前記正特性サーミスタTHpと前記抵抗R1間の端
子電圧V1を、抵抗R2,抵抗R3,負特性サーミスタ
THnからなる合成抵抗回路網Rxと分圧抵抗R4によ
って出力電圧Voを出力する回路構成となっている。Next, referring to FIG. 1 and FIG. 4, a description will be given of a positive characteristic thermistor type water level detecting circuit according to the present invention.
FIG. 1 is a circuit diagram of a positive-characteristic thermistor type water level detecting device showing one embodiment of the present invention. A positive-character thermistor THp, a resistor R 1 , and a semi-fixed resistor VR are connected in series to a power supply E in this order. the terminal voltages V 1 between the thermistor THp and the resistor R 1, resistor R 2, resistors R 3, the circuit configuration for outputting the output voltage Vo by combining resistor network Rx and voltage dividing resistors R 4 consisting of a negative temperature coefficient thermistor THn It has become.
【0018】図4は、図1に示した回路図を用いて、正
特性サーミスタTHpの気中,液中における周囲温度に
よる電圧変化の関係をグラフに表したものである。動作
条件を、電源EがDC24V、抵抗R1が100Ω,1
/2W、半固定抵抗VRがMax200Ωとして、正特
性サーミスタTHpを気中,液中(水深30mm)にお
いて、周囲温度0℃〜80℃を20℃間隔で端子電圧V
1を測定した。このグラフからもわかるように、正特性
サーミスタTHpは温度依存性のあることが明らかであ
る。FIG. 4 is a graph showing the relationship between the temperature change of the positive temperature coefficient thermistor THp in the air and liquid depending on the ambient temperature using the circuit diagram shown in FIG. The operating conditions, power source E DC24V, the resistance R 1 is 100 [Omega, 1
/ 2W, the semi-fixed resistor VR is set to Max 200Ω, and the terminal voltage V is applied to the positive temperature coefficient thermistor THp in the air and in the liquid (water depth 30 mm) at an ambient temperature of 0 ° C to 80 ° C at 20 ° C intervals.
1 was measured. As can be seen from this graph, it is clear that the positive temperature coefficient thermistor THp has temperature dependency.
【0019】ここで、図4において気中における各温度
の端子電圧V1をみると、V1(0℃)=4.9V,V
1(40℃)=4.0V,V1(80℃)=3.1V,
であるが、全温度範囲において出力電圧Voを一定にす
るには、V1×R4/(Rx+R4)=Vo(一定)よ
り、合成抵抗回路網Rx(0℃),Rx(40℃),R
x(80℃)の値が求められれば、出力電圧Voは0℃
〜80℃間の周囲温度変化に対して出力は一定となる。Here, looking at the terminal voltage V 1 at each temperature in the air in FIG. 4, V 1 (0 ° C.) = 4.9 V, V
1 (40 ° C.) = 4.0 V, V 1 (80 ° C.) = 3.1 V,
However, in order to make the output voltage Vo constant over the entire temperature range, the combined resistance network Rx (0 ° C.) and Rx (40 ° C.) are obtained from V 1 × R 4 / (Rx + R 4 ) = Vo (constant). , R
If the value of x (80 ° C.) is obtained, the output voltage Vo becomes 0 ° C.
The output is constant with respect to an ambient temperature change between ℃ 80 ° C.
【0020】これを本実施例にあてはめれば、出力電圧
Vo=2V,分圧抵抗R4=10kΩとすると、合成抵
抗回路網Rxの値はRx(0℃)=14.5kΩ,Rx
(40℃)=10.0kΩ,Rx(80℃)=5.5k
Ωの値が要求されることとなる。合成抵抗回路網Rxの
値を要求される値とするために各々の抵抗値の計算を行
なうと、抵抗R2=1.624kΩ,抵抗R3=14.
6kΩの値となる。なお、負特性サーミスタTHnは、
R(70℃)=7.0kΩ,B定数=3510Kのガラ
ス封止型負特性サーミスタを使用した。If this is applied to the present embodiment, assuming that the output voltage Vo = 2 V and the voltage dividing resistor R 4 = 10 kΩ, the value of the combined resistance network Rx is Rx (0 ° C.) = 14.5 kΩ, Rx
(40 ° C.) = 10.0 kΩ, Rx (80 ° C.) = 5.5 k
A value of Ω will be required. When the respective resistance values are calculated in order to set the value of the combined resistance network Rx to the required value, the resistance R 2 = 1.624 kΩ and the resistance R 3 = 14.
The value is 6 kΩ. Note that the negative characteristic thermistor THn is
A glass-sealed negative characteristic thermistor with R (70 ° C.) = 7.0 kΩ and B constant = 3510 K was used.
【0021】以上のようにして、温度補償回路を含む正
特性サーミスタ式水位検知回路を構成し、図1に示した
前記水位検知部を、気中,液中に設置して前述と同様の
条件において出力電圧Voを測定し図3に示した。この
グラフからわかるように、温度依存性が極めて少ないこ
とが証明された。As described above, a positive temperature coefficient thermistor type water level detecting circuit including a temperature compensating circuit is constructed, and the water level detecting section shown in FIG. And the output voltage Vo was measured and shown in FIG. As can be seen from this graph, it was proved that the temperature dependency was extremely small.
【0022】本発明では、水位検知部は前述したよう
に、水位検知用センサ1と温度補償用センサ2が略同一
高さに設置された構造になっているため、気中,液中の
周囲温度が極端に違っていても誤検知することはない。
例えば、周囲温度が気中で0℃,液中で80℃の場合、
各々のセンサが略同一高さであれば図3に示す如く誤検
知は生じないが、温度補償用センサ2が液中に浸かり水
位検知用センサ1が気中にあった場合、出力電圧Voが
3.15Vとなり、水位検知用センサ1が気中にあるに
もかかわらず液中にあると誤検知してしまう。同じく、
水位検知用センサ1が液中に浸かり温度補償用センサ2
が気中にあった場合でも誤検知してしまう。In the present invention, as described above, the water level detecting unit has a structure in which the water level detecting sensor 1 and the temperature compensating sensor 2 are installed at substantially the same height, so that the surroundings in the air and liquid are provided. There is no erroneous detection even if the temperature is extremely different.
For example, if the ambient temperature is 0 ° C in air and 80 ° C in liquid,
If the respective sensors are at substantially the same height, no erroneous detection occurs as shown in FIG. 3, but when the temperature compensation sensor 2 is immersed in the liquid and the water level detection sensor 1 is in the air, the output voltage Vo is reduced. It becomes 3.15 V, and the water level detection sensor 1 erroneously detects that the sensor 1 is in the liquid even though it is in the air. Similarly,
The water level detection sensor 1 is immersed in the liquid and the temperature compensation sensor 2
Erroneous detection even if the user is in the air.
【0023】上記実施例では、水位検知用センサと温度
補償用センサを保持具によって、略同一高さに設置し、
正特性サーミスタと負特性サーミスタが互いに熱影響を
受けないように一定距離を保つようにしたが、該2つの
センサを一体化したとしても、回路上の動作点が変わる
だけであり、回路定数や温度補償センサの仕様を変える
ことによって同様の特性を得ることができる。In the above embodiment, the water level detecting sensor and the temperature compensating sensor are installed at substantially the same height by the holder,
The positive temperature coefficient thermistor and the negative temperature coefficient thermistor are kept at a certain distance so as not to be affected by heat. However, even if the two sensors are integrated, only the operating point on the circuit changes, and the circuit constant and the Similar characteristics can be obtained by changing the specifications of the temperature compensation sensor.
【0024】また、合成抵抗回路網の抵抗は基板に実装
され、温度補償用センサのリード線と接続されるのが望
ましいが、図6に示すように、合成抵抗回路網の抵抗を
水位検知部に組み込み、温度補償用センサのリード線に
中継的に直接接続することにより小型化が可能である。
このとき、該抵抗は絶縁収縮チューブ15によって保護
される。The resistance of the combined resistance network is preferably mounted on a substrate and connected to the lead wire of the temperature compensation sensor. However, as shown in FIG. And miniaturization is possible by connecting it directly to the lead wire of the temperature compensation sensor in a relay manner.
At this time, the resistance is protected by the insulating contraction tube 15.
【0025】[0025]
【発明の効果】以上詳述したように本発明によれば、負
特性サーミスタを含む抵抗器のみで構成された合成抵抗
回路網を温度補償回路としたことにより、正特性サーミ
スタのもつ周囲温度依存性を著しく低減でき、広温度範
囲において安定した出力電圧が得られる正特性サーミス
タ式水位検知回路が実現でき、同時に水位検知部の水位
検知用センサと温度補償用センサを略同一高さにするこ
とにより正確に水位検知を行なうことのできる正特性サ
ーミスタ式水位検知装置となる。As described above in detail, according to the present invention, the ambient temperature dependence of the positive temperature coefficient thermistor is obtained by using a temperature compensating circuit as a composite resistance network composed only of resistors including a negative temperature coefficient thermistor. A positive-characteristic thermistor-type water level detection circuit that can significantly reduce the water resistance and obtain a stable output voltage over a wide temperature range can be realized, and at the same time, the water level detection sensor and the temperature compensation sensor of the water level detection section should be approximately the same height Thus, a positive-characteristic thermistor-type water level detecting device capable of accurately detecting the water level can be obtained.
【図1】本発明の一実施例を示す図で、正特性サーミス
タ式水位検知装置の回路構成図である。FIG. 1 is a view showing one embodiment of the present invention, and is a circuit configuration diagram of a positive characteristic thermistor type water level detecting device.
【図2】本発明の一実施例を示す図で、正特性サーミス
タ式水位検知装置の水位検知部の構造図である。FIG. 2 is a view showing one embodiment of the present invention, and is a structural diagram of a water level detecting unit of the positive characteristic thermistor type water level detecting device.
【図3】本発明の一実施例における周囲温度−出力電圧
特性図である。FIG. 3 is an ambient temperature-output voltage characteristic diagram in one embodiment of the present invention.
【図4】本発明の一実施例に使用された正特性サーミス
タの温度依存性を示すグラフで、周囲温度−端子電圧特
性図である。FIG. 4 is a graph showing the temperature dependency of a positive temperature coefficient thermistor used in one embodiment of the present invention, and is a graph showing ambient temperature-terminal voltage characteristics.
【図5】本発明の一実施例に使用された正特性サーミス
タの温度依存性を示すグラフで、周囲温度−端子電流特
性図である。FIG. 5 is a graph showing the temperature dependence of a positive temperature coefficient thermistor used in one embodiment of the present invention, and is a graph showing an ambient temperature-terminal current characteristic.
【図6】本発明の他の実施例を示す図で、正特性サーミ
スタ式水位検知装置の水位検知部の温度補償用センサの
構造図である。FIG. 6 is a view showing another embodiment of the present invention, and is a structural diagram of a temperature compensating sensor of a water level detecting unit of the positive characteristic thermistor type water level detecting device.
1…水位検知用センサ 2…温度補償用センサ 3…保持具 11…正特性サーミスタ 12…カシメ端子 13…PTFE絶縁電線 14…モールド材 15…絶縁収縮チューブ 21…負特性サーミスタ THp…正特性サーミスタ THn…負特性サーミスタ VR…半固定抵抗 R1〜R3…抵抗 R4…分圧抵抗 Rx…合成抵抗回路網DESCRIPTION OF SYMBOLS 1 ... Water level detection sensor 2 ... Temperature compensation sensor 3 ... Holder 11 ... Positive characteristic thermistor 12 ... Caulking terminal 13 ... PTFE insulated wire 14 ... Molding material 15 ... Insulation contraction tube 21 ... Negative characteristic thermistor THp ... Positive characteristic thermistor THn ... Negative characteristic thermistor VR... Semi-fixed resistors R 1 to R 3. Resistors R 4 .
Claims (2)
からなる水位検知部と、温度補償回路を有する水位検知
回路との組み合わせによって構成される水位検知装置に
おいて、前記水位検知部は、前記水位検知用センサに正
特性サーミスタを用い、前記温度補償用センサに負特性
サーミスタを用いた水位検知部であり、前記水位検知回
路は、温度依存性を有する前記正特性サーミスタが定温
度に自己加熱された状態で、前記負特性サーミスタを含
む抵抗器のみで構成された合成抵抗回路網と直列に接続
された水位検知回路であることを特徴とする正特性サー
ミスタ式水位検知装置。1. A water level detection device comprising a combination of a water level detection unit including a water level detection sensor and a temperature compensation sensor and a water level detection circuit having a temperature compensation circuit, wherein the water level detection unit includes the water level detection unit. A water level detection unit using a positive temperature coefficient thermistor for the detection sensor and using a negative temperature coefficient thermistor for the temperature compensation sensor, wherein the water level detection circuit is configured such that the temperature-dependent positive temperature coefficient thermistor is self-heated to a constant temperature. A positive-characteristic thermistor-type water-level detecting device, wherein the water-level detecting circuit is connected in series with a combined resistance network composed of only resistors including the negative-characteristic thermistor in the closed state.
タと、前記負特性サーミスタとが、電気的絶縁状態を保
ち、かつ、略同一高さに設置された構造であることを特
徴とする請求項1記載の正特性サーミスタ式水位検知装
置。2. The water level detection unit according to claim 1, wherein the positive temperature coefficient thermistor and the negative temperature coefficient thermistor are in a state of being electrically insulated and installed at substantially the same height. Item 7. A positive temperature coefficient thermistor type water level detecting device according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20429696A JPH1030949A (en) | 1996-07-15 | 1996-07-15 | Water-level detector of positive-characteristic thermistor type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20429696A JPH1030949A (en) | 1996-07-15 | 1996-07-15 | Water-level detector of positive-characteristic thermistor type |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1030949A true JPH1030949A (en) | 1998-02-03 |
Family
ID=16488139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20429696A Pending JPH1030949A (en) | 1996-07-15 | 1996-07-15 | Water-level detector of positive-characteristic thermistor type |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1030949A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334204A (en) * | 2005-06-03 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Electric washing machine |
JP2009074157A (en) * | 2007-09-20 | 2009-04-09 | E & E Corp | Brown's gas generator having forced circulation water cooling system |
WO2018229885A1 (en) * | 2017-06-14 | 2018-12-20 | 三菱電機株式会社 | Refrigeration cycle device |
US20240044724A1 (en) * | 2022-08-02 | 2024-02-08 | Borgwarner Inc. | Thermistor self-heating compensation |
-
1996
- 1996-07-15 JP JP20429696A patent/JPH1030949A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334204A (en) * | 2005-06-03 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Electric washing machine |
JP2009074157A (en) * | 2007-09-20 | 2009-04-09 | E & E Corp | Brown's gas generator having forced circulation water cooling system |
WO2018229885A1 (en) * | 2017-06-14 | 2018-12-20 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2018229885A1 (en) * | 2017-06-14 | 2020-01-09 | 三菱電機株式会社 | Refrigeration cycle device |
US20240044724A1 (en) * | 2022-08-02 | 2024-02-08 | Borgwarner Inc. | Thermistor self-heating compensation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5741074A (en) | Linear integrated sensing transmitter sensor | |
US5837884A (en) | Humidity sensor using temperature sensing resistor controlled to be at constant temperature of more than 150° C. | |
US4276536A (en) | Self-heating thermistor probe for low temperature applications | |
JPS59182315A (en) | Thermal type mass flowmeter | |
EP1559145A1 (en) | Method and system for providing thermal control of superluminescent diodes | |
JPH1030949A (en) | Water-level detector of positive-characteristic thermistor type | |
KR100266458B1 (en) | External connection mechanism of temperature-measuring type for printed-circuit board | |
US20030056584A1 (en) | Mass flow sensor and measuring apparatus | |
GB2046922A (en) | Fluid flowmeter | |
JP4510526B2 (en) | Infrared thermometer | |
JPH08146026A (en) | Thermistor flow velocity sensor and flow rate sensor for liquid | |
JPS59104515A (en) | Detector for liquid level | |
JP3681468B2 (en) | Temperature coefficient correction type temperature detector | |
US3187576A (en) | Electronic thermometer | |
Fraden et al. | Temperature sensors | |
JPH0682286A (en) | Thermal type flowmeter | |
KR20030018345A (en) | Mass flow sensor and measuring apparatus | |
JPS6019446B2 (en) | radiation thermometer | |
JPH0486524A (en) | Liquid level detector | |
JP2596170Y2 (en) | Positive thermistor velocity converter | |
JP2001281033A (en) | Flow-rate sensor for liquid | |
JP2000146653A (en) | Flow sensor and temperature sensor | |
JPH1183887A (en) | Positive-characteristic thermistor flow velocity converter | |
JP3220729U (en) | Temperature sensor | |
JPS6142122Y2 (en) |