[go: up one dir, main page]

JPH1030854A - Absorption heat pump - Google Patents

Absorption heat pump

Info

Publication number
JPH1030854A
JPH1030854A JP8187657A JP18765796A JPH1030854A JP H1030854 A JPH1030854 A JP H1030854A JP 8187657 A JP8187657 A JP 8187657A JP 18765796 A JP18765796 A JP 18765796A JP H1030854 A JPH1030854 A JP H1030854A
Authority
JP
Japan
Prior art keywords
solution
refrigerant
absorption
heat
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8187657A
Other languages
Japanese (ja)
Other versions
JP3353101B2 (en
Inventor
Takahide Sugiyama
隆英 杉山
Nakahiro Inagaki
那加博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP18765796A priority Critical patent/JP3353101B2/en
Publication of JPH1030854A publication Critical patent/JPH1030854A/en
Application granted granted Critical
Publication of JP3353101B2 publication Critical patent/JP3353101B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】 【課題】 水−アンモニアを作動媒体とした吸収式ヒー
トポンプにおいて、冷媒蒸気に含まれる水分を除去し、
冷媒の純度を高めるために用いる精留装置の性能を向上
させ、COPを改善する。 【解決手段】 再生ユニット31と、凝縮器32と、蒸
発器35と、蒸発器35で蒸発した冷媒蒸気と再生ユニ
ット31で生成された弱溶液とを導入し、弱溶液に冷媒
蒸気を吸収させ強溶液を生成する吸収ユニット36と、
吸収ユニット36で生成された強溶液を加圧し吸収ユニ
ットを経て再生ユニット31に導入する溶液ポンプ37
とを含んでなる吸収式ヒートポンプにおいて、再生ユニ
ット31を、その上部に内装され蒸気を冷却する分縮器
42を含んで構成し、溶液ポンプ37の出口配管61に
流量調整弁59を介装した分岐強溶液管62を設け、該
分岐強溶液管62の下流端を、前記分縮器上方に開口さ
せて配置した。
(57) [Problem] To remove water contained in refrigerant vapor in an absorption heat pump using water-ammonia as a working medium,
Improve the performance of the rectifier used to increase the purity of the refrigerant and improve the COP. SOLUTION: A regeneration unit 31, a condenser 32, an evaporator 35, a refrigerant vapor evaporated by the evaporator 35 and a weak solution generated by the regeneration unit 31 are introduced, and the weak solution absorbs the refrigerant vapor. An absorption unit 36 for producing a strong solution;
A solution pump 37 which pressurizes the strong solution generated by the absorption unit 36 and introduces the solution into the regeneration unit 31 via the absorption unit.
In the absorption heat pump including the above, the regeneration unit 31 is configured to include a decomposer 42 provided at the upper part thereof for cooling the steam, and a flow control valve 59 is provided in an outlet pipe 61 of the solution pump 37. A branch strong solution pipe 62 was provided, and the downstream end of the branch strong solution pipe 62 was arranged so as to open above the decomposer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、吸収式ヒートポン
プに係り、特に精留器を備えた再生ユニットを含んでな
る吸収式ヒートポンプとその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption heat pump, and more particularly to an absorption heat pump including a regeneration unit having a rectifier and a method of operating the same.

【0002】[0002]

【従来の技術】図3に従来知られているGAXサイクル
を備えた一般的なアンモニア吸収式ヒートポンプの構成
を示す。図示の吸収式ヒートポンプは、再生ユニット3
1、凝縮器32、冷媒熱交換器33、膨張弁34、蒸発
器35、吸収ユニット36、溶液ポンプ37、減圧弁5
7を含んで構成されている。
2. Description of the Related Art FIG. 3 shows a configuration of a general ammonia absorption heat pump having a GAX cycle conventionally known. The absorption type heat pump shown in FIG.
1, condenser 32, refrigerant heat exchanger 33, expansion valve 34, evaporator 35, absorption unit 36, solution pump 37, pressure reducing valve 5
7 are included.

【0003】再生ユニット31は、縦形の再生容器38
の内部に、下部の方から順に、再生入熱器39、弱溶液
の熱交換器40、回収段41aと濃縮段41bからなる
精留器41、熱交換流路をなす分縮器42を設けて形成
されている。再生容器38の底部は熱交換器40の入り
側に配管で接続されている。この再生ユニット31によ
り、溶液ポンプ37から供給される強溶液55が、再生
容器38の頂部から取り出される冷媒蒸気44と再生容
器38の底部に溜る弱溶液56に分離される。
[0003] The regeneration unit 31 has a vertical regeneration vessel 38.
Are provided in the order from the bottom, a regeneration heat input device 39, a weak solution heat exchanger 40, a rectifier 41 composed of a recovery stage 41a and a concentration stage 41b, and a decomposer 42 forming a heat exchange channel. It is formed. The bottom of the regeneration vessel 38 is connected to the inlet side of the heat exchanger 40 by a pipe. By the regeneration unit 31, the strong solution 55 supplied from the solution pump 37 is separated into the refrigerant vapor 44 taken out from the top of the regeneration vessel 38 and the weak solution 56 collected at the bottom of the regeneration vessel 38.

【0004】吸収ユニット36は、頂部に配置された散
布装置51とその下方に配置された吸収熱回収熱交換部
(すなわち吸収再生熱交換器)52をなす熱交換流路
と、吸収熱回収熱交換部52の下方に配置された吸収放
熱部53をなす熱交換流路と、それらを内装した吸収容
器50と、を含んで頂部に配置された散布装置51aと
その下方に配置された吸収放熱部53をなす熱交換流路
を内装してなる低圧側吸収器50aと、を含んで構成さ
れている。散布装置51は減圧弁57を介して前記熱交
換器40の出側に接続され、吸収熱回収熱交換部52の
入側は前記分縮器42の出側に接続されている。吸収容
器50の底部に溶液ポンプ37の吸い込み側が接続さ
れ、溶液ポンプ37の吐出側が前記分縮器42の入側に
接続されている。吸収熱回収熱交換部52の出側が前記
精留器41の回収段41aと濃縮段41bの間に接続さ
れている。
[0004] The absorption unit 36 is provided with a heat exchange flow path that forms a spraying device 51 disposed at the top and an absorption heat recovery heat exchange section (that is, an absorption regeneration heat exchanger) 52 disposed below, and an absorption heat recovery heat exchanger. A dispersing device 51a disposed on the top including a heat exchange flow path forming an absorbing / radiating portion 53 disposed below the exchanging portion 52 and an absorbing container 50 containing the same, and an absorbing / radiating disposed below the exchanging device 51a. And a low-pressure side absorber 50a internally provided with a heat exchange channel forming the part 53. The spraying device 51 is connected to the outlet of the heat exchanger 40 via a pressure reducing valve 57, and the inlet of the absorption heat recovery heat exchanger 52 is connected to the outlet of the decompressor 42. The suction side of the solution pump 37 is connected to the bottom of the absorption container 50, and the discharge side of the solution pump 37 is connected to the input side of the decompressor 42. The outlet side of the absorption heat recovery heat exchange section 52 is connected between the recovery stage 41a and the concentration stage 41b of the rectifier 41.

【0005】凝縮器32は冷却流体が通流される熱交換
コイル45を内装し、頂部が前記再生ユニット31の頂
部に、底部が冷媒熱交換器33の加熱側流体流路入り口
に接続されている。冷媒熱交換器33の被加熱側流体流
路の出側が前記吸収容器50の底部に接続されている。
The condenser 32 includes a heat exchange coil 45 through which a cooling fluid flows. The condenser 32 has a top connected to the top of the regeneration unit 31 and a bottom connected to the inlet of the refrigerant-side heat exchanger 33 on the heating side. . The outlet side of the heated fluid channel of the refrigerant heat exchanger 33 is connected to the bottom of the absorption container 50.

【0006】蒸発器35は頂部に配置された冷媒散布装
置47と冷媒散布装置47の下方に配置され冷却流体が
通流される熱交換コイル48を内装して構成され、その
冷媒散布装置47は前記冷媒熱交換器33の加熱側流体
流路の出側に膨張弁34を介して接続されている。蒸発
器35はまた、前記冷媒熱交換器33の被加熱側流体流
路入り側に連通されている。
The evaporator 35 is provided with a refrigerant dispersing device 47 disposed at the top and a heat exchange coil 48 disposed below the refrigerant dispersing device 47 and through which a cooling fluid flows. The refrigerant heat exchanger 33 is connected to the outlet side of the heating-side fluid flow path via an expansion valve 34. The evaporator 35 is also connected to a side of the refrigerant heat exchanger 33 on which the heated fluid path enters.

【0007】再生ユニット31の分縮器42は、下方か
ら上昇して来る溶液の蒸気を冷却し、その一部を凝縮さ
せて精留器41に流下させ、そこで下方から上昇して来
る溶液の蒸気(冷媒であるアンモニアの蒸気と水の蒸気
の混合体)と接触させ、蒸気の冷媒純度を高める働きを
している。
[0007] The decomposer 42 of the regenerating unit 31 cools the vapor of the solution rising from below, condenses a part of the vapor, and flows it down to the rectifier 41, where the solution of the solution rising from below is cooled. It is in contact with steam (a mixture of steam of ammonia, which is a refrigerant, and water), and serves to increase the refrigerant purity of the steam.

【0008】効率の高いGAXサイクルでは、吸収熱回
収熱交換部52で、熱交換器内部を通るアンモニア濃度
の高い溶液(強溶液)を沸騰させて熱交換器外部を流れ
る弱溶液から強溶液への熱回収を行っている。しかし、
この場合、再生器での最高温度が高くなり、したがって
再生器で発生する蒸気中の水分量が大きくなる。このた
め、再生ユニット31から取り出される冷媒蒸気の純度
を上げるための精留器41に加わる負荷が大きくなり、
大きな精留器が必要になる。
In a highly efficient GAX cycle, a solution having a high ammonia concentration (a strong solution) passing through the heat exchanger is boiled in an absorption heat recovery heat exchange section 52 to convert a weak solution flowing outside the heat exchanger into a strong solution. Heat recovery. But,
In this case, the maximum temperature in the regenerator increases, and accordingly, the amount of moisture in the steam generated in the regenerator increases. Therefore, the load applied to the rectifier 41 for increasing the purity of the refrigerant vapor extracted from the regeneration unit 31 increases,
A large rectifier is required.

【0009】図4に、特開平5−187736号公報に
開示されたコールドソリューションフィールドと呼ばれ
る別の方式による精留方法の例を示す。この方法に依れ
ば、溶液ポンプ11で加圧された強溶液の一部が分岐さ
れて再生器と別体で設けられた精留器19の頭頂部に導
入されている。導入された強溶液は下方から上昇する冷
媒蒸気と直接接触し、冷媒蒸気内の溶媒蒸気(水蒸気)
を凝縮させて冷媒蒸気の純度を向上させる。精留によっ
て生ずる熱は強溶液に回収される。
FIG. 4 shows an example of another rectification method called a cold solution field disclosed in Japanese Patent Application Laid-Open No. 5-187736. According to this method, a part of the strong solution pressurized by the solution pump 11 is branched and introduced into the top of a rectifier 19 provided separately from the regenerator. The introduced strong solution comes into direct contact with the refrigerant vapor rising from below, and the solvent vapor (water vapor) in the refrigerant vapor
To improve the purity of the refrigerant vapor. The heat generated by the rectification is recovered in a strong solution.

【0010】[0010]

【発明が解決しようとする課題】図3に示す精留方式に
よれば、分縮器42内を流れる強溶液で外部を上昇する
蒸気を凝縮させ、凝縮した溶液を精留器41に滴下還流
させて蒸気と接触させるが、成績係数(COP)の高い
吸収式ヒートポンプとするためには、十分な性能と大き
さの精留器が必要であり、かつ分縮器42で凝縮され還
流する溶液の量を少なくする必要があった。しかし、還
流する溶液の量を少なくすると、精留器で十分な気液の
接触を確保するのが難しいため、純度の低い冷媒がで
き、結果的に成績係数が低くなるという問題があった。
According to the rectification method shown in FIG. 3, the vapor that rises outside is condensed with a strong solution flowing in the decomposer 42, and the condensed solution is dropped and refluxed in the rectifier 41. However, in order to obtain an absorption heat pump having a high coefficient of performance (COP), a rectifier having sufficient performance and size is required, and a solution that is condensed and refluxed by the decomposer 42 is required. Had to be reduced. However, when the amount of the refluxing solution is reduced, it is difficult to ensure sufficient gas-liquid contact in the rectifier, and there is a problem that a low-purity refrigerant is produced, resulting in a low coefficient of performance.

【0011】一方、図4に示す方式によれば、冷たい過
冷却溶液(すなわち溶液ポンプ11で加圧されて導入さ
れた強溶液)に蒸気を直接接触させるので精留効果は高
いが、溶液ポンプ11で加圧された強溶液が精留部に達
する途中で温度が上がってしまい、十分な効果を得るた
めには、溶液ポンプ11の出側で精留器19に向けて分
岐する溶液量を大目に設定する必要があった。その結
果、のこりの強溶液が吸収器から回収できる熱量が減
り、GAXサイクルを行ってもCOPが期待するように
向上しないという問題があった。
On the other hand, according to the system shown in FIG. 4, the steam is brought into direct contact with a cold supercooled solution (ie, a strong solution pressurized and introduced by the solution pump 11), so that the rectification effect is high. The temperature rises while the strong solution pressurized at 11 reaches the rectifying section, and in order to obtain a sufficient effect, the amount of the solution branched toward the rectifier 19 at the outlet side of the solution pump 11 must be reduced. It had to be set to tolerate. As a result, the amount of heat that can be recovered by the strong solution from the absorber is reduced, and the COP does not improve as expected even when the GAX cycle is performed.

【0012】本発明の課題は、水−アンモニアを作動媒
体としたヒートポンプにおいて、発生したアンモニア蒸
気に含まれる水分を除去し、冷媒の純度を高めるために
用いる精留装置の性能を向上させ、COPを改善するに
ある。
An object of the present invention is to improve the performance of a rectification device used for removing the water contained in the generated ammonia vapor and improving the purity of the refrigerant in a heat pump using water-ammonia as a working medium, To improve.

【0013】[0013]

【課題を解決するための手段】上記の課題は、吸収剤に
冷媒を吸収してなる冷媒濃度が高い強溶液を導入し、該
強溶液を冷媒蒸気と冷媒濃度が低い弱溶液とに分離生成
する再生ユニット31と、この再生ユニット31で生成
された冷媒蒸気を冷却して液冷媒とする凝縮器32と、
この凝縮器で生成された液冷媒を膨張弁34を介して導
入し、熱媒との熱交換により前記液冷媒を蒸発させる蒸
発器35と、この蒸発器35で蒸発された冷媒蒸気と前
記再生ユニット31で生成された弱溶液とを導入し、弱
溶液に冷媒蒸気を吸収させ強溶液を生成する吸収ユニッ
ト36と、この吸収ユニット36で生成された強溶液を
加圧し吸収ユニットを経て前記再生ユニット31に導入
する溶液ポンプ37とを含んでなる吸収式ヒートポンプ
において、前記再生ユニット31を、その上部に内装さ
れ蒸気を冷却する分縮器42を含んで構成し、 前記溶
液ポンプ37の出口配管61に流量制御手段59を介装
した分岐管62を設け、該分岐管62の下流端を、前記
分縮器上方に開口させて配置することにより、達成され
る。
The object of the present invention is to introduce a strong solution having a high refrigerant concentration by absorbing a refrigerant into an absorbent and separating the strong solution into refrigerant vapor and a weak solution having a low refrigerant concentration. A condenser 32 that cools the refrigerant vapor generated by the regeneration unit 31 into a liquid refrigerant,
The liquid refrigerant generated by the condenser is introduced through an expansion valve 34, and the evaporator 35 evaporates the liquid refrigerant by heat exchange with a heat medium. An absorption unit 36 for introducing the weak solution generated in the unit 31 to absorb the refrigerant vapor into the weak solution to generate a strong solution, and pressurizing the strong solution generated by the absorption unit 36 to perform the regeneration through the absorption unit. In the absorption heat pump including the solution pump 37 introduced into the unit 31, the regeneration unit 31 is configured to include a decomposer 42 installed in an upper part thereof for cooling steam, and an outlet pipe of the solution pump 37. This is achieved by providing a branch pipe 62 with a flow control means 59 interposed in 61 and disposing a downstream end of the branch pipe 62 so as to open above the decomposer.

【0014】溶液ポンプ37で加圧された強溶液が、吸
収ユニットに導かれる前に、出口配管61を経て再生ユ
ニット31に内装された分縮器42を流過したのち吸収
ユニット36に導かれるように構成するのが望ましい。
Before the strong solution pressurized by the solution pump 37 is guided to the absorption unit, the strong solution flows through the decompressor 42 provided in the regeneration unit 31 via the outlet pipe 61 and then to the absorption unit 36. It is desirable to configure as follows.

【0015】上記の課題はまた、吸収剤に冷媒を吸収し
てなる冷媒濃度が高い強溶液を再生ユニット31に導入
し、導入された該強溶液を蒸気と冷媒濃度が低い弱溶液
とに分離生成し、該蒸気の一部を再生ユニット31上部
に内装された分縮器で冷却液化して下方に滴下させ、再
生ユニット31で生成された冷媒蒸気を凝縮器32で冷
却して液冷媒とし、この液冷媒を膨張弁34を介して蒸
発器35に導入して熱媒との熱交換により蒸発させ、蒸
発した冷媒蒸気を前記再生ユニット31で生成された弱
溶液に吸収熱回収熱交換部をなす熱交換流路の伝熱面上
で吸収させて強溶液を生成し、この強溶液を加圧して前
記分縮器内の流路を通過させ外側の蒸気の熱を奪ったの
ち前記熱交換流路に通流して前記吸収時の弱溶液の熱を
該強溶液に回収し、熱回収後の強溶液を再生ユニット3
1に導入して上記サイクルを繰り返させる吸収式ヒート
ポンプの運転方法において、前記加圧された強溶液の一
部を再生ユニット31頂部に導き、前記分縮器外面上に
散布する手順を設けることによっても、達成される。
The above-mentioned problem is also solved by introducing a strong solution having a high refrigerant concentration obtained by absorbing a refrigerant into an absorbent into a regeneration unit 31 and separating the introduced strong solution into a vapor and a weak solution having a low refrigerant concentration. Generated, a part of the vapor is cooled and liquefied by a decompressor built in the upper part of the regeneration unit 31 and dropped downward, and the refrigerant vapor generated by the regeneration unit 31 is cooled by the condenser 32 to become a liquid refrigerant. This liquid refrigerant is introduced into an evaporator 35 through an expansion valve 34 and evaporated by heat exchange with a heat medium, and the evaporated refrigerant vapor is absorbed into a weak solution generated by the regeneration unit 31 to absorb heat and recover heat. The strong solution is absorbed on the heat transfer surface of the heat exchange flow path to form a strong solution, and the strong solution is pressurized and passed through the flow path in the decomposer to remove the heat of the outside steam, and then heat Flow through the exchange channel to recover the heat of the weak solution at the time of absorption into the strong solution. Play strong solution after the heat recovery unit 3
In the method of operating an absorption heat pump that repeats the above-described cycle by introducing the above-described method into the first step, a part of the strongly pressurized solution is guided to the top of the regenerating unit 31 and sprayed on the outer surface of the decomposer. Is also achieved.

【0016】前記冷媒としてはアンモニア、前記吸収剤
(溶媒)としては水を用いるのが望ましい。
It is desirable to use ammonia as the refrigerant and water as the absorbent (solvent).

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例を図1に基
づいて説明する。図示の実施例は、アンモニアを冷媒と
し、吸収剤(溶媒)を水とした吸収式ヒートポンプの例
である。本実施例の吸収式ヒートポンプが、前記図3に
示した吸収式ヒートポンプと異なるのは、再生ユニット
31の構成と、溶液ポンプ37の吐出側配管の接続先の
2点である。他の構成は、前記図3に示した吸収式ヒー
トポンプと同じであるので、同一の符号を付し、説明を
省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. The illustrated embodiment is an example of an absorption heat pump using ammonia as a refrigerant and an absorbent (solvent) as water. The absorption heat pump of this embodiment is different from the absorption heat pump shown in FIG. 3 in two points, that is, the configuration of the regeneration unit 31 and the connection destination of the discharge-side pipe of the solution pump 37. Other configurations are the same as those of the absorption heat pump shown in FIG. 3, and thus the same reference numerals are given and the description is omitted.

【0018】本実施例の再生ユニット31は、縦形の再
生容器38の内部に、下部の方から順に、再生入熱器3
9、弱溶液の熱交換器40、回収段41aと液受け皿4
1cと濃縮段41bからなる精留器41、熱交換流路を
なす分縮器42、分岐溶液散布装置60を設けて形成さ
れる。再生容器38の底部は熱交換器40の入り側に配
管で接続され、熱交換器40の出側は減圧弁57を介し
て吸収ユニット36の散布装置51に接続されている。
この再生ユニット31により、溶液ポンプ37から供給
される強溶液が、再生容器38の頂部から取り出される
冷媒蒸気44と再生容器38の底部に溜る弱溶液56に
分離される。
The regenerating unit 31 of the present embodiment includes a regenerating heat input device 3 inside a vertical regenerating vessel 38 in order from the bottom.
9. Heat exchanger 40 for weak solution, recovery stage 41a and liquid tray 4
It is formed by providing a rectifier 41 comprising 1c and a concentration stage 41b, a separator 42 forming a heat exchange channel, and a branched solution spraying device 60. The bottom of the regeneration vessel 38 is connected to the inlet side of the heat exchanger 40 by a pipe, and the outlet side of the heat exchanger 40 is connected to the spraying device 51 of the absorption unit 36 via a pressure reducing valve 57.
By the regeneration unit 31, the strong solution supplied from the solution pump 37 is separated into the refrigerant vapor 44 extracted from the top of the regeneration vessel 38 and the weak solution 56 collected at the bottom of the regeneration vessel 38.

【0019】吸収容器50の底部に溶液ポンプ37の吸
い込み側が接続され、溶液ポンプ37の吐出側が溶液ポ
ンプの出口配管である強溶液管61で前記分縮器42の
入側に接続されている。そして、強溶液管61に分岐し
て流量制御手段である流量調整弁59を介装した分岐管
である分岐強溶液管62が設けられ、この分岐強溶液管
62の下流端は、前記分岐溶液散布装置60に接続され
ている。つまり、溶液ポンプ37で加圧された強溶液の
一部は、流量調整弁59で流量調整されたのち分岐溶液
散布装置60に導かれ、この分岐溶液散布装置60から
分縮器42の外面上に散布されるようになっている。
The suction side of the solution pump 37 is connected to the bottom of the absorption container 50, and the discharge side of the solution pump 37 is connected to the inlet of the decomposer 42 by a strong solution pipe 61 which is the outlet pipe of the solution pump. A strong solution pipe 62 is provided as a branch pipe having a flow control valve 59 serving as a flow control means, which branches into the strong solution pipe 61. The downstream end of the strong solution pipe 62 is connected to the branch solution. It is connected to the spraying device 60. That is, a part of the strong solution pressurized by the solution pump 37 is guided to the branch solution spraying device 60 after the flow rate is adjusted by the flow rate adjusting valve 59, and the branched solution is sprayed from the branch solution spraying device 60 onto the outer surface of the decompressor 42. Is to be sprayed.

【0020】このように構成された実施例の動作につい
て以下に説明する。凝縮器32は、再生ユニット31で
生成された冷媒蒸気44を導入し、熱交換コイル45に
通流される冷却流体により冷却して凝縮する。凝縮器3
2により凝縮された液冷媒46は、冷媒熱交換器33の
加熱流体側流路を経て膨張弁34で減圧される。膨張弁
34で減圧された冷媒は蒸発器35の頂部に設けられた
冷媒散布装置47から熱交換コイル48上に散布され
る。散布された冷媒は熱交換コイル48に通流される冷
却流体の熱を奪って蒸発し、この冷媒蒸気49は冷媒熱
交換器33の被加熱流体流路を通って、前記吸収容器5
0の底部に導入される。吸収容器50の底部に導入され
た冷媒蒸気は、吸収放熱部53をなす熱交換流路の外側
及び吸収熱回収熱交換部52をなす熱交換流路の外側を
上昇する。冷媒蒸気はその過程で、それら熱交換流路の
伝熱面上で、弱溶液の散布装置51から散布される弱溶
液に吸収され、散布された弱溶液は冷媒濃度を高めて強
溶液となり、吸収容器50の底部に溜る。冷媒蒸気の吸
収により発生する吸収熱は、吸収放熱部53にあっては
熱交換流路内を流れる冷却流体によって連続的に取り出
され、吸収熱回収熱交換部52にあっては熱交換流路の
内側に通流される強溶液に連続的に回収され、再生に必
要な熱の一部として利用される。
The operation of the embodiment configured as described above will be described below. The condenser 32 introduces the refrigerant vapor 44 generated by the regeneration unit 31 and cools and condenses the refrigerant with the cooling fluid flowing through the heat exchange coil 45. Condenser 3
The liquid refrigerant 46 condensed by 2 is depressurized by the expansion valve 34 via the heating fluid side flow path of the refrigerant heat exchanger 33. The refrigerant decompressed by the expansion valve 34 is sprayed onto the heat exchange coil 48 from a refrigerant spraying device 47 provided at the top of the evaporator 35. The sprayed refrigerant takes off the heat of the cooling fluid flowing through the heat exchange coil 48 and evaporates, and the refrigerant vapor 49 passes through the fluid passage to be heated of the refrigerant heat exchanger 33 and passes through the absorption vessel 5.
0 is introduced at the bottom. The refrigerant vapor introduced into the bottom of the absorption container 50 rises outside the heat exchange flow path forming the absorption / radiation section 53 and outside the heat exchange flow path forming the absorption heat recovery heat exchange section 52. In the process, the refrigerant vapor is absorbed by the weak solution sprayed from the weak solution spraying device 51 on the heat transfer surfaces of the heat exchange channels, and the sprayed weak solution increases the refrigerant concentration to become a strong solution, It collects at the bottom of the absorption container 50. Absorbed heat generated by the absorption of the refrigerant vapor is continuously extracted by the cooling fluid flowing in the heat exchange channel in the absorption / radiation section 53, and is absorbed in the heat exchange channel in the absorption heat recovery heat exchange section 52. It is continuously collected in a strong solution flowing inside the, and is used as a part of heat required for regeneration.

【0021】吸収容器50の底部に溜った強溶液は例え
ば圧力4〜5kg/cm2、濃度約50%の過冷却されたア
ンモニア水溶液であり、溶液ポンプ37により昇圧さ
れ、その大部分は強溶液管61を経て再生ユニット31
の分縮器42に導かれる。分縮器42に導かれた強溶液
は、分縮器42を通りつつ分縮器42の外側を流れる流
体の熱を奪って昇温され、昇温された強溶液は吸収ユニ
ット36の吸収熱回収熱交換部52の下部入口からその
熱交換流路内に導入されている。この吸収熱回収熱交換
部52を通りつつ熱交換流路外側の流体の熱を回収した
強溶液55は、再生ユニット31の精留器41に導入さ
れる。さらに詳しく述べると、吸収熱回収熱交換部52
において、冷媒蒸気の吸収により発生する吸収熱によっ
て沸騰し、気液の二相流になった強溶液55は、吸収熱
回収熱交換部52の上部出口から再生ユニット31の精
留器41の中段(濃縮段41bと回収段41aの間)に
配置された液受け皿41cに送られる。精留器41の液
受け皿41cに導入された二相流の強溶液55は、冷媒
蒸気と溶液とに分離される。
The strong solution collected at the bottom of the absorption container 50 is, for example, a supercooled aqueous ammonia solution having a pressure of 4 to 5 kg / cm 2 and a concentration of about 50%. Reproduction unit 31 via tube 61
To the divider 42. The strong solution guided to the decomposer 42 takes heat of the fluid flowing outside the decomposer 42 while passing through the decomposer 42 and is heated, and the heated strong solution is absorbed by the absorption unit 36. The recovered heat exchange section 52 is introduced into the heat exchange channel from the lower entrance. The strong solution 55 which has recovered the heat of the fluid outside the heat exchange channel while passing through the absorption heat recovery heat exchange section 52 is introduced into the rectifier 41 of the regeneration unit 31. More specifically, the absorption heat recovery heat exchange section 52
In the above, the strong solution 55 that has been boiled by the absorption heat generated by the absorption of the refrigerant vapor and has become a two-phase flow of gas and liquid flows from the upper outlet of the absorption heat recovery heat exchange unit 52 to the middle stage of the rectifier 41 of the regeneration unit 31 (Between the concentration stage 41b and the recovery stage 41a) and sent to the liquid receiving tray 41c. The two-phase strong solution 55 introduced into the liquid receiving tray 41c of the rectifier 41 is separated into a refrigerant vapor and a solution.

【0022】また、溶液ポンプ37により昇圧された強
溶液の残り(強溶液分岐管62に導かれた分)は、分岐
溶液散布装置60に導かれ、分岐溶液散布装置60から
下方に散布される。この強溶液は過冷却状態であるた
め、散布された直後に蒸気を吸収して温度が上がり、飽
和状態になる。飽和状態になった溶液は、分縮器42上
に降下して分縮器42内を流れる強溶液に熱を奪われつ
つ蒸気を吸収する。すなわち、分縮器42は吸収器に近
い働きをする。分縮器42の外面を通過した溶液は、精
留器41の濃縮段41bに流下する。
The remainder of the strong solution pressurized by the solution pump 37 (the amount guided to the strong solution branch pipe 62) is guided to the branch solution spraying device 60 and sprayed downward from the branch solution spraying device 60. . Since this strong solution is in a supercooled state, immediately after being sprayed, it absorbs steam and rises in temperature, becoming saturated. The saturated solution falls on the decomposer 42 and absorbs steam while being deprived of heat by the strong solution flowing through the decomposer 42. That is, the decompressor 42 functions like an absorber. The solution that has passed through the outer surface of the separator 42 flows down to the concentration stage 41 b of the rectifier 41.

【0023】一方、前記分離された冷媒蒸気は精留器4
1の濃縮段41bを上昇する過程で前記流下する強溶液
と気液接触して冷媒濃度を高め、さらに上昇して分縮器
42の表面に達する。蒸気は、分縮器42内に通流され
る低温の強溶液との熱交換により更に蒸気が凝縮除去さ
れて冷媒蒸気の濃度が高められたのち、凝縮器32に供
給される。一方、分離された溶液は精留器41の回収段
41aを下降する過程で冷媒濃度が減少し、弱溶液の熱
交換器40を通過すると弱溶液となり再生容器38の底
部に溜まる。この弱溶液56は、例えば圧力20kg/c
m2で5〜10%のアンモニア水溶液であり、再生入熱器
39による加熱でこの弱溶液から発生する蒸気には水蒸
気が40〜50%の水蒸気が含まれている。この弱溶液
56は、熱交換器40と減圧弁57を通って吸収ユニッ
ト36に設けられた弱溶液の散布装置51に供給されて
いる。精留器41の回収段41aには、平衡状態ではあ
るが比較的低温の還流液が濃縮段41bを経て供給さ
れ、その結果精留効率は上がり、比較的小さな精留器で
も十分な効果が得られるとともに、分岐する流量は比較
的小さくて済む。そのため、溶液ポンプ37で加圧され
た強溶液の大部分は吸収器に導入され、吸収熱を回収す
るので、COPを大きくすることができる。発明者等の
試験によれば、分岐する強溶液の比率は、溶液ポンプが
吐出する量の10〜20%位が適当である。この分岐量
は、分縮器で凝縮滴下する還流方式(図3の方式)の場
合の還流流量よりも大きく、精留器41での気液接触に
問題が生じるほどではない。
On the other hand, the separated refrigerant vapor is supplied to the rectifier 4
In the course of ascending the one concentration stage 41b, the strong solution flowing down comes into gas-liquid contact to increase the concentration of the refrigerant, and further rises to reach the surface of the decomposer 42. The vapor is supplied to the condenser 32 after the vapor is further condensed and removed by heat exchange with a strong low-temperature solution passed through the condenser 42 to increase the concentration of the refrigerant vapor. On the other hand, the separated solution decreases in refrigerant concentration in the process of descending the recovery stage 41a of the rectifier 41, becomes a weak solution when passing through the weak solution heat exchanger 40, and accumulates at the bottom of the regeneration vessel 38. The weak solution 56 has a pressure of, for example, 20 kg / c.
It is an aqueous ammonia solution of 5 to 10% in m 2 , and the steam generated from this weak solution by heating by the regeneration heat input device 39 contains 40 to 50% of steam. The weak solution 56 is supplied to the weak solution spraying device 51 provided in the absorption unit 36 through the heat exchanger 40 and the pressure reducing valve 57. An equilibrium but relatively low-temperature reflux liquid is supplied to the recovery stage 41a of the rectifier 41 through the concentration stage 41b. As a result, the rectification efficiency is increased, and a sufficient effect is obtained even with a relatively small rectifier. At the same time, the branching flow rate is relatively small. Therefore, most of the strong solution pressurized by the solution pump 37 is introduced into the absorber, and the absorption heat is recovered, so that the COP can be increased. According to the tests by the inventors, the ratio of the strong solution that branches off is appropriately about 10 to 20% of the amount discharged by the solution pump. This amount of branching is larger than the reflux flow rate in the case of the reflux system (the system of FIG. 3) in which the condensate is condensed and dropped by the condensing device, and is not so large as to cause a problem in gas-liquid contact in the rectifier 41.

【0024】上記図1に示した実施例においては、分縮
器42の上方に分岐溶液散布装置を独立に設けてある
が、必ずしも分縮器42と別体に設ける必要はない。例
えば、分縮器42を水平に巻回された複数段のコイルで
構成し、その最上段のコイルに、下向きの多数の小孔を
設け、この小孔からそれより下段のコイルに強溶液を散
布するように構成しても、同じ効果が得られる。要は、
分縮器42で蒸気を凝縮液化することで得られた溶液を
下方に滴下して精留器での気液接触を行わせるだけでは
なく、過冷却された強溶液を直接散布することで、精留
器における十分な気液接触を確保するとともに、この散
布液を分縮器42上で冷却することで吸収作用をも持た
せることである。
In the embodiment shown in FIG. 1, the branch solution spraying device is provided independently above the decomposer 42, but it is not always necessary to provide the device separately from the decomposer 42. For example, the decomposer 42 is composed of a plurality of horizontally wound coils, a number of small holes directed downward are provided in the uppermost coil, and a strong solution is applied to the lower coil from the small holes. The same effect can be obtained even if it is configured to spray. In short,
Not only is the solution obtained by condensing and liquefying the vapor in the condenser 42 being dropped downward to perform gas-liquid contact in the rectifier, but also by directly spraying a supercooled strong solution, In addition to ensuring sufficient gas-liquid contact in the rectifier, the spray liquid is cooled on the separator 42 to have an absorbing function.

【0025】また、図2に示す本発明の第2の実施例
は、分縮器42に通流される冷却流体を図1の場合の強
溶液に代えて外部流体、例えば冷却水にしたものであ
る。この場合、強溶液管61は分縮器42に接続される
代わりに吸収熱回収熱交換部52の入り側に接続され、
分縮器42の出口、入り口には冷却水配管が接続され
る。溶液ポンプ37で加圧された強溶液の大部分は強溶
液管61を経て吸収熱回収熱交換部52に導入され、残
りは前記第1の実施例の場合と同様、流量調整弁59を
介装した分岐強溶液管62を経て分岐溶液散布装置60
に導かれる。本実施例においても、前記第1の実施例と
同様の効果が得られる
In the second embodiment of the present invention shown in FIG. 2, the cooling fluid flowing through the decomposer 42 is replaced with an external fluid, for example, cooling water, instead of the strong solution shown in FIG. is there. In this case, the strong solution pipe 61 is connected to the entrance side of the absorption heat recovery heat exchange unit 52 instead of being connected to the decomposer 42,
A cooling water pipe is connected to an outlet and an inlet of the decompressor 42. Most of the strong solution pressurized by the solution pump 37 is introduced into the absorption heat recovery heat exchange section 52 through the strong solution pipe 61, and the rest is passed through the flow control valve 59 as in the case of the first embodiment. A branching solution spraying device 60 through a branching strong solution pipe 62
It is led to. In this embodiment, the same effects as those of the first embodiment can be obtained.

【0026】[0026]

【発明の効果】本発明によれば、精留器における十分な
気液接触面積を確保して精留効果を発揮させるととも
に、吸収器には熱回収に必要なだけの強溶液が供給さ
れ、吸収ヒートポンプのCOPを向上させることができ
る。
According to the present invention, a sufficient gas-liquid contact area in the rectifier is ensured to exert the rectification effect, and the strong solution necessary for heat recovery is supplied to the absorber. The COP of the absorption heat pump can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の要部構成を示す系統図
である。
FIG. 1 is a system diagram showing a configuration of a main part of a first embodiment of the present invention.

【図2】本発明の第2の実施例の要部構成を示す系統図
である。
FIG. 2 is a system diagram showing a configuration of a main part of a second embodiment of the present invention.

【図3】従来技術の例の要部構成を示す系統図である。FIG. 3 is a system diagram showing a configuration of a main part of an example of the related art.

【図4】従来技術の他の要部構成を示す系統図である。FIG. 4 is a system diagram showing another configuration of the main part of the prior art.

【符号の説明】[Explanation of symbols]

11 溶液ポンプ 12 吸収器 16 発生器 19 精留器 31 再生ユニット 32 凝縮器 33 冷媒熱交換器 34 膨張弁 35 蒸発器 36 吸収ユニッ
ト 37 溶液ポンプ 38 再生容器 39 再生入熱器 40 弱溶液の熱
交換器 41 精留器 41a 回収段 41b 濃縮段 41c 液受け皿 42 分縮器 44 冷媒蒸気 45 熱交換コイル 46 液冷媒 47 冷媒散布装置 48 熱交換コイ
ル 49 冷媒蒸気 50 吸収容器 51 散布装置 52 吸収熱回収
熱交換部 53 吸収放熱部 55 強溶液 56 弱溶液 57 減圧弁 58 弱溶液 60 分岐溶液散
布装置 61 強溶液管 62 分岐強溶液
DESCRIPTION OF SYMBOLS 11 Solution pump 12 Absorber 16 Generator 19 Rectifier 31 Regeneration unit 32 Condenser 33 Refrigerant heat exchanger 34 Expansion valve 35 Evaporator 36 Absorption unit 37 Solution pump 38 Regeneration container 39 Regeneration heat input device 40 Heat exchange of weak solution Container 41 Rectifier 41a Recovery stage 41b Concentration stage 41c Liquid tray 42 Decompressor 44 Refrigerant vapor 45 Heat exchange coil 46 Liquid refrigerant 47 Refrigerant spraying device 48 Heat exchange coil 49 Refrigerant vapor 50 Absorption container 51 Spraying device 52 Absorption heat recovery heat Exchange unit 53 Absorption / radiation unit 55 Strong solution 56 Weak solution 57 Pressure reducing valve 58 Weak solution 60 Branch solution spraying device 61 Strong solution pipe 62 Branch strong solution pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収剤に冷媒を吸収してなる冷媒濃度が
高い強溶液を導入し、該強溶液を冷媒蒸気と冷媒濃度が
低い弱溶液とに分離生成する精留器を備えた再生ユニッ
トと、この再生ユニットで生成された冷媒蒸気を冷却し
て液冷媒とする凝縮器と、この凝縮器で生成された液冷
媒を膨張弁を介して導入し、熱媒との熱交換により前記
液冷媒を蒸発させる蒸発器と、この蒸発器で蒸発された
冷媒蒸気と前記再生ユニットで生成された弱溶液とを導
入し、弱溶液に冷媒蒸気を吸収させ強溶液を生成する吸
収ユニットと、この吸収ユニットで生成された強溶液を
加圧し吸収ユニットを経て前記再生ユニットに導入する
溶液ポンプとを含んでなる吸収式ヒートポンプにおい
て、 前記再生ユニットを、その上部に内装され蒸気を冷却す
る分縮器を含んで構成し、 前記溶液ポンプの出口配管に流量制御手段を介装した分
岐管を設け、該分岐管の下流端を、前記分縮器上方に開
口させて配置したことを特徴とする吸収式ヒートポン
プ。
1. A regenerating unit having a rectifier for introducing a strong solution having a high refrigerant concentration formed by absorbing a refrigerant into an absorbent and separating and generating the strong solution into refrigerant vapor and a weak solution having a low refrigerant concentration. And a condenser that cools the refrigerant vapor generated by the regeneration unit to become a liquid refrigerant, and introduces the liquid refrigerant generated by the condenser through an expansion valve, and exchanges the liquid by heat exchange with a heat medium. An evaporator for evaporating the refrigerant, an absorption unit for introducing the refrigerant vapor evaporated in the evaporator and the weak solution generated in the regeneration unit, absorbing the refrigerant vapor in the weak solution to generate a strong solution, and A solution pump that pressurizes the strong solution generated by the absorption unit and introduces the solution into the regeneration unit via the absorption unit. Including Configured, the branch pipe is interposed a flow control means on the outlet pipe of the solution pump is provided, the downstream end of the branch pipe, absorption heat pump, characterized in that arranged by the opening in the dephlegmator upward.
【請求項2】 溶液ポンプで加圧された強溶液は、出口
配管を経て再生ユニットに内装された分縮器を流過した
のち吸収ユニットに導かれるように構成されていること
を特徴とする請求項1に記載の吸収式ヒートポンプ。
2. A strong solution pressurized by a solution pump is configured to flow through an outlet pipe through a decomposer built in a regeneration unit, and then guided to an absorption unit. The absorption heat pump according to claim 1.
【請求項3】 分縮器上方に、供給された溶液を下方に
散布する分岐溶液散布装置が配置され、分岐管の下流端
は分岐溶液散布装置に接続されていることを特徴とする
請求項1または2に記載の吸収式ヒートポンプ。
3. A branch solution spraying device for spraying a supplied solution downward is provided above the decomposer, and a downstream end of the branch pipe is connected to the branch solution spraying device. 3. The absorption heat pump according to 1 or 2.
【請求項4】 吸収剤に冷媒を吸収してなる冷媒濃度が
高い強溶液を再生ユニットに導入し、導入された該強溶
液を蒸気と冷媒濃度が低い弱溶液とに分離生成し、該蒸
気の一部を再生ユニット上部に内装された分縮器で冷却
液化して下方に滴下させ、再生ユニットで生成された冷
媒蒸気を凝縮器で冷却して液冷媒とし、この液冷媒を膨
張弁を介して蒸発器に導入して熱媒との熱交換により蒸
発させ、蒸発した冷媒蒸気を前記再生ユニットで生成さ
れた弱溶液に吸収熱回収熱交換部をなす熱交換流路の伝
熱面上で吸収させて強溶液を生成し、この強溶液を加圧
して前記分縮器内の流路を通過させ外側の蒸気の熱を奪
ったのち前記熱交換流路に通流して前記吸収時の弱溶液
の熱を該強溶液に回収し、熱回収後の強溶液を再生ユニ
ットに導入して上記サイクルを繰り返させる吸収式ヒー
トポンプの運転方法において、前記加圧された強溶液の
一部を再生ユニット頂部に導き、前記分縮器外面上に散
布するようにしたことを特徴とする吸収式ヒートポンプ
の運転方法。
4. A strong solution having a high refrigerant concentration, which is obtained by absorbing a refrigerant into an absorbent, is introduced into a regeneration unit, and the introduced strong solution is separated and generated into a vapor and a weak solution having a low refrigerant concentration. Is cooled and liquefied by a decompressor built in the upper part of the regenerating unit and dropped downward, and the refrigerant vapor generated by the regenerating unit is cooled by a condenser to become a liquid refrigerant, and this liquid refrigerant is expanded by an expansion valve. Introduced into the evaporator and evaporated by heat exchange with the heat medium, and the evaporated refrigerant vapor is absorbed into the weak solution generated by the regeneration unit on the heat transfer surface of the heat exchange flow path forming an absorption heat recovery heat exchange unit. To generate a strong solution, pressurize this strong solution to pass through the flow path in the decomposer and take away the heat of the outside steam, and then flow through the heat exchange flow path to absorb the strong solution. The heat of the weak solution is recovered to the strong solution, and the strong solution after the heat recovery is introduced into the regeneration unit to recover the heat. The method of operating an absorption heat pump in which a cycle is repeated, wherein a part of the pressurized strong solution is guided to a top of a regeneration unit, and is sprayed on an outer surface of the decomposer. how to drive.
JP18765796A 1996-07-17 1996-07-17 Absorption heat pump Expired - Fee Related JP3353101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18765796A JP3353101B2 (en) 1996-07-17 1996-07-17 Absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18765796A JP3353101B2 (en) 1996-07-17 1996-07-17 Absorption heat pump

Publications (2)

Publication Number Publication Date
JPH1030854A true JPH1030854A (en) 1998-02-03
JP3353101B2 JP3353101B2 (en) 2002-12-03

Family

ID=16209922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18765796A Expired - Fee Related JP3353101B2 (en) 1996-07-17 1996-07-17 Absorption heat pump

Country Status (1)

Country Link
JP (1) JP3353101B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100580343C (en) 2007-06-01 2010-01-13 晏林宝 Condenser, evaporator, heat dissipation method and cooling method used in refrigeration system
US8903617B2 (en) 2004-10-05 2014-12-02 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US8954251B2 (en) 2004-10-05 2015-02-10 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9123249B2 (en) 2004-10-05 2015-09-01 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9834215B2 (en) 2004-10-05 2017-12-05 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9834184B2 (en) 2013-09-13 2017-12-05 Vision Works Ip Corporation Trailer braking system and controller
US9855986B2 (en) 2013-08-28 2018-01-02 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9868385B2 (en) 2013-08-28 2018-01-16 Vision Works IP Absolute acceleration sensor for use within moving vehicles
US9878693B2 (en) 2004-10-05 2018-01-30 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
CN107726672A (en) * 2017-10-13 2018-02-23 中国科学院理化技术研究所 Premixing continuous variable temperature distillation generator and absorption type circulating system
US10436125B2 (en) 2004-10-05 2019-10-08 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384682B2 (en) 2004-10-05 2019-08-20 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9878693B2 (en) 2004-10-05 2018-01-30 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US8954251B2 (en) 2004-10-05 2015-02-10 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9123249B2 (en) 2004-10-05 2015-09-01 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9643538B2 (en) 2004-10-05 2017-05-09 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9830821B2 (en) 2004-10-05 2017-11-28 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9834215B2 (en) 2004-10-05 2017-12-05 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US12297785B2 (en) 2004-10-05 2025-05-13 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US8903617B2 (en) 2004-10-05 2014-12-02 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US10436125B2 (en) 2004-10-05 2019-10-08 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US10410520B2 (en) 2004-10-05 2019-09-10 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US10391989B2 (en) 2004-10-05 2019-08-27 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
CN100580343C (en) 2007-06-01 2010-01-13 晏林宝 Condenser, evaporator, heat dissipation method and cooling method used in refrigeration system
US9868385B2 (en) 2013-08-28 2018-01-16 Vision Works IP Absolute acceleration sensor for use within moving vehicles
US9855986B2 (en) 2013-08-28 2018-01-02 Vision Works Ip Corporation Absolute acceleration sensor for use within moving vehicles
US9834184B2 (en) 2013-09-13 2017-12-05 Vision Works Ip Corporation Trailer braking system and controller
CN107726672A (en) * 2017-10-13 2018-02-23 中国科学院理化技术研究所 Premixing continuous variable temperature distillation generator and absorption type circulating system
CN107726672B (en) * 2017-10-13 2020-06-12 中国科学院理化技术研究所 Premixable continuous variable temperature distillation generator and absorption recirculation system

Also Published As

Publication number Publication date
JP3353101B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP3353101B2 (en) Absorption heat pump
EP3627071A1 (en) Aqua-ammonia absorption refrigeration system
JP2978563B2 (en) Vapor heat exchange dual GAX absorption cycle
US4149857A (en) Process for the two-stage separation of ammonia
KR0177726B1 (en) Ammonia Glyceride absorption cycle
JP2881593B2 (en) Absorption heat pump
JPH09243195A (en) Absorption heat pump
RU2776906C1 (en) Ammonia-water absorption cooling system
JP2787111B2 (en) Absorption heat pump
JP2924397B2 (en) Absorption type heat pump device
JP3716041B2 (en) Absorption heat pump device
JPH07198222A (en) Heat pump including reverse rectifying part
JPH05322358A (en) Absorption type water cooler using reverse osmotic film
JPH0670364B2 (en) Turbine outlet Working fluid absorption / condensation system
JPH05280822A (en) Absorption refrigeration system
JP2874598B2 (en) Rectifier
JP2945971B1 (en) Ammonia absorption refrigerator
EP3964769A1 (en) Aqua-ammonia absorption refrigeration process and method of revamping
JP4740519B2 (en) Multi-column generator for improved ammonia water absorption system
JPH1030859A (en) Absorption heat pump
KR0156395B1 (en) Rectifier of ammonia absorption air conditioner
JP3084650B2 (en) Absorption chiller / heater and its control method
JP2000320918A (en) Ammonia absorption refrigerator
JP3147736B2 (en) Absorption heat pump
JP2513985B2 (en) Method for improving efficiency of heat cycle with absorber using condensate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees