JPH10308221A - Manufacture of carbon material for negative electrode of now-aqueous solvent secondary battery - Google Patents
Manufacture of carbon material for negative electrode of now-aqueous solvent secondary batteryInfo
- Publication number
- JPH10308221A JPH10308221A JP9119635A JP11963597A JPH10308221A JP H10308221 A JPH10308221 A JP H10308221A JP 9119635 A JP9119635 A JP 9119635A JP 11963597 A JP11963597 A JP 11963597A JP H10308221 A JPH10308221 A JP H10308221A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- tar
- hydrogen
- negative electrode
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は大容量かつ不可逆容
量の少ない非水溶媒二次電池負極用炭素材料の製造法に
関するものである。The present invention relates to a method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery having a large capacity and a small irreversible capacity.
【0002】[0002]
【従来の技術】負極に炭素材料を用いた非水溶媒二次電
池はリチウムイオン二次電池として、その高エネルギー
密度、軽量小型および長期保存性などの利点により、す
でに実用化されている。しかし、電子機器の小型化、軽
量化に対応するための負極用炭素材料高容量化が必要で
ある。そのため、例えば、特開平6−187988号公
報に記載されているように、ピッチやタール類をニトロ
化合物と反応させることにより、重量当たりの放電容量
が500mAh/gを超える高容量な炭素材料が見出さ
れ、検討されてきた。ところが、さらに長時間作動可能
なリチウムイオン二次電池の開発に対する要求は大き
く、これまでの材料では容量において要求に対応するに
は不充分であった。これまで、低温で焼成したコークス
やフェーノール樹脂を焼成したポリアセン等が高い容量
を有することが見いだされているが、容量が向上する反
面、二次電池化において不利となる不可逆容量(第1サ
イクル目における充電容量と放電容量の差)が増大し、
要求に対応するには不十分であった。さらに、放電時、
負極材料のリチウム金属に対する電位が高いため、正極
材料と組み合わせて二次電池を設計したときの平均電圧
が低くなることが大きな欠点となっていた。2. Description of the Related Art A non-aqueous solvent secondary battery using a carbon material for a negative electrode has already been put into practical use as a lithium ion secondary battery because of its advantages such as high energy density, light weight, small size and long-term storage. However, it is necessary to increase the capacity of the carbon material for the negative electrode in order to cope with the reduction in size and weight of electronic devices. Therefore, for example, as described in JP-A-6-187988, by reacting pitch or tar with a nitro compound, a high-capacity carbon material having a discharge capacity per weight exceeding 500 mAh / g has been found. Issued and considered. However, there is a great demand for the development of a lithium ion secondary battery that can be operated for a longer time, and the materials used up to now have been insufficient to meet the demand for capacity. So far, it has been found that coke fired at a low temperature or polyacene fired with phenolic resin has a high capacity. However, while the capacity is improved, the irreversible capacity (the first cycle) which is disadvantageous when a secondary battery is used is considered. The difference between the charge capacity and the discharge capacity at
It was not enough to meet the demand. Furthermore, at the time of discharge,
Since the potential of the negative electrode material with respect to lithium metal is high, a major drawback is that the average voltage when a secondary battery is designed in combination with the positive electrode material is low.
【0003】[0003]
【発明が解決しようとする課題】上述したように、従来
の炭素材を負極材料として用いた非水溶媒系リチウム二
次電池は、その特徴である大容量を実現するには十分な
ものではなかった。本発明は、従来のかかる問題点を克
服し、大容量で、充放電サイクル特性が良好で、しか
も、安定かつ安全性に優れた高性能な非水溶媒二次電池
を製造するための、1)重量当たり500mAh/g以
上の高容量を有し、2)負極用炭素材料の第1サイクル
目における不可逆容量を低減化し、3)放電時の負極材
料のリチウム金属に対する電位が0.2V以下である領
域の容量が大きい負極用炭素材料を提供することを目的
とする。As described above, the conventional non-aqueous solvent-based lithium secondary battery using a carbon material as a negative electrode material is not sufficient for realizing a large capacity which is a characteristic of the non-aqueous solvent-based lithium secondary battery. Was. SUMMARY OF THE INVENTION The present invention overcomes the above-mentioned conventional problems and provides a high-capacity, high-performance non-aqueous solvent secondary battery with good charge / discharge cycle characteristics and excellent stability and safety. ) Having a high capacity of 500 mAh / g or more per weight, 2) reducing the irreversible capacity of the carbon material for the negative electrode in the first cycle, and 3) reducing the potential of the negative electrode material to lithium metal at the time of discharge to 0.2 V or less. An object is to provide a carbon material for a negative electrode having a large capacity in a certain region.
【0004】[0004]
【課題を解決するための手段】本発明者らは、上記の目
的を達成するため、ピッチやタールを原料とする高容量
な負極用炭素材料を鋭意検討した結果、特定の縮合多環
式化合物またはこれを含有する物質から合成によって得
られる特定の前駆ピッチやタールを改質して、特定の改
質ピッチとし、これを不融化処理した後、焼成すること
によって得られる炭素材料が非水溶媒二次電池の負極と
して優れた性質を有することを見出し本発明を完成する
に至った。Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on a high-capacity carbon material for a negative electrode using pitch or tar as a raw material. Alternatively, a specific precursor pitch or tar obtained by synthesis from a substance containing the same is modified into a specific modified pitch, and after infusibilizing the modified pitch, the carbon material obtained by firing is a non-aqueous solvent. The inventors have found that they have excellent properties as a negative electrode of a secondary battery, and have completed the present invention.
【0005】本発明の非水溶媒二次電池負極用炭素材料
は、特定の縮合多環式化合物またはこれを含有する物質
を弗化水素・三弗化硼素の存在下で重合させて得られる
特定の前駆ピッチあるいはタールを改質することで特定
の改質ピッチあるいはタールを調製し、これを酸化性ガ
スによって不融化処理した後、焼成することにより調製
されたことを特徴とする非水溶媒二次電池負極用炭素材
料である。The carbon material for a negative electrode of a non-aqueous solvent secondary battery of the present invention is obtained by polymerizing a specific condensed polycyclic compound or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. A non-aqueous solvent characterized by being prepared by modifying a precursor pitch or tar of a non-aqueous solvent, preparing a specific modified pitch or tar, infusibilizing the same with an oxidizing gas, and then firing. It is a carbon material for a secondary battery negative electrode.
【0006】合成される前駆ピッチあるいはタールの原
料となる、メチル基を一個以上含む縮合多環式化合物ま
たはこれを含有する物質としては、ナフタレン、アント
ラセン、ピレン、コロネン等の縮合多環式炭化水素のメ
チル基を一個以上含む誘導体、ベンゾフラン、キノリ
ン、チアナフタレン、シラナフタレン等の縮合複素環式
化合物のメチル基を一個以上含む誘導体、及びそれらと
縮合多環式化合物の混合物、また、それらを含む石炭タ
ール留分、石油留分、石油加工工程の残油等が用いられ
る。特にメチルナフタレンやジメチルナフタレン等のナ
フタレン誘導体、またそれらの混合物であるコールター
ルのメチルナフタレン留分、エチレンボトムオイル等
が、後述する負極用炭素材料としての性能、及び不融化
工程にとって好ましい。Examples of the condensed polycyclic compound containing one or more methyl groups or a substance containing the same as a raw material of a precursor pitch or tar to be synthesized include condensed polycyclic hydrocarbons such as naphthalene, anthracene, pyrene and coronene. Derivatives containing one or more methyl groups, derivatives containing one or more methyl groups of condensed heterocyclic compounds such as benzofuran, quinoline, tianaphthalene, silanaphthalene, and mixtures of condensed polycyclic compounds with them, Coal tar fraction, petroleum fraction, residual oil of petroleum processing step, etc. are used. In particular, naphthalene derivatives such as methylnaphthalene and dimethylnaphthalene, and a methylnaphthalene fraction of coal tar as a mixture thereof, ethylene bottom oil, and the like are preferable for the performance as a carbon material for a negative electrode described later and the infusibilization step.
【0007】縮合多環式化合物から、弗化水素・三弗化
硼素触媒下、前駆ピッチあるいはタールを合成する方法
は、特に制限はないが、通常縮合多環式化合物に対する
触媒量を、縮合多環式化合物1モルに対し、弗化水素を
0.1〜10モル、三弗化硼素を0.01〜1.0モ
ル、反応温度は0〜300℃の範囲、好ましくは40〜
200℃、さらに好ましくは60〜170℃で行なわれ
る。The method of synthesizing the precursor pitch or tar from the condensed polycyclic compound in the presence of a hydrogen fluoride / boron trifluoride catalyst is not particularly limited. 0.1 to 10 mol of hydrogen fluoride, 0.01 to 1.0 mol of boron trifluoride, the reaction temperature is in the range of 0 to 300 ° C, preferably 40 to 100 mol per mol of the cyclic compound.
The reaction is performed at 200 ° C, more preferably at 60 to 170 ° C.
【0008】縮合多環式化合物から得られる前駆ピッチ
あるいはタールの性状として、軟化点としては0〜18
0℃が好ましく、さらに好ましくは20〜150℃であ
る。また炭素に対する水素の原子比が0.7〜1.1
0、ピリジン不溶分が1.0%以下、ピッチに含まれる
全水素の中の脂肪族水素の割合が30〜80%であるこ
とが好ましい。前駆ピッチあるいはタールを常法により
研磨後、偏光顕微鏡下で観察したときの光学的組織は1
00%等方性である。As a property of the precursor pitch or tar obtained from the condensed polycyclic compound, the softening point is 0-18.
The temperature is preferably 0 ° C, more preferably 20 to 150 ° C. Further, the atomic ratio of hydrogen to carbon is 0.7 to 1.1.
0, the pyridine-insoluble content is preferably 1.0% or less, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is preferably 30 to 80%. After polishing the precursor pitch or tar by a conventional method, the optical structure when observed under a polarizing microscope is 1
It is 00% isotropic.
【0009】次に、前駆ピッチあるいはタールは光学的
等方性を保ったまま、軟化点150℃以上の改質ピッチ
へあるいはタールと処理される。改質は、蒸留、エアー
ブローイング、硝酸添加、硫黄添加等の公知の方法によ
って行う事ができる。それらのなかでも、加熱下流動状
態にあるピッチあるいはタールの中に酸化性ガス、一般
には空気を流通させることによって行なう方法が、簡便
かつ安価であり、有効である。この時の温度は前駆ピツ
チあるいはタールの軟化点により一概に特定できない
が、200℃以上、好ましくは300〜350℃で行な
われる。処理温度が低すぎると反応性が低いため、空気
による改質が十分に行われない。また温度が高すぎると
ピッチあるいはタール自身の熱重合が起こり、空気によ
る改質が有効に行われない。空気流量は装置形状等によ
って異なるが、ピッチあるいはタールに対して0.5〜
50ml/g程度である。この時、ピッチあるいはター
ルと空気との接触効率を上げるためメッシュやフィルタ
ー等の使用あるいは撹拌すること等が適用できる。空気
による改質の終了点は、軟化点の上昇が伴うため、この
軟化点の測定により判断できる。出発原料等により改質
の終了点の軟化点は特定できないが、150〜350
℃、好ましくは200〜300℃である。また、炭素に
対する水素の原子比が0.50〜0.80、FT−IR
で測定した脂肪族C−H伸縮振動の吸収強度の、芳香族
C−H伸縮振動の吸収強度に対する比が0.5以上であ
ることが好ましい。Next, the precursor pitch or tar is treated with modified pitch or tar having a softening point of 150 ° C. or higher while maintaining optical isotropy. The reforming can be performed by a known method such as distillation, air blowing, addition of nitric acid, and addition of sulfur. Among them, a method in which an oxidizing gas, generally air is passed through pitch or tar in a fluidized state under heating is simple, inexpensive and effective. Although the temperature at this time cannot be specified unconditionally by the softening point of the precursor pitch or tar, it is carried out at 200 ° C. or more, preferably 300 to 350 ° C. If the treatment temperature is too low, the reactivity is low, and the reforming with air is not performed sufficiently. On the other hand, if the temperature is too high, thermal polymerization of the pitch or tar itself occurs, and the reforming by air is not effectively performed. The air flow rate varies depending on the device shape, etc.
It is about 50 ml / g. At this time, use of a mesh or a filter or stirring may be applied to increase the contact efficiency between the pitch or tar and the air. Since the end point of the reforming by air involves an increase in the softening point, it can be determined by measuring the softening point. Although the softening point at the end point of the reforming cannot be specified by the starting material or the like, it is 150 to 350.
° C, preferably 200 to 300 ° C. Further, the atomic ratio of hydrogen to carbon is 0.50 to 0.80, and FT-IR
It is preferable that the ratio of the absorption intensity of the aliphatic CH stretching vibration measured in the above to the absorption intensity of the aromatic CH stretching vibration is 0.5 or more.
【0010】不融化処理は窒素、硫黄、酸素等を含有す
る化合物が使用できる。例えば、硝酸、硫酸、ニトロ化
剤、ニトロ化合物、硫酸アンモニウム、酸性硫酸アンモ
ニウム、二酸化窒素ガス、オゾン、空気、酸素等および
これらの混合物が挙げられる。なかでも空気のような酸
化性ガスを用いるのが簡便かつ安価であり、焼成後の不
純物の残留も少なく得られた炭素材料の性能にとって好
ましい。特に、空気ガスを用いるのが、簡便かつ安価で
あり、さらに好ましい。酸化性ガスによる不融化の方法
は特に限定されないが、一定粒度以下に粉砕した粉末
状、繊維状、あるいは薄膜状に改質ピッチあるいはター
ルを加工した後、100〜400℃の温度範囲、好まし
くは150〜350℃の温度範囲で酸化性ガスを流通さ
せることによって行われる。酸化性ガスによるピッチあ
るいはタールの不融化工程は、炭素繊維製造等に一般的
に用いられる方法であり、ピッチあるいはタールの酸素
に対する反応性が高いほど、低温でかつ短時間で完了さ
せることができ、生産性の向上のために重要である。こ
こで、本願発明に記載されている前駆ピッチあるいはタ
ール、及び改質ピッチあるいはタール中に多く含まれる
メチル基が、ピッチあるいはタールの不融化性を向上さ
せると考えている。従って、後述の実施例と比較例との
比較からもわかるように、前駆ピッチあるいはタールの
原料としてメチル基を有する縮合多環式化合物を用いる
ことにより、メチル基を持たない縮合多環式化合物を用
いる場合に比べて、より迅速に且つより熱履歴が少ない
条件で不融化が可能となる。For the infusibilization treatment, compounds containing nitrogen, sulfur, oxygen and the like can be used. For example, nitric acid, sulfuric acid, a nitrating agent, a nitro compound, ammonium sulfate, ammonium acid sulfate, nitrogen dioxide gas, ozone, air, oxygen and the like, and a mixture thereof can be mentioned. Among them, the use of an oxidizing gas such as air is simple and inexpensive, and it is preferable in terms of the performance of the obtained carbon material that the amount of impurities remaining after firing is small. In particular, it is more preferable to use air gas because it is simple and inexpensive. The method of infusibilization with an oxidizing gas is not particularly limited, but after processing the modified pitch or tar into powder, fibrous, or thin film ground to a certain particle size or less, a temperature range of 100 to 400 ° C, preferably It is performed by flowing an oxidizing gas in a temperature range of 150 to 350 ° C. The step of infusibilizing the pitch or tar with an oxidizing gas is a method generally used in the production of carbon fiber and the like, and the higher the reactivity of pitch or tar to oxygen, the lower the temperature and the shorter the time. It is important for improving productivity. Here, it is considered that the methyl groups contained in the precursor pitch or tar and the modified pitch or tar, which are described in the present invention, improve the infusibility of the pitch or tar. Therefore, as can be seen from a comparison between Examples and Comparative Examples described later, by using a condensed polycyclic compound having a methyl group as a precursor pitch or tar raw material, a condensed polycyclic compound having no methyl group can be obtained. Infusibility can be achieved more quickly and under a condition with less heat history as compared with the case where it is used.
【0011】この様にして得られた原料有機化合物を非
酸化性ガスまたは真空下で焼成することにより、本願発
明の炭素材料が得られる。焼成温度は800〜1800
℃、好ましくは1000〜1300℃、焼成時間は1〜
50時間で原料有機化合物に応じて適宜、最適な条件が
選択される。また、800℃以下で予備焼成を行っても
よい。非酸化性ガスとしては窒素、アルゴンが好まし
い。非酸化性ガスを気流として連続的に供給し、原料有
機化合物の焼成によって発生するガスを同伴して排出す
る方法や、真空排気により強制的に発生ガスを系外に排
出する方法が適宜適用できる。The raw material organic compound thus obtained is calcined under a non-oxidizing gas or under vacuum to obtain the carbon material of the present invention. Firing temperature is 800 ~ 1800
° C, preferably 1000-1300 ° C, firing time is 1 ~
In 50 hours, optimal conditions are appropriately selected according to the starting organic compound. Further, preliminary firing may be performed at 800 ° C. or lower. Nitrogen and argon are preferable as the non-oxidizing gas. A method in which a non-oxidizing gas is continuously supplied as an air stream and a gas generated by baking the raw material organic compound is discharged together with the gas, or a method in which the generated gas is forcibly discharged to the outside by evacuation can be appropriately applied. .
【0012】本発明の非水溶媒系二次電池負極用炭素材
料は、まずその製造工程において、酸化性ガスによる改
質ピッチあるいはタールの不融化性に優れることが特徴
であり、対リチウム金属電位で0〜1.5Vの間で54
0mAh/g以上の放出容量が可能であると同時に、対
リチウム金属電位で0〜0.2Vの間の容量が380m
Ah/g以上であり、第1サイクル目における不可逆容
量が100mAh/g以下であることが最大の特徴であ
る。以下、本発明について実施例を示してその効果を具
体的かつ詳細に説明するが、以下に示す例は、具体的に
説明するためのものであって本発明の実施形態や発明の
範囲を限定するものとしては意図されていない。また、
本実施例でのピッチの分析方法及び分析条件を以下に記
載する。The carbon material for a negative electrode of a non-aqueous solvent-based secondary battery according to the present invention is characterized in that, in the production process thereof, the modified pitch or tar is excellent in infusibility with an oxidizing gas, and the potential for lithium metal potential is high. Between 0 and 1.5 V
A discharge capacity of 0 mAh / g or more is possible, and a capacity between 0 and 0.2 V with respect to lithium metal potential is 380 m
The most characteristic feature is that the irreversible capacity in the first cycle is 100 mAh / g or less. EXAMPLES Hereinafter, the effects of the present invention will be described specifically and in detail with reference to examples. However, the following examples are for the purpose of specifically describing the present invention and limit the embodiments and the scope of the present invention. It is not intended to do so. Also,
The pitch analysis method and analysis conditions in this embodiment are described below.
【0013】(元素分析)炭素、窒素、水素の同時分析
には、分析装置としてパーキンエルマー(PERKINELMER
)社製、2400CHN 型元素分析計を使用した。測定は、
試料のピッチを錫製の容器に1.5 ±0.2mg を秤量し、装
置にセット後、975 ℃の温度で5分間燃焼し、Heガスキ
ャリヤーによりTCDで検出し測定した。なお、試料の
測定にあたって、予め、標準物質のアセトアニリド(2.
0 ±0.1mg )により補正した。(Elemental analysis) For simultaneous analysis of carbon, nitrogen and hydrogen, PEKINELMER is used as an analyzer.
A 2400 CHN elemental analyzer manufactured by Sharp Corporation was used. The measurement is
1.5 ± 0.2 mg of the pitch of the sample was weighed in a tin container, set in the apparatus, burned at a temperature of 975 ° C. for 5 minutes, and detected and measured by TCD using a He gas carrier. Before measuring the sample, the standard substance acetanilide (2.
0 ± 0.1 mg).
【0014】(NMR分析)前駆ピッチあるいはタール
に含まれる全水素の中の脂肪族水素の割合を求めるに
は、 1H−NMR法を用いた。ピッチあるいはタールは
ほぼ全量がクロロホルムに可溶であるので、その1%重
クロロホルム溶液を、NMRサンプル管に入れ、日本電
子(株)製JNM−EX270により測定を行った。な
お、TMS(テトラメチルシラン)を基準物質として、これを0p
pmとした。(NMR Analysis) The 1 H-NMR method was used to determine the proportion of aliphatic hydrogen in the total hydrogen contained in the precursor pitch or tar. Since almost all the pitch or tar is soluble in chloroform, a 1% deuterated chloroform solution was put into an NMR sample tube, and the measurement was performed using JNM-EX270 manufactured by JEOL Ltd. TMS (tetramethylsilane) is used as a reference material and
pm.
【0015】(FT−IR分析)KBr粉末100部に
対して、改質ピッチあるいはタール粉末1部を加え、め
のう乳鉢上で混合した。ついで、これを日本分光(株)
製FT/IRー5300、拡散反射法測定装置DRー8
1にセットし測定を行った。得られた拡散反射スペクト
ルを、Kubelka−Munk変換して得られたスペ
クトル上の、2930cm-1付近のピーク強度(脂肪族
CーH伸縮振動の吸収強度)の、3050cm-1付近の
ピーク強度(芳香族CーH伸縮振動の吸収強度)に対す
る比を求めた。(FT-IR analysis) To 100 parts of KBr powder, 1 part of modified pitch or tar powder was added and mixed in an agate mortar. Then, I changed this to JASCO Corporation
FT / IR-5300, diffuse reflection measuring device DR-8
It was set to 1 and the measurement was performed. The peak intensity around 2930 cm -1 (the absorption intensity of aliphatic CH stretching vibration) and the peak intensity around 3050 cm -1 (the absorption intensity of aliphatic CH stretching vibration) on the spectrum obtained by subjecting the obtained diffuse reflection spectrum to Kubelka-Munk conversion. The ratio to the aromatic CH stretching force (absorption intensity) was determined.
【0016】実施例1 内容積3Lの耐酸オートクレーブに、メチルナフタレン
7モル、弗化水素(HF)3.68モル、三弗化硼素
(BF3 )1.16モルを仕込み、自生圧下に100℃
まで昇温した後、更に4時間、100℃に保持して反応
させた。次いで、常法に従って、オートクレーブ内に窒
素を吹き込んでHF及びBF3 を回収し、引き続いて低
沸点成分を除去して軟化点76℃の前駆ピッチを得た。
前駆ピッチに含有されている水素原子の炭素原子に対す
る比(H/C)は0.87、ピリジン不溶分は0.0
%、ピッチに含まれる全水素の中の脂肪族水素の割合は
58%であった。得られた前駆ピッチを、別のオートク
レーブに仕込み、320℃で100g当たり、毎分2L
の空気を吹き込み、2時間反応させ、軟化点200℃の
改質ピッチを得た。改質ピッチに含有されている水素原
子の炭素原子に対する比(H/C)は0.66、FT−
IRで測定した脂肪族C−H伸縮振動の吸収強度の、芳
香族CーH伸縮振動の吸収強度に対する比が1.1であ
った。この改質ピッチを200μm以下の粉末に粉砕
し、150℃から5℃/分で300℃まで昇温後、10
分間保持して取り出した。得られた処理物を、平均粒径
15μmに調製し、ついで少量の窒素を流通させなが
ら、10Torrの減圧下、1200℃で2時間焼成
し、粉末状の炭素材料を得た。Example 1 A 3 L acid-resistant autoclave was charged with 7 mol of methylnaphthalene, 3.68 mol of hydrogen fluoride (HF), and 1.16 mol of boron trifluoride (BF 3 ) at 100 ° C. under autogenous pressure.
After the temperature was raised to 100 ° C., the reaction was continued for another 4 hours. Next, HF and BF 3 were recovered by blowing nitrogen into the autoclave according to a conventional method, followed by removing low-boiling components to obtain a precursor pitch having a softening point of 76 ° C.
The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.87, and the pyridine-insoluble content is 0.0
%, And the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch was 58%. The obtained precursor pitch was charged into another autoclave, and at a temperature of 320 ° C., 2 L / min.
Was blown in, and reacted for 2 hours to obtain a modified pitch having a softening point of 200 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the modified pitch is 0.66, and FT−
The ratio of the absorption intensity of the aliphatic CH stretching vibration measured by IR to the absorption intensity of the aromatic CH stretching vibration was 1.1. This modified pitch is pulverized into powder having a size of 200 μm or less, and the temperature is raised from 150 ° C. to 300 ° C. at 5 ° C./min.
Hold for minutes and remove. The obtained treated material was adjusted to an average particle size of 15 μm, and then calcined at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material.
【0017】(負極材料としての評価)得られた炭素材
料90重量部に、ポリフッ化ビニリデン粉末10重量部
(バインダー)を加え、ジメチルホルムアミドを溶媒と
して配合・混合した後、銅箔上に塗布し、乾燥後1cm
角に切り出して、評価用試験片とした。次いで、LiC
lO4をエチレンカーボネート/ジメチルカーボネート
/ジエチルカーボネートの配合比が、1/0.5/0.
5の3種類の混合物に溶解した溶液(濃度1.0mol/l
)を電解液とし、厚さ50μmのポリプロピレン製微
孔膜をセパレーターとするハーフセルを作製した。な
お、対極として直径16mm、厚さ0.5mmのリチウ
ム金属を使用した。また、参照極として対極と同様にリ
チウム金属の小片を使用した。(Evaluation as negative electrode material) 10 parts by weight of polyvinylidene fluoride powder (binder) was added to 90 parts by weight of the obtained carbon material, and the mixture was mixed and mixed with dimethylformamide as a solvent, and then applied on a copper foil. 1cm after drying
It was cut into a corner to obtain a test piece for evaluation. Then, LiC
The mixing ratio of 104 to ethylene carbonate / dimethyl carbonate / diethyl carbonate is 1 / 0.5 / 0.
5 dissolved in three kinds of mixture (concentration 1.0 mol / l
) Was used as an electrolyte to prepare a half cell using a 50 μm-thick polypropylene microporous membrane as a separator. Note that lithium metal having a diameter of 16 mm and a thickness of 0.5 mm was used as a counter electrode. A small piece of lithium metal was used as a reference electrode in the same manner as the counter electrode.
【0018】電流密度2mA/cm2 で参照極に対する
評価用試験片の電極電位が1mVまで定電流充電を行
い、さらに電極電位1mVで定電位充電を40時間行っ
たところ、吸蔵容量:647mAh/gが確認された。
次いで、電流密度1mAh/cm3 で参照極に対する評
価用試験片の電極電位が1.5Vまで定電流放電を行っ
たところ、放出容量:562mAh/gが確認された。
容量ロスは85mAh/gであり、対リチウム金属電位
で0〜0.2Vの間の放電容量は417mAh/gであ
った。At a current density of 2 mA / cm 2 , a constant current charge was performed until the electrode potential of the test piece with respect to the reference electrode was 1 mV, and a constant potential charge was performed at an electrode potential of 1 mV for 40 hours. The occlusion capacity was 647 mAh / g. Was confirmed.
Next, when constant current discharge was performed at a current density of 1 mAh / cm 3 until the electrode potential of the test piece for evaluation with respect to the reference electrode was 1.5 V, a discharge capacity of 562 mAh / g was confirmed.
The capacity loss was 85 mAh / g, and the discharge capacity between 0 and 0.2 V with respect to the lithium metal potential was 417 mAh / g.
【0019】実施例2 内容積3Lの耐酸オートクレーブに、ジメチルナフタレ
ン7モル、弗化水素(HF)4.90モル、三弗化硼素
(BF3 )1.40モルを仕込み、自生圧下に120℃
まで昇温した後、更に4時間、120℃に保持して反応
させた。次いで、常法に従って、オートクレーブ内に窒
素を吹き込んでHF及びBF3を回収し、引き続いて低
沸点成分を除去して軟化点40℃の前駆ピッチを得た。
前駆ピッチに含有されている水素原子の炭素原子に対す
る比(H/C)は0.91、ピリジン不溶分は0.0
%、ピッチに含まれる全水素の中の脂肪族水素の割合は
66%であった。得られた前駆ピッチを、別のオートク
レーブに仕込み、320℃で100g当たり、毎分2L
の空気を吹き込み、2時間反応させ、軟化点249℃の
100%光学的等方性の改質ピッチを得た。改質ピッチ
に含有されている水素原子の炭素原子に対する比(H/
C)は0.65、FT−IRで測定した脂肪族C−H伸
縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度
に対する比が1.6であった。この改質ピッチを200
μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マ
ッフル炉中で空気を毎分1L流しながら、150℃から
5℃/分で300℃まで昇温後、10分間保持して取り
出した。得られた処理物を、平均粒径15μmに調製
し、ついで少量の窒素を流通させながら、10Torr
の減圧下、1200℃で2時間焼成し、粉末状の炭素材
料を得た。実施例1と同様の、負極材料としての評価を
行ったところ、吸蔵容量:635mAh/g、及び放出
容量:547mAh/gが確認された。容量ロスは88
mAh/gであり、対リチウム金属電位で0〜0.2V
の間の放電容量は397mAh/gであった。Example 2 A 3 L acid-resistant autoclave was charged with 7 mol of dimethylnaphthalene, 4.90 mol of hydrogen fluoride (HF) and 1.40 mol of boron trifluoride (BF 3 ).
After the temperature was raised to 120 ° C., the reaction was continued for another 4 hours while maintaining the temperature at 120 ° C. Next, according to a conventional method, nitrogen was blown into the autoclave to recover HF and BF3. Subsequently, low boiling components were removed to obtain a precursor pitch having a softening point of 40 ° C.
The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.91, and the pyridine-insoluble content is 0.0
%, And the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch was 66%. The obtained precursor pitch was charged into another autoclave, and at a temperature of 320 ° C., 2 L / min.
And reacted for 2 hours to obtain a 100% optically isotropic modified pitch having a softening point of 249 ° C. The ratio of hydrogen atoms to carbon atoms contained in the modified pitch (H /
C) was 0.65, and the ratio of the absorption intensity of aliphatic CH stretching vibration measured by FT-IR to the absorption intensity of aromatic CH stretching vibration was 1.6. This modified pitch is 200
Pulverize to a powder of μm or less, put 10 g into a porcelain dish, raise the temperature from 150 ° C. to 300 ° C. at a rate of 5 ° C./min. Was. The obtained treated product was adjusted to an average particle size of 15 μm, and then 10 Torr while flowing a small amount of nitrogen.
The powder was calcined at 1200 ° C. for 2 hours under reduced pressure to obtain a powdery carbon material. When the same negative electrode material was evaluated as in Example 1, an occlusion capacity of 635 mAh / g and an emission capacity of 547 mAh / g were confirmed. Capacity loss is 88
mAh / g, and 0 to 0.2 V with respect to lithium metal potential.
During this period was 397 mAh / g.
【0020】実施例3 内容積3Lの耐酸オートクレーブに、エチレンボトムオ
イル(丸善石油化学製)142g、弗化水素(HF)
5.30モル、三弗化硼素(BF3 )1.50モルを仕
込み、自生圧下に120℃まで昇温した後、更に4時
間、120℃に保持して反応させた。次いで、常法に従
って、オートクレーブ内に窒素を吹き込んでHF及びB
F3 を回収し、引き続いて低沸点成分を除去して軟化点
107℃の前駆ピッチを得た。前駆ピッチに含有されて
いる水素原子の炭素原子に対する比(H/C)は0.9
5、ピリジン不溶分は0.0%、ピッチに含まれる全水
素の中の脂肪族水素の割合は66%であった。得られた
前駆ピッチを、別のオートクレーブに仕込み、340℃
で100g当たり、毎分2Lの空気を吹き込み、2時間
反応させ、軟化点246℃の100%光学的等方性の改
質ピッチを得た。改質ピッチに含有されている水素原子
の炭素原子に対する比(H/C)は0.78、FT−I
Rで測定した脂肪族C−H伸縮振動の吸収強度の、芳香
族C−H伸縮振動の吸収強度に対する比が2.9であっ
た。この改質ピッチを200μm以下の粉末に粉砕し、
10gを磁製の皿にいれ、マッフル炉中で空気を毎分1
L流しながら、150℃から5℃/分で280℃まで昇
温後、10分間保持して取り出した。得られた処理物
を、平均粒径15μmに調製し、ついで少量の窒素を流
通させながら、10Torrの減圧下、1200℃で2
時間焼成し、粉末状の炭素材料を得た。実施例1と同様
の、負極材料としての評価を行ったところ、吸蔵容量:
658mAh/g、及び放出容量:600mAh/gが
確認された。容量ロスは58mAh/gであり、対リチ
ウム金属電位で0〜0.2Vの間の放電容量は429m
Ah/gであった。Example 3 142 g of ethylene bottom oil (manufactured by Maruzen Petrochemical) and hydrogen fluoride (HF) were placed in an acid-resistant autoclave having an inner volume of 3 L.
5.30 mol and 1.50 mol of boron trifluoride (BF 3 ) were charged, and the temperature was raised to 120 ° C. under autogenous pressure, and the reaction was further maintained at 120 ° C. for 4 hours. Then, according to a conventional method, nitrogen is blown into the autoclave to form HF and B.
The F 3 was recovered, and subsequently the low boiling components were removed to obtain a precursor pitch having a softening point of 107 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.9.
5. The pyridine-insoluble content was 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch was 66%. The obtained precursor pitch was charged into another autoclave, and 340 ° C.
Then, 2 L of air was blown per minute per 100 g, and the mixture was reacted for 2 hours to obtain a 100% optically isotropic modified pitch having a softening point of 246 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the modified pitch is 0.78, FT-I
The ratio of the absorption intensity of the aliphatic CH stretching vibration measured by R to the absorption intensity of the aromatic CH stretching vibration was 2.9. This modified pitch is pulverized into powder of 200 μm or less,
Put 10 g in a porcelain dish and air in a muffle furnace at 1 minute per minute.
While flowing L, the temperature was raised from 150 ° C. to 280 ° C. at 5 ° C./min, and then held for 10 minutes and taken out. The obtained treated material was adjusted to an average particle size of 15 μm, and then passed at 1200 ° C. under a reduced pressure of 10 Torr while flowing a small amount of nitrogen.
After firing for a time, a powdery carbon material was obtained. When an evaluation as a negative electrode material was performed in the same manner as in Example 1, the occlusion capacity:
658 mAh / g and a release capacity of 600 mAh / g were confirmed. The capacity loss is 58 mAh / g, and the discharge capacity between 0 and 0.2 V with respect to the lithium metal potential is 429 m.
Ah / g.
【0021】比較例1 軟化点76℃、ピッチに含有されている水素原子の炭素
原子に対する比(H/C)は0.55、ピリジン不溶分
が0.1%、ピッチに含まれる全水素の中の脂肪族水素
の割合が3%であるコールタールピッチを、オートクレ
ーブに仕込み、340℃で100g当たり、毎分2Lの
空気を吹き込み、1時間反応させ、軟化点243℃の1
00%光学的等方性の改質ピッチを得た。改質ピッチに
含有されている水素原子の炭素原子に対する比(H/
C)は0.48、FT−IRで測定した脂肪族C−H伸
縮振動の吸収強度の、芳香族C−H伸縮振動の吸収強度
に対する比が0.0であった。この改質ピッチを200
μm以下の粉末に粉砕し、10gを磁製の皿にいれ、マ
ッフル炉中で空気を毎分1L流しながら、150℃から
5℃/分で320℃まで昇温後、10分間保持して取り
出した。得られた処理物は昇温過程で溶融して、塊状と
なっていた。これを平均粒径15μmの粉末に調製し、
ついで少量の窒素を流通させながら、10Torrの減
圧下、1200℃で2時間焼成し、粉末状の炭素材料を
得た。実施例1と同様の、負極材料としての評価を行っ
たところ、吸蔵容量:525mAh/g、及び放出容
量:398mAh/gが確認された。容量ロスは127
mAh/gと大きく、充放電容量も低下した。対リチウ
ム金属電位で0〜0.2Vの間の放電容量は230mA
h/gと小さかった。Comparative Example 1 The softening point was 76 ° C., the ratio of hydrogen atoms contained in the pitch to carbon atoms (H / C) was 0.55, the pyridine-insoluble content was 0.1%, and the total hydrogen contained in the pitch was A coal tar pitch containing 3% of aliphatic hydrogen therein was charged into an autoclave, and 2 l / min of air was blown per minute at 100 ° C. at 340 ° C. to react for 1 hour.
A 00% optically isotropic modified pitch was obtained. The ratio of hydrogen atoms to carbon atoms contained in the modified pitch (H /
C) was 0.48, and the ratio of the absorption intensity of the aliphatic CH stretching vibration measured by FT-IR to the absorption intensity of the aromatic CH stretching vibration was 0.0. This modified pitch is 200
Pulverize to a powder of μm or less, put 10 g in a porcelain dish, raise the temperature from 150 ° C. to 320 ° C. at a rate of 5 ° C./min. Was. The obtained processed product was melted in the process of raising the temperature and was in a lump. This was prepared into a powder having an average particle size of 15 μm,
Then, the mixture was calcined at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When the same negative electrode material was evaluated as in Example 1, an occlusion capacity of 525 mAh / g and an emission capacity of 398 mAh / g were confirmed. Capacity loss is 127
mAh / g, and the charge / discharge capacity also decreased. Discharge capacity between 0 and 0.2 V with respect to lithium metal potential is 230 mA
h / g.
【0022】比較例2 内容積3Lの耐酸オートクレーブに、ナフタレン7モ
ル、弗化水素(HF)2.45モル、三弗化硼素(BF
3 )0.77モルを仕込み、自生圧下に100℃まで昇
温した後、更に4時間、100℃に保持して反応させ
た。次いで、常法に従って、オートクレーブ内に窒素を
吹き込んでHF及びBF3 を回収し、引き続いて低沸点
成分を除去して軟化点82℃の前駆ピッチを得た。前駆
ピッチに含有されている水素原子の炭素原子に対する比
(H/C)は0.76、ピリジン不溶分は0.0%、ピ
ッチに含まれる全水素の中の脂肪族水素の割合は35%
であった。得られた前駆ピッチを、別のオートクレーブ
に仕込み、340℃で100g当たり、毎分2Lの空気
を吹き込み、4時間反応させ、軟化点234℃の100
%光学的等方性の改質ピッチを得た。改質ピッチに含有
されている水素原子の炭素原子に対する比(H/C)は
0.49、FT−IRで測定した脂肪族C−H伸縮振動
の吸収強度の、芳香族C−H伸縮振動の吸収強度に対す
る比が0.20であった。この改質ピッチを200μm
以下の粉末に粉砕し、10gを磁製の皿にいれ、マッフ
ル炉中で空気を毎分1L流しながら、150℃から5℃
/分で320℃まで昇温後、30分間保持して取り出し
た。得られた処理物は昇温過程で溶融して、塊状となっ
ていた。これを平均粒径15μmの粉末に調製し、つい
で少量の窒素を流通させながら、10Torrの減圧
下、1200℃で2時間焼成し、粉末状の炭素材料を得
た。実施例1と同様の、負極材料としての評価を行った
ところ、吸蔵容量:535mAh/g、及び放出容量:
403mAh/gが確認された。容量ロスは132mA
h/gと大きく、充放電容量も低下した。対リチウム金
属電位で0〜0.2Vの間の放電容量は240mAh/
gと小さかった。Comparative Example 2 In an acid-resistant autoclave having an inner volume of 3 L, 7 mol of naphthalene, 2.45 mol of hydrogen fluoride (HF) and boron trifluoride (BF) were added.
3 ) After charging 0.77 mol, the temperature was raised to 100 ° C. under autogenous pressure, and the mixture was further reacted at 100 ° C. for 4 hours. Next, HF and BF 3 were recovered by blowing nitrogen into the autoclave according to a conventional method, followed by removing low boiling components to obtain a precursor pitch having a softening point of 82 ° C. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the precursor pitch is 0.76, the pyridine-insoluble content is 0.0%, and the proportion of aliphatic hydrogen in the total hydrogen contained in the pitch is 35%.
Met. The obtained precursor pitch was charged into another autoclave, and air was blown at 2 L / min at 340 ° C. per 100 g and reacted for 4 hours.
% Modified pitch with optical isotropy was obtained. The ratio (H / C) of hydrogen atoms to carbon atoms contained in the modified pitch is 0.49, and aromatic CH stretching vibration of absorption intensity of aliphatic CH stretching vibration measured by FT-IR. Was 0.20 with respect to the absorption intensity. This modified pitch is 200 μm
Pulverize to the following powder, put 10 g in a porcelain dish, and let air flow at 1 L / min in a muffle furnace.
The temperature was raised to 320 ° C./min. The obtained processed product was melted in the process of raising the temperature and was in a lump. This was prepared into a powder having an average particle diameter of 15 μm, and then calcined at 1200 ° C. for 2 hours under a reduced pressure of 10 Torr while flowing a small amount of nitrogen to obtain a powdery carbon material. When an evaluation as a negative electrode material was performed in the same manner as in Example 1, the occlusion capacity: 535 mAh / g, and the release capacity:
403 mAh / g was confirmed. 132mA capacity loss
h / g, and the charge / discharge capacity also decreased. The discharge capacity between 0 and 0.2 V with respect to the lithium metal potential is 240 mAh /
g and small.
【0023】[0023]
【発明の効果】従来のリチウム二次電池負極用炭素材料
に較べ、生産性に優れ、放電容量が大きく、かつ第1サ
イクル目における不可逆容量を低減化できることによ
り、大容量かつ安価な二次電池を実現できる。EFFECTS OF THE INVENTION Compared with the conventional carbon material for a negative electrode of a lithium secondary battery, a secondary battery having a large capacity and an inexpensive capacity is obtained because of its excellent productivity, large discharge capacity, and reduced irreversible capacity in the first cycle. Can be realized.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 譲 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 坂本 斉 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 大石 實雄 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 東泉 孝明 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 (72)発明者 芝原 恭子 茨城県つくば市和台22番地 三菱瓦斯化学 株式会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Joh Takahashi 22nd Wadai, Tsukuba, Ibaraki Prefecture Mitsubishi Gas Chemical Co., Ltd. Within the Research Institute (72) Inventor Norio Oishi 22nd Wadai, Tsukuba, Ibaraki Prefecture Mitsubishi Gas Chemical Co., Ltd. (72) Inventor Takaaki Higashiizumi 22nd Wadai, Tsukuba, Ibaraki Prefecture (72) Inventor Kyoko Shibahara 22nd Wadai, Tsukuba City, Ibaraki Prefecture Mitsubishi Gas Chemical Company, Ltd.
Claims (4)
物またはこれを含有する物質を弗化水素・三弗化硼素の
存在下で重合させて得られた前駆ピッチあるいはタール
を改質して製造された100%光学的等方性の改質ピッ
チあるいはタールを不融化処理した後、焼成することを
特徴とする非水溶媒二次電池負極用炭素材料の製造法。1. A method for modifying a precursor pitch or tar obtained by polymerizing a condensed polycyclic compound containing one or more methyl groups or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride. A method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery, wherein the produced 100% optically isotropic modified pitch or tar is subjected to infusibilization treatment and then fired.
〜180℃、炭素に対する水素の原子比が0.70〜
1.10、ピリジン不溶分が1.0%以下、ピッチある
いはタールに含まれる全水素の中の脂肪族水素の割合が
30〜80%である請求項1記載の非水溶媒二次電池負
極用炭素材料の製造法。2. The softening point of the precursor pitch or tar is 0.
~ 180 ° C, the atomic ratio of hydrogen to carbon is 0.70
The non-aqueous solvent secondary battery negative electrode according to claim 1, wherein 1.10, a pyridine-insoluble content is 1.0% or less, and a ratio of aliphatic hydrogen to total hydrogen contained in pitch or tar is 30 to 80%. Manufacturing method of carbon material.
50℃以上350℃以下、炭素に対する水素の原子比が
0.50〜0.80、FT−IRで測定した脂肪族C−
H伸縮振動の吸収強度の、芳香族CーH伸縮振動の吸収
強度に対する比が0.5以上である請求項1記載の非水
溶媒二次電池負極用炭素材料の製造法。3. The modified pitch or tar has a softening point of 1
50 ° C. or more and 350 ° C. or less, the atomic ratio of hydrogen to carbon is 0.50 to 0.80, and aliphatic C- measured by FT-IR.
The method for producing a carbon material for a negative electrode of a non-aqueous solvent secondary battery according to claim 1, wherein the ratio of the absorption strength of the H stretching vibration to the absorption strength of the aromatic CH stretching vibration is 0.5 or more.
ールを酸化性ガスの存在下に100℃以上400℃以下
の温度で処理されることを特徴とする請求項1記載の非
水溶媒二次電池負極用炭素材料の製造法。4. The non-aqueous solvent secondary according to claim 1, wherein the method of infusibilization treatment comprises treating pitch or tar at a temperature of 100 ° C. or more and 400 ° C. or less in the presence of an oxidizing gas. Manufacturing method of carbon material for battery negative electrode.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11963597A JP3687712B2 (en) | 1997-05-09 | 1997-05-09 | Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery |
US08/924,864 US5944980A (en) | 1996-09-06 | 1997-09-05 | Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes |
DE69732825T DE69732825T8 (en) | 1996-09-06 | 1997-09-08 | Process for the preparation of isotropic pitch, active carbon fibers and carbon material for anodes of non-aqueous secondary batteries |
EP97306937A EP0838515B1 (en) | 1996-09-06 | 1997-09-08 | A method for producing isotropic pitch, active carbon fibers and carbon materials for non-aqueous secondary battery anodes |
US09/293,249 US6228343B1 (en) | 1996-09-06 | 1999-04-16 | Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11963597A JP3687712B2 (en) | 1997-05-09 | 1997-05-09 | Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10308221A true JPH10308221A (en) | 1998-11-17 |
JP3687712B2 JP3687712B2 (en) | 2005-08-24 |
Family
ID=14766336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11963597A Expired - Fee Related JP3687712B2 (en) | 1996-09-06 | 1997-05-09 | Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3687712B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1191558A3 (en) * | 2000-09-13 | 2006-02-08 | Mitsubishi Gas Chemical Company, Inc. | Carbon material for electric double layer capacitor electrodes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03223391A (en) * | 1989-11-29 | 1991-10-02 | Mitsubishi Gas Chem Co Inc | Mesophase pitch for carbonaceous material |
JPH07226202A (en) * | 1993-12-17 | 1995-08-22 | Mitsubishi Gas Chem Co Inc | Improved nonaqueous solvent lithium secondary battery |
JPH07335218A (en) * | 1994-06-07 | 1995-12-22 | Fuji Elelctrochem Co Ltd | Non-aqueous electrolyte secondary battery |
JPH0927322A (en) * | 1995-07-11 | 1997-01-28 | Mitsubishi Gas Chem Co Inc | Carbon material for nonaqueous solvent secondary battery negative electrode |
-
1997
- 1997-05-09 JP JP11963597A patent/JP3687712B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03223391A (en) * | 1989-11-29 | 1991-10-02 | Mitsubishi Gas Chem Co Inc | Mesophase pitch for carbonaceous material |
JPH07226202A (en) * | 1993-12-17 | 1995-08-22 | Mitsubishi Gas Chem Co Inc | Improved nonaqueous solvent lithium secondary battery |
JPH07335218A (en) * | 1994-06-07 | 1995-12-22 | Fuji Elelctrochem Co Ltd | Non-aqueous electrolyte secondary battery |
JPH0927322A (en) * | 1995-07-11 | 1997-01-28 | Mitsubishi Gas Chem Co Inc | Carbon material for nonaqueous solvent secondary battery negative electrode |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1191558A3 (en) * | 2000-09-13 | 2006-02-08 | Mitsubishi Gas Chemical Company, Inc. | Carbon material for electric double layer capacitor electrodes |
US7256157B2 (en) | 2000-09-13 | 2007-08-14 | Mitsubishi Gas Chemical Company, Inc. | Carbon material for electric double layer capacitor electrodes |
Also Published As
Publication number | Publication date |
---|---|
JP3687712B2 (en) | 2005-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5326658A (en) | Lithium secondary battery using a non-aqueous solvent | |
JP2010225494A (en) | Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery | |
CN109148847A (en) | A kind of the hard carbon cladding negative electrode material and its liquid phase preparation process of the boron doping modification with high rate capability | |
JP2013258032A (en) | Negative-electrode active material for nonaqueous electrolytic secondary battery, negative electrode material, manufacturing method thereof, lithium ion secondary battery, and electrochemical capacitor | |
JPH10326611A (en) | Carbon material for negative electrode of lithium secondary battery | |
US20070092429A1 (en) | Methods of preparing carbon-coated particles and using same | |
KR20170133405A (en) | Organic sulfur material and method for its production | |
JP4697770B2 (en) | Carbon material and non-aqueous electrolyte secondary battery using the same | |
CN108011094A (en) | A kind of preparation method of lithium-sulfur battery composite anode material | |
JP3687711B2 (en) | Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery | |
JPH1083814A (en) | Carbon material for anode for non-aqueous solvent secondary battery | |
US6228343B1 (en) | Method for producing isotropic pitch, activated carbon fibers and carbon materials for non-aqueous secondary battery anodes | |
JP3687712B2 (en) | Method for producing carbon material for negative electrode of nonaqueous solvent secondary battery | |
CN113540450A (en) | Organosulfur material, electrode, lithium ion secondary battery, and manufacturing method | |
JPS61111907A (en) | Electrode material | |
CA2138334C (en) | Lithium secondary battery employing a non-aqueous media | |
CN116284634A (en) | Preparation method of high-stability polymer used as anode material of lithium ion battery | |
JP2002124256A (en) | Nonaqueous solvent secondary battery | |
JPH10149830A (en) | Carbon material for nonaqueous solvent secondary battery negative electrode | |
JP3570443B2 (en) | Carbon material for negative electrode of non-aqueous solvent secondary battery | |
JPH06132031A (en) | Improved nonaquaous solvent lithium secondary battery | |
JPH07226202A (en) | Improved nonaqueous solvent lithium secondary battery | |
JPH07254412A (en) | Improved nonaqueous solvent lithium secondary battery | |
JPH08264180A (en) | Lithium secondary battery negative electrode material and lithium secondary battery using it | |
JP2000149947A (en) | Graphite powder for lithium ion battery negative electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050531 |
|
LAPS | Cancellation because of no payment of annual fees |