[go: up one dir, main page]

JPH10305A - Method of preventing deaerator from being clogged - Google Patents

Method of preventing deaerator from being clogged

Info

Publication number
JPH10305A
JPH10305A JP8177416A JP17741696A JPH10305A JP H10305 A JPH10305 A JP H10305A JP 8177416 A JP8177416 A JP 8177416A JP 17741696 A JP17741696 A JP 17741696A JP H10305 A JPH10305 A JP H10305A
Authority
JP
Japan
Prior art keywords
deaerator
dispersant
raw water
inflow side
gas separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8177416A
Other languages
Japanese (ja)
Inventor
Junichi Nakajima
純一 中島
Yuji Ukiana
雄二 浮穴
Masazumi Yamashita
正純 山下
Kenichi Kimura
健一 木村
Katsufumi Isshiki
克文 一色
Hajime Abe
元 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP8177416A priority Critical patent/JPH10305A/en
Publication of JPH10305A publication Critical patent/JPH10305A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/04Membrane cleaning or sterilisation ; Membrane regeneration with movable bodies, e.g. foam balls

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent a deaerator from being clogged even without reversing the water passing direction. SOLUTION: This device is formed by containing a housing part 6 which an aggregate of hollow yarn like air separation membranes 5 is incorporated to form, a cap 7a on the inflow side which is fitted to the inflow side of the housing part 6, and an air intake part 8 for sucking dissolved gas molecules in raw water through the hollow yarn like gas separation membranes. In this case, a dispersant is injected to raw water fed to a deaerator body 2a, and also floating bodies 9a are fluidized inside the cap on the inflow side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラーの給水ラ
インなどに用いる脱気装置について、その目詰まりを確
実に防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reliably preventing clogging of a deaerator used in a water supply line of a boiler or the like.

【0002】[0002]

【従来の技術】近年では、ビルやマンションにおける赤
水防止対策として、脱気装置が用いられている。またボ
イラー、温水器、冷却器などの冷熱機器類への給水ライ
ンにも、これら機器類の内部腐食の防止を目的として脱
気装置が組み込まれている。脱気装置としては、装置の
コンパクトさ、および取扱いの簡便さから、中空糸状気
体分離膜モジュールを用いたものが多用されている。こ
の種の脱気装置では、気体分離膜の内部に原水を通水す
る一方、気体分離膜を介して真空ポンプを作用させて原
水中の溶存気体を分離除去している。
2. Description of the Related Art In recent years, a deaerator has been used as a measure for preventing red water in buildings and condominiums. Dewatering devices are also incorporated in water supply lines for cooling and heating equipment such as boilers, water heaters, and coolers in order to prevent internal corrosion of these equipment. As a degassing device, a device using a hollow fiber-shaped gas separation membrane module is often used because of its compactness and easy handling. In this type of deaerator, while raw water flows through the gas separation membrane, a vacuum pump is operated via the gas separation membrane to separate and remove dissolved gas in the raw water.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の脱気装
置には、原水中の鉄分、マンガン、泥などの不純物が気
体分離膜モジュールの流入側端面に付着して、これが時
間と共に成長するという問題点がある。かかる事態を考
慮して、一般には、脱気装置の上流側に濾過フィルタを
設けているが、それでも、濾過フィルタを透過する成分
によって中空糸状分離膜の流入側端面が徐々に閉塞(目
詰まり)されてしまい、結果として、脱気装置の圧力損
失が増加したり脱酸素能力を低下させている。また、気
体分離膜モジュール自体の寿命を低下させている。脱気
装置の目詰まりを防止するには、例えば、所定時間経過
後に通水方向を逆転させることも考えられるが、この方
法には、切り換え機構が複雑となり製造コストも高騰し
てしまうという欠点があり、解決策として十分ではな
い。本発明は、これらの問題点に着目してなされたもの
であって、通水方向を逆転させるまでもなく、脱気装置
の目詰まりを確実に防止することのできる方法を提供す
ることを目的とする。
However, in the above-described deaerator, impurities such as iron, manganese, and mud in the raw water adhere to the inflow-side end face of the gas separation membrane module and grow with time. There is a problem. In consideration of such a situation, a filtration filter is generally provided on the upstream side of the deaeration device. However, the inflow side end face of the hollow fiber-shaped separation membrane is still gradually clogged (clogged) by a component that passes through the filtration filter. As a result, the pressure loss of the deaerator increases and the deoxygenation ability decreases. Further, the life of the gas separation membrane module itself is shortened. In order to prevent clogging of the deaerator, for example, it is conceivable to reverse the direction of water flow after a lapse of a predetermined time.However, this method has a disadvantage that a switching mechanism becomes complicated and manufacturing costs increase. Yes, not enough solution. The present invention has been made in view of these problems, and it is an object of the present invention to provide a method capable of reliably preventing clogging of a deaerator without reversing a water flow direction. And

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明では、中空糸状気体分離膜の集合体を内蔵し
てなる収容部と、前記収容部の流入側に装着される流入
側キャップと、前記中空糸状気体分離膜を介して原水中
の溶存気体分子を吸入する吸気部とを含んでなる脱気装
置において、前記脱気装置に供給される原水に分散剤を
注入すると共に、前記流入側キャップの内部で遊動体を
流動させている。本発明では、脱気装置に供給される原
水に分散剤が注入されており、且つ、流入側キャップの
内部で遊動体が流動しているので、目詰まり成分が凝集
して固まりに成長することが抑制され、目詰まりを確実
に防止することができる。なお、一般には、脱気装置の
中にプレフィルタが設けられているが、この場合、流入
側キャップの直ぐ上流で分散剤を注入するのが好まし
い。本発明において、遊動体は、原水の流れに合わせて
流動するものであれば特に限定されないが、例えば、プ
ラスチックビーズのように比較的比重の軽いものが好ま
しい。遊動体の形状も特に限定されないが、例えば、球
状、米粒状、円柱状などの形状が例示される。
In order to achieve the above object, according to the present invention, there is provided a housing portion having a built-in hollow fiber gas separation membrane, and an inflow side mounted on the inflow side of the housing portion. In a deaerator including a cap and an intake unit that sucks dissolved gas molecules in the raw water through the hollow fiber-shaped gas separation membrane, while injecting a dispersant into the raw water supplied to the deaerator, A floating body flows inside the inflow-side cap. In the present invention, since the dispersant is injected into the raw water supplied to the deaerator and the floating body is flowing inside the inflow-side cap, the clogging component may aggregate and grow into a solid. And clogging can be reliably prevented. In general, a prefilter is provided in the deaerator, but in this case, it is preferable to inject the dispersant immediately upstream of the inflow-side cap. In the present invention, the floating body is not particularly limited as long as it flows in accordance with the flow of the raw water. For example, a floating body having a relatively low specific gravity such as plastic beads is preferable. Although the shape of the floating body is not particularly limited, for example, a shape such as a sphere, a rice grain, and a column is exemplified.

【0005】本発明の分散剤は、リグニンやタンニンな
どの天然有機物質(a) 、ヘキサメタリン酸塩などの重合
リン酸塩(b) 、アミノトリメチレンホスホン酸塩やホス
ホノブタントリカルボン酸塩などのホスホン酸塩(c) 、
アクリル酸ホモポリマー、アクリル酸系コーポリマー、
アクリル酸系ターポリマーなどのアクリル酸系ポリマー
(d) 、マレイン酸ホモポリマーや無水マレイン酸系コー
ポリマーなどのマレイン酸系ポリマー(e) 、又は、アク
リルアミド系ホモポリマー(f) のいずれか、または任意
の組み合わせである。脱気装置の目詰まりを防止するこ
とに加えて、ボイラーなどのスケール析出を抑制する上
では、次のような分散剤を用いるのが有効である。先
ず、炭酸カルシウムの析出が予想される場合には、各種
のホスホン酸塩、マレイン酸ホモポリマー、アクリル酸
ホモポリマーが好ましい。リン酸カルシウムの析出が予
想される場合には、アクリル酸系ターポリマーやマレイ
ン酸系コーポリマーが好ましい。けい酸マグネシウムの
析出が予想される場合には、アクリル酸系コーポリマー
や、アクリルアミド系ホモポリマーや、マレイン酸系コ
ーポリマーが好ましい。また、硫酸カルシウムの析出が
予想される場合には、重合リン酸塩や、ホスホン酸塩
や、アクリル酸ホモポリマーが好ましい。
The dispersants of the present invention include natural organic substances (a) such as lignin and tannin, polymerized phosphates (b) such as hexametaphosphate, and aminotrimethylene phosphonates and phosphonobutane tricarboxylates. Phosphonate (c),
Acrylic acid homopolymer, acrylic acid copolymer,
Acrylic acid-based polymers such as acrylic acid-based terpolymers
(d), a maleic acid-based polymer (e) such as a maleic acid homopolymer or a maleic anhydride-based copolymer, or an acrylamide-based homopolymer (f), or any combination thereof. In addition to preventing clogging of the deaerator, it is effective to use the following dispersant in order to suppress scale deposition in a boiler or the like. First, when precipitation of calcium carbonate is expected, various phosphonates, maleic acid homopolymers, and acrylic acid homopolymers are preferred. When precipitation of calcium phosphate is expected, an acrylic acid-based terpolymer or a maleic acid-based copolymer is preferred. When precipitation of magnesium silicate is expected, an acrylic acid-based copolymer, an acrylamide-based homopolymer, or a maleic acid-based copolymer is preferred. Further, when precipitation of calcium sulfate is expected, a polymerized phosphate, a phosphonate, or an acrylic acid homopolymer is preferable.

【0006】分散剤の薬注濃度は、0.1mg/l〜5
00mg/lが好ましく、より好ましくは、1mg/l
〜100mg/l程度である。本発明は、発明の目的を
損なわない範囲で他の成分を添加しても良く、例えば、
ボイラー用に用いる脱気装置の場合には、次の成分を添
加することが考えられる。防食のためのpH調整に
は、水酸化ナトリウムNaOHや、水酸化カリウムKO
Hを添加しても良い。脱酸素効果をより向上させるに
は、亜硫酸ナトリウムNa2 SO3 やヒドラジンなどの
脱酸素剤を添加しても良い。蒸気配管の防食のために
は、皮膜型アミン、中和型アミン、ヒドラジンなどの復
水処理剤を添加してもよい。キャリオーバ防止のため
には消泡剤を添加してもよい。
[0006] The chemical concentration of the dispersant is 0.1 mg / l to 5 mg / l.
00 mg / l is preferred, more preferably 1 mg / l
About 100 mg / l. The present invention may include other components as long as the object of the invention is not impaired.
In the case of a deaerator used for a boiler, the following components may be added. For pH adjustment for anticorrosion, sodium hydroxide NaOH, potassium hydroxide KO
H may be added. To further improve the deoxidizing effect, a deoxidizing agent such as sodium sulfite Na 2 SO 3 or hydrazine may be added. To prevent corrosion of the steam piping, a condensing agent such as a film type amine, a neutralized type amine, or hydrazine may be added. An antifoaming agent may be added to prevent carryover.

【0007】[0007]

【実施例】【Example】

〔実施例1〕本発明は、図1のような装置構成において
実施される。図1は、ボイラーの給水ラインの一部を図
示したものであり、分散剤その他を注入する薬注装置1
と、脱気装置2と、貯留タンク3と、ボイラー4とが図
示されている。脱気装置2は、原水中の溶存気体を除去
する装置本体2aと、装置本体2aの上流側に配置され
るプレフィルタ2bとを含んで構成されている。装置本
体2aは、図2に示すように、中空糸状気体分離膜5の
集合体を内蔵してなる収容部6と、収容部6の流入側に
装着される流入側キャップ7aと、収容部6の流出側に
装着される流出側キャップ7bと、中空糸状気体分離膜
5を介して原水中の溶存気体分子を吸入する吸気部8
と、キャップ7a,7bの内部で流動する遊動体9a,
9bとで構成されている。なお、この脱気装置2では、
流入側と流出側を適宜に切り換えて通水方向を逆転でき
るようにしているが、必ずしも、その必要はなく、逆通
水を行わない場合には遊動体9bを省略しても良い。図
1の装置構成において、原水のシリカ濃度が高く、Mア
ルカリ(金属アルカリ)が低く、シリカ系スケールが心
配される水質の場合に、水酸化ナトリウム20%、1−
ヒドロキシエチリデン−1,1−ジホスホン酸30%を
含む水溶液を20mg/lを用いたところ、長時間使用
後も脱気装置の性能が劣化しないことが確認された。ま
た、原水のMアルカリが高い場合に、ヘキサメタリン酸
ナトリウム30%を含む水溶液を20mg/lを用いた
ところ、長時間使用後も脱気装置の性能が劣化しないこ
とが確認された。また、プレフィルタ2bと装置本体2
aの間に薬注装置1を接続して(図1の破線参照)、上
記と同様の薬液を注入した。この場合には、プレフィル
タ2bを通過後の原水に分散剤が注入されるので好まし
い。
[Embodiment 1] The present invention is implemented in an apparatus configuration as shown in FIG. FIG. 1 shows a part of a water supply line of a boiler, and a chemical injection device 1 for injecting a dispersant and the like.
, A deaerator 2, a storage tank 3, and a boiler 4 are illustrated. The degassing device 2 is configured to include a device main body 2a for removing dissolved gas in raw water, and a pre-filter 2b disposed upstream of the device main body 2a. As shown in FIG. 2, the apparatus main body 2 a includes a housing portion 6 having a built-in assembly of the hollow fiber gas separation membrane 5, an inflow side cap 7 a mounted on the inflow side of the housing portion 6, Outlet side cap 7b mounted on the outflow side of the air, and suction unit 8 for inhaling dissolved gas molecules in raw water through hollow fiber gas separation membrane 5.
And the floating bodies 9a, 9a, which flow inside the caps 7a, 7b.
9b. In this deaerator 2,
Although the inflow side and the outflow side are appropriately switched so that the water flow direction can be reversed, this is not always necessary, and when the reverse water flow is not performed, the floating body 9b may be omitted. In the apparatus configuration shown in FIG. 1, when the raw water has a high silica concentration, a low M alkali (metal alkali), and a water quality in which a silica-based scale is concerned, 20% sodium hydroxide, 1-
When 20 mg / l of an aqueous solution containing 30% of hydroxyethylidene-1,1-diphosphonic acid was used, it was confirmed that the performance of the deaerator did not deteriorate even after long-time use. In addition, when the M alkali of the raw water was high, when an aqueous solution containing 30% of sodium hexametaphosphate was used at 20 mg / l, it was confirmed that the performance of the deaerator did not deteriorate even after long-time use. In addition, the pre-filter 2b and the device body 2
The chemical infusion device 1 was connected between a (see a broken line in FIG. 1), and the same chemical solution as described above was injected. In this case, the dispersant is preferably injected into the raw water after passing through the pre-filter 2b.

【0008】〔実施例2〕同一能力の4台の脱気装置
A,B,C,Dを用意し、原水に所定量の鉄コロイド及
びダストと溶存酸素とを含有させて対比試験を行った。
より具体的には、各脱気装置A〜Dの下流側に、流量計
と溶存酸素計とを設けて、流量と溶存酸素量(DO値)
の時間的変化を測定すると共に、各脱気装置の流入側と
流出側の間に差圧計を設けて圧損の時間的変化を測定し
た。 (1)本発明の実施(脱気装置A,B) 脱気装置Aと脱気装置Bに供給される原水には、分散剤
としてヘキサメタリン酸ナトリウムを0.2重量%添加
する。脱気装置Aには、遊動体としてプラスチックビー
ズ(以下、ビーズという)を挿入しており、一方向にの
み通水する。一方、脱気装置Bには、ビーズを挿入して
いないが、運転途中で通水方向を逆転させる。 (2)対比装置(脱気装置C,D) 脱気装置Cと脱気装置Dには、分散剤を注入していない
原水を供給する。脱気装置Cには、ビーズを挿入してお
り、一方向にのみ通水する。一方、脱気装置Dにはビー
ズを挿入していないが、運転途中で通水方向を逆転させ
る。
[Example 2] Four deaerators A, B, C, and D having the same capacity were prepared, and a comparative test was performed using raw water containing a predetermined amount of iron colloid, dust, and dissolved oxygen. .
More specifically, a flow meter and a dissolved oxygen meter are provided downstream of each of the deaerators A to D, and the flow rate and the dissolved oxygen amount (DO value)
, And a pressure gauge was provided between the inflow side and the outflow side of each deaerator to measure the time change of pressure loss. (1) Implementation of the present invention (degassing devices A and B) To raw water supplied to degassing devices A and B, 0.2% by weight of sodium hexametaphosphate is added as a dispersant. Plastic beads (hereinafter, referred to as beads) are inserted into the deaerator A as a floating body, and water flows only in one direction. On the other hand, no beads are inserted into the deaerator B, but the water flow direction is reversed during operation. (2) Comparison device (degassing devices C and D) Raw water without a dispersant is supplied to the degassing devices C and D. Beads are inserted into the deaerator C, and water is passed in only one direction. On the other hand, no beads are inserted into the deaerator D, but the water flow direction is reversed during operation.

【0009】(3)圧損の時間的変化 図3(a)(b)は、脱気装置A〜脱気装置Dについ
て、圧損の時間的変化を図示したものである。ビーズを
挿入した脱気装置Aの場合には、原水に分散剤を添加し
ているので、圧損が0.45Kg/cm2 の正常値を維
持することが確認される。ビーズを挿入していない脱気
装置Bの場合には圧損が増加してゆくが、60分経過後
に通水方向を逆転させると、その後、圧損は、0.45
Kg/cm2 程度の正常値を維持することが確認され
る。原水に分散剤を添加しないで運転する脱気装置Cの
場合には、ビーズを遊動させても時間の経過と共に圧損
が徐々に増加する。なお、圧損が正常値から20%以上
増加すると運転上問題となる。ビーズが挿入されておら
ず、原水に分散剤を添加しないで運転する脱気装置Dで
は、動作開始後、急激に圧損が増加し、30分経過後に
通水方向を逆転させても、圧損は、ゆっくりとしか回復
しない。 (4)流量の時間的変化 図4(a)(b)は、脱気装置A〜脱気装置Dについ
て、流量の時間的変化を図示したものである。ビーズを
挿入した脱気装置Aの場合には、原水に分散剤を添加し
ているので、流量が殆ど低下しないことが確認される。
なお、各脱気装置において、正常流量は、16.5〜1
6.9l/分程度であり、これが20%以上流量が低下
すると運転上問題となる。ビーズを挿入していない脱気
装置Bの場合には、動作を開始すると流量が低下してゆ
くが、60分経過後に通水方向を逆転させると、その後
は、正常な流量を維持することが確認される。原水に分
散剤を添加しない脱気装置Cの場合には、ビーズを遊動
させても時間の経過と共に流量が低下してゆく。ビーズ
を挿入しておらず、また、原水に分散剤を添加していな
い脱気装置Dでは、動作開始後、急激に流量が低下し
て、30分経過後に通水方向を逆転させても、流量は、
ゆっくりとしか回復しない。
(3) Temporal change of pressure loss FIGS. 3 (a) and 3 (b) show temporal changes of pressure loss in the degassing devices A to D. In the case of the deaerator A in which the beads were inserted, since the dispersant was added to the raw water, it was confirmed that the pressure loss maintained a normal value of 0.45 Kg / cm 2 . In the case of the deaerator B without beads, the pressure loss increases. However, when the water flow direction is reversed after 60 minutes, the pressure loss becomes 0.45.
It is confirmed that a normal value of about Kg / cm 2 is maintained. In the case of the deaerator C operated without adding a dispersant to the raw water, the pressure loss gradually increases with the passage of time even if the beads are moved. If the pressure loss increases by 20% or more from the normal value, there is a problem in operation. In the deaerator D in which the beads are not inserted and the operation is performed without adding a dispersant to the raw water, the pressure loss rapidly increases after the operation is started, and even if the water flowing direction is reversed after 30 minutes, the pressure loss is reduced. Only recovers slowly. (4) Temporal change of flow rate FIGS. 4A and 4B illustrate the temporal change of the flow rate for the deaerators A to D. In the case of the deaerator A in which the beads were inserted, it was confirmed that the flow rate hardly decreased because the dispersant was added to the raw water.
In each deaerator, the normal flow rate was 16.5 to 1
The flow rate is about 6.9 l / min. If the flow rate is reduced by 20% or more, there is a problem in operation. In the case of the deaerator B in which the beads are not inserted, the flow rate decreases when the operation is started. However, when the water flow direction is reversed after the elapse of 60 minutes, the normal flow rate can be maintained. It is confirmed. In the case of the deaerator C in which the dispersant is not added to the raw water, the flow rate decreases with time even if the beads are moved. In the deaerator D in which beads were not inserted and the dispersant was not added to the raw water, the flow rate suddenly decreased after the start of the operation, and even if the flow direction was reversed after 30 minutes, The flow rate is
It only recovers slowly.

【0010】(5)DO値の時間的変化 図5(a)(b)は、脱気装置A〜脱気装置Dについ
て、DO値の時間的変化を図示したものである。ビーズ
を挿入した脱気装置Aの場合には、原水に分散剤を添加
しているので、DO値が0.5ppm から殆ど増加しない
ことが確認される。ビーズの挿入されていない脱気装置
Bの場合には、動作を開始すると急激にDO値が増加す
るが、60分経過後に通水方向を逆転させると、その
後、正常な流量を維持することが確認された。原水に分
散剤を添加しない脱気装置Cの場合には、ビーズを遊動
させても時間の経過と共にDO値が増加してゆく。ビー
ズを挿入しておらず、また、原水に分散剤を添加してい
ない脱気装置Dでは、動作開始後、急激に流量が低下し
て、30分経過後に通水方向を逆転させても、DO値は
ゆっくりとしか回復しない。
(5) Temporal change of DO value FIGS. 5 (a) and 5 (b) show the temporal change of the DO value for the deaerators A to D. In the case of the deaerator A in which the beads were inserted, it was confirmed that the DO value hardly increased from 0.5 ppm because the dispersant was added to the raw water. In the case of the deaerator B in which beads are not inserted, the DO value sharply increases when the operation is started. However, if the water flow direction is reversed after the elapse of 60 minutes, the normal flow rate may be maintained thereafter. confirmed. In the case of the deaerator C in which the dispersant is not added to the raw water, the DO value increases with time even if the beads are moved. In the deaerator D in which beads were not inserted and the dispersant was not added to the raw water, the flow rate suddenly decreased after the start of the operation, and even if the flow direction was reversed after 30 minutes, DO values only recover slowly.

【0011】[0011]

【発明の効果】以上説明したように、本発明によれば、
運転途中に通水方向を逆転させるまでもなく、脱気装置
の目詰まりを確実に防止することのできる。なお、本発
明をビルなどの給水ラインに適用する場合には、分散剤
として重合リン酸を用いることで、目詰まり防止と赤水
発生の防止とを実現することができる。また、本発明を
ボイラーなどの給水ラインに適用する場合には、分散剤
の注入によってスケールの防止を実現することもでき
る。
As described above, according to the present invention,
Clogging of the deaerator can be reliably prevented without reversing the direction of water flow during operation. When the present invention is applied to a water supply line of a building or the like, by using polymerized phosphoric acid as a dispersant, prevention of clogging and prevention of generation of red water can be realized. In addition, when the present invention is applied to a water supply line such as a boiler, prevention of scale can be realized by injecting a dispersant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボイラーの給水ラインの一部を図示したもので
ある。
FIG. 1 illustrates a part of a water supply line of a boiler.

【図2】脱気装置の内部構成を図示したものである。FIG. 2 illustrates an internal configuration of a deaerator.

【図3】圧損の時間的変化を図示したものである。FIG. 3 illustrates a temporal change of a pressure loss.

【図4】流量の時間的変化を図示したものである。FIG. 4 illustrates a temporal change of a flow rate.

【図5】溶存酸素量の時間的変化を図示したものであ
る。
FIG. 5 is a diagram illustrating a temporal change of a dissolved oxygen amount.

【符号の説明】[Explanation of symbols]

2 脱気装置 5 中空糸状気体分離膜 6 収容部 7a 流入側キャップ 8 吸気部 2 Degassing device 5 Hollow fiber gas separation membrane 6 Housing 7a Inlet-side cap 8 Inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 健一 愛媛県松山市堀江町7番地 三浦工業株式 会社内 (72)発明者 一色 克文 愛媛県松山市堀江町7番地 三浦工業株式 会社内 (72)発明者 安部 元 愛媛県松山市堀江町7番地 三浦工業株式 会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Kimura 7th Horie-cho, Matsuyama-shi, Ehime Miura Kogyo Co., Ltd. Inventor Moto Abe 7-Horiecho, Matsuyama-shi, Ehime Miura Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空糸状気体分離膜の集合体を内蔵して
なる収容部と、前記収容部の流入側に装着される流入側
キャップと、前記中空糸状気体分離膜を介して原水中の
溶存気体分子を吸入する吸気部とを含んでなる脱気装置
において、 前記脱気装置に供給される原水に分散剤を注入すると共
に、前記流入側キャップの内部で遊動体を流動させるこ
とを特徴とする脱気装置の目詰まり防止方法。
1. A housing section containing an assembly of hollow fiber-shaped gas separation membranes, an inflow side cap mounted on the inflow side of the housing section, and dissolution in raw water via the hollow fiber-shaped gas separation membranes. A degassing device including a suction part for sucking gas molecules, wherein a dispersant is injected into raw water supplied to the degassing device, and a floating body flows inside the inflow-side cap. To prevent clogging of the deaerator.
【請求項2】 前記分散剤は、前記流入側キャップの直
ぐ上流で注入される請求項1に記載の脱気装置の目詰ま
り防止方法。
2. The method of claim 1, wherein the dispersant is injected immediately upstream of the inlet cap.
【請求項3】 前記分散剤は、天然有機物質、重合リン
酸塩、ホスホン酸塩、アクリル酸系ポリマー、マレイン
酸系ポリマー、又はアクリルアミド系ホモポリマーの中
から選択される一種、または二種以上の混合物である請
求項1又は請求項2に記載の脱気装置の目詰まり防止方
法。
3. The dispersant is one or more selected from natural organic substances, polymerized phosphates, phosphonates, acrylic acid polymers, maleic acid polymers, and acrylamide homopolymers. The method for preventing clogging of a deaerator according to claim 1 or 2, which is a mixture of:
【請求項4】 前記分散剤の添加濃度は、0.1mg/
l〜500mg/lである請求項3に記載の脱気装置の
目詰まり防止方法。
4. The addition concentration of the dispersant is 0.1 mg /
The method for preventing clogging of a deaerator according to claim 3, wherein the amount is 1 to 500 mg / l.
JP8177416A 1996-06-17 1996-06-17 Method of preventing deaerator from being clogged Withdrawn JPH10305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8177416A JPH10305A (en) 1996-06-17 1996-06-17 Method of preventing deaerator from being clogged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8177416A JPH10305A (en) 1996-06-17 1996-06-17 Method of preventing deaerator from being clogged

Publications (1)

Publication Number Publication Date
JPH10305A true JPH10305A (en) 1998-01-06

Family

ID=16030549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8177416A Withdrawn JPH10305A (en) 1996-06-17 1996-06-17 Method of preventing deaerator from being clogged

Country Status (1)

Country Link
JP (1) JPH10305A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037601A (en) * 1998-07-23 2000-02-08 Miura Co Ltd Degassing module
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water production method
FR2909008A1 (en) * 2006-11-27 2008-05-30 Vaslin Bucher Sa Fibrous deposits formation preventing device for use during filtration of e.g. wort, has scrapper member carrying out intermittent/continuous scrapping or chopping action in common input plane of beam of capillary or tubular membrane
WO2012029335A1 (en) * 2010-08-31 2012-03-08 大日本スクリーン製造株式会社 Liquid supply device and method of determining the replacement time of a gas adjustment element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037601A (en) * 1998-07-23 2000-02-08 Miura Co Ltd Degassing module
JP2002307059A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Decarbonation method and pure water production method
FR2909008A1 (en) * 2006-11-27 2008-05-30 Vaslin Bucher Sa Fibrous deposits formation preventing device for use during filtration of e.g. wort, has scrapper member carrying out intermittent/continuous scrapping or chopping action in common input plane of beam of capillary or tubular membrane
WO2012029335A1 (en) * 2010-08-31 2012-03-08 大日本スクリーン製造株式会社 Liquid supply device and method of determining the replacement time of a gas adjustment element
JP5701886B2 (en) * 2010-08-31 2015-04-15 株式会社Screenホールディングス Liquid supply apparatus and gas adjustment element replacement time determination method
US9039149B2 (en) 2010-08-31 2015-05-26 SCREEN Holdings Co., Ltd. Liquid feeding device and method of determining time of exchange of gas control element

Similar Documents

Publication Publication Date Title
CN102908899B (en) Reverse osmosis water purification system
TWI699235B (en) Water treatment method and device
US20070138096A1 (en) Systems and methods for controlling contaminate levels of processed water and maintaining membranes
CN108623024B (en) Water purifier and water purification system
CN106414344A (en) Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water
US20100047156A1 (en) Multiple stage reverse osmosis method for removing boron from a salinated fluid
JPH10305A (en) Method of preventing deaerator from being clogged
CN107735365B (en) Cooling drainage recovery method and recovery device
JP2002307058A (en) Pure water producing apparatus using reverse osmosis membrane module, and method of using the same
JP2779146B2 (en) Emergency water purification equipment
CN202803115U (en) Reverse-osmosis water purification system
CN210495949U (en) Reverse osmosis system of water purifier capable of performing back flushing
CN220245690U (en) Reverse osmosis filter element group
JP2007090249A (en) Cleaning method for membrane deaerator
JP2006305498A (en) Operating method of membrane filtration system
CN222312811U (en) Pure water diluting device and water purifying equipment
CN222498898U (en) Water purifier
RU2047330C1 (en) Method for producing potable water
CN221370752U (en) Concentrated water switching backflow secondary reverse osmosis treatment device
CN109467207A (en) Reverse osmosis back-purge system
CN218969028U (en) Primary water filtering pool
JP7586657B2 (en) Method for operating water treatment device and water treatment device
CN210945072U (en) Two-stage reverse osmosis pure water purification device
CN217838619U (en) Water purification equipment with self-cleaning function
CN114250829B (en) Water supply system, water supply control method, and readable storage medium

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902