[go: up one dir, main page]

JPH10302823A - Fuel cell characteristic diagnostic method and fuel cell operating method - Google Patents

Fuel cell characteristic diagnostic method and fuel cell operating method

Info

Publication number
JPH10302823A
JPH10302823A JP9109588A JP10958897A JPH10302823A JP H10302823 A JPH10302823 A JP H10302823A JP 9109588 A JP9109588 A JP 9109588A JP 10958897 A JP10958897 A JP 10958897A JP H10302823 A JPH10302823 A JP H10302823A
Authority
JP
Japan
Prior art keywords
flow rate
fuel cell
fuel
air
battery voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9109588A
Other languages
Japanese (ja)
Other versions
JP3455392B2 (en
Inventor
Hiroshi Horiuchi
弘志 堀内
Kazutaka Hotta
和孝 堀田
Yoshiichi Matsumoto
芳一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP10958897A priority Critical patent/JP3455392B2/en
Publication of JPH10302823A publication Critical patent/JPH10302823A/en
Application granted granted Critical
Publication of JP3455392B2 publication Critical patent/JP3455392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a characteristic diagnostic method of a fuel cell capable of easily avoiding damage of the fuel cell caused by disturbance in a field plant. SOLUTION: An air flow rate supplying to an air electrode is changed in plural levels of air flow rate containing the rated air flow rate, cell voltage and DC current in each level are measured. Each mean oxygen concentration is found from each oxygen concentration in the inlet and outlet of the air electrode obtained from each air flow rate and each DC current. An extrapolated value of the cell voltage in pure oxygen concentration is found by the primary regression of the mean oxygen concentration in each measured point and the cell voltage, and oxygen gain is found from the difference between the cell voltage and the rated cell voltage corresponding to the rated air flow rate. The gas diffusion performance of the air electrode is diagnosed from the oxygen gain.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、燃料ガスと空気
とを供給し、電気化学反応によって外部に電力を取り出
す燃料電池の特性診断方法および燃料電池の運転方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for diagnosing characteristics of a fuel cell and a method for operating the fuel cell, in which fuel gas and air are supplied and electric power is taken out by an electrochemical reaction.

【0002】[0002]

【従来の技術】燃料電池は、特にりん酸型燃料電池にお
いては2万時間を超える運転寿命が実証機でも実証され
ており、実用機での信頼性の確保の見通しが得られつつ
ある。現段階における燃料電池の実用化のための課題と
しては、低コスト化や信頼性向上といった設計段階での
技術開発とは別に、運転信頼性向上を目的とした実フィ
ールドでの運転方法の適正化のための技術開発も必要と
なってきている。特に、過剰な保護回路や冗長設計は低
コスト化の妨げの原因となり、実フィールドにおける実
質的な運転方法に応じた必要最小限の保護機能に集約す
べきである。
2. Description of the Related Art In a fuel cell, particularly, in a phosphoric acid type fuel cell, an operating life of more than 20,000 hours has been proved in a demonstration machine, and a prospect of securing reliability in a practical machine is being obtained. The challenges for practical use of fuel cells at this stage include, apart from technological development at the design stage such as cost reduction and reliability improvement, optimization of the actual field operation method for the purpose of improving operation reliability. Technology development is also needed. In particular, excessive protection circuits and redundant designs cause cost hindrance, and should be concentrated on the minimum necessary protection functions according to the actual operation method in the actual field.

【0003】ところで、燃料電池の運転信頼性を低下さ
せる要因としては、下記の2通りがある。 (1) 外乱による機能低下 流量計等センサー類や制御装置の誤動作や故障、改質器
や変成器性能低下等の外部システムの機能低下によるも
の (2) 燃料電池内部の機能低下 電極活性低下や電極内ガス拡散性低下、電解質の散逸に
よる電解質不足等の電池内部の機能低下によるもの燃料
電池の運転信頼性を低下させる多くは上記(1)の外乱
による機能低下が原因で不可逆的な損傷を受けて機能低
下する場合であり、運転中の外乱発生を防止する一方
で、外乱発生の早期発見の方法も重要な課題の一つにな
っている。
[0003] Incidentally, there are the following two factors that reduce the operational reliability of the fuel cell. (1) Deterioration of functions due to disturbance Malfunction or failure of sensors and control devices such as flow meters, and deterioration of external systems such as reformer and transformer performance (2) Deterioration of functions inside the fuel cell Deterioration of functions inside the cell, such as a decrease in gas diffusivity in the electrode, electrolyte shortage due to electrolyte dissipation, and the like. In many cases, the operability of the fuel cell is reduced. This is a case in which the function is deteriorated due to this. While preventing the occurrence of disturbance during driving, a method of early detection of occurrence of disturbance is also one of the important issues.

【0004】従来の外乱発生の早期発見の方法として
は、(1) 電池のブロック電圧の計測による方法、
(2) 電池ガス出口におけるガス組成分析による方
法、(3)電池ガス流路圧損変化による方法等が知られ
ている。これらは「急激な変化」に対応できる、即ち制
御系の誤動作のような「ある瞬間から正常な制御をしな
くなる」ような異常な状況の発生の検知方法として実際
に実機に採用されている。
[0004] Conventional methods for early detection of disturbance occurrence include (1) a method of measuring a block voltage of a battery,
(2) A method based on gas composition analysis at a battery gas outlet, and (3) a method based on a change in pressure loss in a battery gas flow path are known. These are actually employed in actual machines as a method of detecting an abnormal situation such as "abrupt change", that is, "abnormal control is stopped from a certain moment" such as malfunction of a control system.

【0005】[0005]

【発明が解決しようとする課題】従来の燃料電池では、
こうした「急激な変化」を検知する保護機能は必要では
あるが、「電池特性が経時的に変化をきたしてきている
場合」も検知する保護機能も必要である。例えば外乱の
影響によって電極に電解質が浸透してガス拡散性能が低
下する場合があるが、このようなとき、そのままの運転
条件で運転を続行させた場合、セルを損傷させてしまう
おそれがある。こうしたことから、外乱の影響で燃料電
池のセルが経時的に変化したことを診断する手法が必要
であった。
SUMMARY OF THE INVENTION In a conventional fuel cell,
Although a protection function for detecting such “abrupt change” is necessary, a protection function for detecting “when the battery characteristics change over time” is also required. For example, the electrolyte may penetrate into the electrode due to the influence of disturbance, and the gas diffusion performance may be reduced. In such a case, if the operation is continued under the same operating conditions, the cell may be damaged. For this reason, a method of diagnosing a change in the fuel cell over time due to the influence of a disturbance is required.

【0006】その一つの手法として、燃料電池電極内へ
の電解質の浸透の増加については、燃料電池を解体して
電極が吸収した電解質の量を分析することで分かる。即
ち、破壊検査によって状況診断は可能である。しかしな
がら、この破壊検査ではプラントとしての運転を断念せ
ねばならない。非破壊検査の手法による診断が可能なら
ば、診断結果に応じた特性回復のための処置を講じるこ
とができる。
As one of the methods, the increase in the penetration of the electrolyte into the fuel cell electrode can be determined by disassembling the fuel cell and analyzing the amount of the electrolyte absorbed by the electrode. That is, the situation diagnosis can be performed by the destructive inspection. However, in this destructive inspection, the operation as a plant must be abandoned. If a diagnosis can be made by a non-destructive inspection method, it is possible to take measures for recovering characteristics according to the diagnosis result.

【0007】こうした非破壊検査の一手法が特開平1−
122570号公報に示されている。この方法は、定常
運転時の出力電圧、および酸化剤ガスの酸素濃度を定常
運転時よりも高めた運転状態での出力電圧を随時測定
し、各出力電圧、並びに定常運転と高酸素濃度運転の出
力電圧差の経時変化パターンを基にセルの状態変化を診
断する方法である。
One method of such non-destructive inspection is disclosed in
No. 122570. In this method, the output voltage during steady-state operation, and the output voltage in an operating state in which the oxygen concentration of the oxidizing gas is higher than that during steady-state operation are measured as needed, and each output voltage, and the steady-state operation and the high oxygen concentration operation This is a method for diagnosing a state change of a cell based on a temporal change pattern of an output voltage difference.

【0008】しかしながら、この診断方法を実機プラン
トに適用する場合には現実的ではない。例えば、200
kW容量規模の発電プラントでは、発電のために必要な
空気量(空気極への供給量)は600Nm3/h程度で
ある。これを空気の代わりに酸素を代替供給させるため
には130Nm3/h程度の供給量を確保せねばなら
ず、これを7m3の酸素ボンベを用いて供給する場合に
は1時間に20本の酸素ボンベを消費させることになり
現実的ではなく、しかも複雑な制御変更を行わなければ
ならないといった問題点があった。
However, this method is not practical when applied to an actual plant. For example, 200
In a power plant having a kW capacity, the amount of air required for power generation (the amount supplied to the air electrode) is about 600 Nm 3 / h. In order to supply oxygen instead of air, it is necessary to secure a supply amount of about 130 Nm 3 / h, and when supplying this using an oxygen cylinder of 7 m 3 , 20 bottles per hour are required. There was a problem that the oxygen cylinder was consumed, which was not realistic, and that a complicated control change had to be performed.

【0009】この発明は、実機プラントにおいて外乱に
よる燃料電池の損傷を容易に回避することができる燃料
電池の特性診断方法を得ることを目的とし、また適正な
運転条件で運転を行う燃料電池の運転方法を得ることを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of diagnosing characteristics of a fuel cell which can easily avoid damage to the fuel cell due to disturbance in an actual plant, and to operate a fuel cell operating under appropriate operating conditions. The aim is to get the method.

【0010】[0010]

【課題を解決するための手段】請求項1の燃料電池の特
性診断方法は、空気極に供給する空気流量を定格空気流
量を含む複数レベルの空気流量に変化させて、その際の
それぞれの電池電圧と直流電流を測定し、次に各空気流
量と各直流電流とから得られた空気極の入口および出口
の各酸素濃度から各平均酸素濃度を求め、その後各測定
点の平均酸素濃度と電池電圧との一次回帰により純酸素
濃度における電池電圧の外挿値を求め、この電池電圧と
定格空気流量に対応した定格電池電圧との差から酸素ゲ
インを求め、この酸素ゲインから空気極のガス拡散性能
を診断するものである。
According to a first aspect of the present invention, there is provided a method for diagnosing characteristics of a fuel cell, wherein an air flow supplied to an air electrode is changed to a plurality of levels of air flow including a rated air flow. The voltage and DC current were measured, and then the average oxygen concentration was obtained from the oxygen concentration at the inlet and outlet of the cathode obtained from each air flow rate and each DC current, and then the average oxygen concentration at each measurement point and the battery The extrapolation value of the battery voltage at the pure oxygen concentration is obtained by linear regression with the voltage, the oxygen gain is obtained from the difference between this battery voltage and the rated battery voltage corresponding to the rated air flow, and the gas diffusion of the air electrode is obtained from the oxygen gain. Diagnosis of performance.

【0011】請求項2の燃料電池の特性診断方法は、酸
素ゲインから空気極のガス拡散性能を診断するまでの一
連の工程をシーケンス制御するものである。
According to a second aspect of the present invention, there is provided a method for diagnosing characteristics of a fuel cell, wherein a series of steps from oxygen gain to diagnosing gas diffusion performance of an air electrode are sequence-controlled.

【0012】請求項3の燃料電池の特性診断方法は、燃
料極に供給する燃料ガスを定格燃料ガス流量を含む複数
レベルの燃料ガス流量に変化させて、その際のそれぞれ
の電池電圧と直流電流を測定し、次に各燃料ガス流量と
各直流電流とから得られた燃料極の入口および出口の各
水素濃度から各平均水素濃度を求め、その後各測定点の
平均水素濃度と電池電圧との一次回帰により純水素濃度
における電池電圧の外挿値を求め、この電池電圧と定格
水素流量に対応した定格電池電圧との差から水素ゲイン
を求め、この水素ゲインから燃料極のガス拡散性能を診
断するものである。
According to a third aspect of the present invention, there is provided a method for diagnosing characteristics of a fuel cell, wherein a fuel gas supplied to a fuel electrode is changed to a plurality of levels of a fuel gas flow including a rated fuel gas flow, and the respective cell voltage and DC current Then, each average hydrogen concentration is obtained from each hydrogen concentration at the inlet and outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current, and then the average hydrogen concentration at each measurement point and the battery voltage are calculated. Calculate the extrapolated value of the battery voltage at the pure hydrogen concentration by linear regression, find the hydrogen gain from the difference between this battery voltage and the rated battery voltage corresponding to the rated hydrogen flow rate, and diagnose the gas diffusion performance of the fuel electrode from this hydrogen gain. Is what you do.

【0013】請求項4の燃料電池の特性診断方法は、水
素ゲインから燃料極のガス拡散性能を診断するまでの一
連の工程をシーケンス制御するものである。
According to a fourth aspect of the invention, there is provided a method for diagnosing characteristics of a fuel cell, wherein a series of steps from a hydrogen gain to a diagnosis of gas diffusion performance of a fuel electrode are sequence-controlled.

【0014】請求項5の燃料電池の特性診断方法では、
燃料電池はリン酸型燃料電池である。
According to a fifth aspect of the fuel cell characteristic diagnosis method,
The fuel cell is a phosphoric acid fuel cell.

【0015】請求項6の燃料電池の運転方法は、空気極
に供給する空気流量を複数レベルの空気流量に変化させ
て、その際のそれぞれの電池電圧と直流電流を測定し、
次に各空気流量と各直流電流とから得られた空気極の入
口および出口の各酸素濃度から各平均酸素濃度を求め、
その後各測定点の平均酸素濃度と電池電圧との一次回帰
による関係式を求め、その後この関係式から空気流量増
加に対する発電効率の利得を求めて適量な空気流量を導
出し、その導出した空気流量で定格運転を行うものであ
る。
According to a sixth aspect of the invention, there is provided a method for operating a fuel cell, wherein an air flow supplied to an air electrode is changed to a plurality of levels of air flow, and the respective cell voltages and DC currents are measured at that time.
Next, each average oxygen concentration is obtained from each oxygen concentration at the inlet and outlet of the air electrode obtained from each air flow rate and each DC current,
Then, a relational expression is obtained by linear regression between the average oxygen concentration at each measurement point and the battery voltage. Is to perform rated operation.

【0016】請求項7の燃料電池の運転方法は、適量な
空気流量を導出し、その導出した空気流量で定格運転を
行うまでの一連の工程をシーケンス制御するものであ
る。
According to a seventh aspect of the present invention, there is provided a method for operating a fuel cell, in which an appropriate amount of air flow is derived, and a series of steps until a rated operation is performed with the derived air flow is sequence-controlled.

【0017】請求項8の燃料電池の運転方法は、燃料極
に供給する燃料ガス流量を複数レベルの流量に変化させ
て、その際のそれぞれの電池電圧と直流電流を測定し、
次に各燃料ガス流量と各直流電流とから得られた燃料極
の入口および出口の各水素濃度から各平均水素濃度を求
め、その後各測定点の平均水素濃度と電池電圧との一次
回帰による関係式を求め、その後この関係式から適量な
燃料ガス流量を求め、その燃料ガス流量で定格運転を行
うものである。
In the fuel cell operating method according to the present invention, the flow rate of the fuel gas supplied to the fuel electrode is changed to a plurality of levels, and the respective cell voltages and DC currents are measured at that time.
Next, each average hydrogen concentration is obtained from each hydrogen concentration at the inlet and the outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current, and then the relationship between the average hydrogen concentration at each measurement point and the battery voltage by linear regression. An equation is obtained, and then an appropriate fuel gas flow rate is obtained from the relational equation, and the rated operation is performed at the fuel gas flow rate.

【0018】請求項9の燃料電池の運転方法は、適量な
燃料ガス流量を求め、その燃料ガス流量で定格運転を行
うまでの一連の工程をシーケンス制御するものである。
According to a ninth aspect of the present invention, there is provided a method of operating a fuel cell in which an appropriate amount of fuel gas flow rate is obtained, and a series of steps until a rated operation is performed at the fuel gas flow rate is sequence-controlled.

【0019】請求項10の燃料電池の運転方法では、燃
料電池はリン酸型燃料電池である。
In the fuel cell operating method according to the tenth aspect, the fuel cell is a phosphoric acid type fuel cell.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.まず、この発明の燃料電池の特性診断方
法の原理について説明する。図1は実機プラントの運転
初期、運転中期および運転終期において、実測したりん
酸型燃料電池への供給空気流量と実測したセル電圧との
関係を示す図である。 この図1から、空気流量が増加
する程セル電圧が上昇することが分かる。これは一定の
負荷によって燃料電池内で空気中の酸素が一定量消費さ
れており、供給空気流量が増加するほど燃料電池内の酸
素分圧が上昇するため(酸素分圧は燃料電池入口の酸素
分圧と燃料電池出口の酸素分圧との平均値であり、空気
流量が増加する程、出口の酸素分圧が大きくなるため)
である。燃料ガスに対しても燃料供給ガス流量増加によ
ってセル電圧が上昇するという同様の傾向が見られる。
また、セル電圧の上昇割合(空気流量増に対するセル電
圧増)は運転終期、つまり運転時間が長くなるにしたが
って増大する傾向であることが分かる。これは、運転終
期程、電極内への電解質の浸透の増加等の理由によっ
て、電極内のガス拡散性能が低下しており、空気流量の
影響を受け易いと推定される。
Embodiment 1 FIG. First, the principle of the fuel cell characteristic diagnosis method of the present invention will be described. FIG. 1 is a diagram showing the relationship between the actually measured flow rate of supply air to the phosphoric acid type fuel cell and the actually measured cell voltage in the initial, middle and final stages of operation of the actual plant. From FIG. 1, it can be seen that the cell voltage increases as the air flow rate increases. This is because a certain amount of oxygen in the air is consumed in the fuel cell by a certain load, and the oxygen partial pressure in the fuel cell increases as the supply air flow rate increases. This is the average value of the partial pressure and the oxygen partial pressure at the outlet of the fuel cell. The oxygen partial pressure at the outlet increases as the air flow increases.)
It is. A similar tendency is seen for the fuel gas, in which the cell voltage increases as the fuel supply gas flow rate increases.
It can also be seen that the rate of increase in cell voltage (increase in cell voltage with respect to increase in air flow rate) tends to increase at the end of operation, that is, as the operation time increases. This is presumed to be due to the fact that the gas diffusion performance in the electrode is reduced due to an increase in the permeation of the electrolyte into the electrode at the end of the operation and the like, and is easily affected by the air flow rate.

【0021】燃料電池のセル特性(セル電圧)は、酸素
分圧と水素分圧に依存している。この関係は(式1)、
(式2)で示すことができる。 Vcell∝LogPO2 (式1) Vcell∝LogPH2 (式2) この関係を用いて、一定の負荷において空気流量と燃料
流量とを各々独立に変化させた試験を行い、各々の電極
の平均分圧の対数を横軸に、縦軸にセル電圧をそれぞれ
プロットすることで、直線関係が得られる。その様子を
図2に示す。
The cell characteristics (cell voltage) of a fuel cell depend on the oxygen partial pressure and the hydrogen partial pressure. This relationship is (Equation 1),
(Equation 2). VcellarufaLogPO 2 using (Equation 1) VcellarufaLogPH 2 (Equation 2) This relationship, the average partial pressure of certain were tested with varying each independently an air flow and fuel flow in the load, each of the electrodes Is plotted on the horizontal axis and the cell voltage on the vertical axis, a linear relationship is obtained. This is shown in FIG.

【0022】図2は空気利用率(空気流量)を変化させた
際のセル電圧変化を示すものである。横軸の平均酸素分
圧(PO2)は、燃料電池入口の酸素分圧と出口の酸素
分圧との対数平均を求めたものである。図2の「定格」
の点は定格空気利用率(定格空気流量)のときの、また
「純酸素」の点は純酸素を供給したときの、各々の利用
率と水蒸気分圧とを考慮した入口の酸素分圧と出口の酸
素分圧との対数平均値を示す。各プロット点(◆)は実
測値だが、直線関係が得られていることから、この直線
を外挿し、酸素ゲイン(空気の代わりに純酸素を供給し
た時のセル電圧の上昇値)を求めるための純酸素におけ
るセル特性を推定することができる。即ち、「純酸素」
におけるセル電圧と「定格」におけるセル電圧の差とし
て酸素ゲインを求めることができる。
FIG. 2 shows a change in cell voltage when the air utilization rate (air flow rate) is changed. The average oxygen partial pressure (PO 2 ) on the horizontal axis is obtained by calculating a logarithmic average of the oxygen partial pressure at the inlet of the fuel cell and the oxygen partial pressure at the outlet. "Rating" in Fig. 2
Point is the rated air utilization rate (rated air flow rate), and the point of "pure oxygen" is the oxygen partial pressure at the inlet when pure oxygen is supplied, taking into account the respective utilization rate and water vapor partial pressure. The logarithmic mean value with the oxygen partial pressure at the outlet is shown. Each plot point (◆) is an actually measured value, but since a linear relationship was obtained, extrapolation of this straight line was used to determine the oxygen gain (the rise in cell voltage when pure oxygen was supplied instead of air). Cell characteristics in pure oxygen can be estimated. That is, "pure oxygen"
The oxygen gain can be determined as the difference between the cell voltage at "1" and the cell voltage at "rated".

【0023】次に、上記の燃料電池の特性診断の妥当性
評価例について説明する。実機サイズのセルを使ったり
ん酸型燃料電池のショートスタックでの検証試験を行っ
た。この検証試験では、通常のセルにおいて外乱を受け
た場合を想定し、電極の経時低下を加速模擬するため
に、電極の撥水性を種々変化させた電極により構成し
た。各々の撥水性毎のセル特性の経時変化の評価と、定
期的な空気利用率評価試験(空気流量変更試験)による酸
素ゲインの経時変化の評価、および解体調査による電極
内へのりん酸吸収量の評価を行った。
Next, an example of evaluating the validity of the above-described fuel cell characteristic diagnosis will be described. Verification tests were conducted on a short stack of phosphoric acid type fuel cells using actual size cells. In this verification test, assuming that a normal cell was subjected to disturbance, in order to simulate accelerated deterioration of the electrodes over time, the cells were configured with electrodes having variously changed water repellency. Evaluation of changes over time in cell characteristics for each water repellency, evaluation of changes over time in oxygen gain by periodic air utilization rate evaluation test (air flow rate change test), and absorption of phosphoric acid into the electrode by dismantling survey Was evaluated.

【0024】図3に各電極毎の酸素ゲインの経時変化を
示す。図3中のA,B,Cは電極仕様を示し、その内容
は図4に示す通りである。各電極仕様毎に酸素ゲインの
増加速度が異なっている。標準仕様である電極Aでは殆
ど酸素ゲインは経時変化していないが、撥水性を弱めた
電極B,Cでは徐々に経時増加している。これらの結果
を図4に示す。図4はショートスタックで長期間運転し
た結果であり、各々の電極仕様毎にどれだけ定格特性
(セル電圧)が低下したか、酸素ゲインがどれだけ低下
したか、電極へのりん酸吸収量がどれだけ増加(初期が
100%)したかについて調査した結果を示すものであ
る。
FIG. 3 shows the change over time of the oxygen gain for each electrode. A, B, and C in FIG. 3 indicate electrode specifications, the contents of which are as shown in FIG. The rate of increase of the oxygen gain differs for each electrode specification. The oxygen gain hardly changes with time in the electrode A which is a standard specification, but gradually increases with time in the electrodes B and C whose water repellency is weakened. These results are shown in FIG. Fig. 4 shows the results of long-term operation with the short stack, how much the rated characteristics (cell voltage) decreased, how much the oxygen gain decreased, and the amount of phosphoric acid absorbed by the electrodes for each electrode specification. How much increase (the initial
100%) is shown.

【0025】図4に示すように、定格特性の低下に対応
して酸素ゲインの増大が見られる。酸素ゲインの増大
は、もっぱらガス拡散性能の低下によるものと推定され
る。ガス拡散性能の低下は、電極内へのりん酸の吸収が
過剰になったことから起きたものと考えられる。分解調
査の結果、確かに電極内のりん酸吸収量が初期より増加
していることが確認できた。しかも、酸素ゲインの増大
幅の大きい電極ほど、りん酸吸収量が多い傾向が見られ
ている。こうした測定結果より、下記の内容が分かる。 (1) セル特性低下原因の診断方法としての酸素ゲイ
ンの評価を実機セルでも実施できる。 (2) 実機セルでの酸素ゲインの増大は、セルの電解
質(りん酸)の吸収増と相関がある。 これより、非破壊検査として本発明による特性診断方法
が有効であることが分かる。
As shown in FIG. 4, an increase in the oxygen gain is observed in response to a decrease in the rated characteristics. It is presumed that the increase in the oxygen gain is solely due to the decrease in gas diffusion performance. It is considered that the gas diffusion performance decreased due to excessive absorption of phosphoric acid in the electrode. As a result of the decomposition investigation, it was confirmed that the amount of phosphoric acid absorbed in the electrode was increased from the initial stage. In addition, there is a tendency that the greater the increase in oxygen gain, the greater the amount of phosphoric acid absorbed. The following contents can be understood from these measurement results. (1) Evaluation of oxygen gain as a method of diagnosing the cause of a decrease in cell characteristics can be carried out even in an actual cell. (2) An increase in the oxygen gain in the actual cell has a correlation with an increase in the absorption of electrolyte (phosphoric acid) in the cell. This indicates that the characteristic diagnosis method according to the present invention is effective as a nondestructive inspection.

【0026】水素ゲイン(燃料ガスの代わりに純水素を
供給した時のセル電圧上昇値)についても、同様に燃料
流量を変化させる手法で導出することができる。その原
理を図5に示す。図の「定格」点と「純水素」点とのセル電
圧の差が水素ゲインとして計算される値である。この水
素ゲインの値から、今度は燃料極でのガス拡散性能の低
下を定量評価することができる。
The hydrogen gain (the cell voltage rise value when pure hydrogen is supplied instead of the fuel gas) can be similarly derived by changing the fuel flow rate. The principle is shown in FIG. The difference between the cell voltage at the “rated” point and the “pure hydrogen” point in the figure is a value calculated as the hydrogen gain. From the value of the hydrogen gain, it is possible to quantitatively evaluate the decrease in gas diffusion performance at the fuel electrode.

【0027】以上のようにこの発明によれば、実機セル
において、外乱などによって受けたガス拡散性能の低下
の状況を定量的に正しく診断することができる。
As described above, according to the present invention, it is possible to quantitatively and correctly diagnose a situation in which the gas diffusion performance is reduced due to disturbance or the like in the actual cell.

【0028】図6は燃料電池の自動特性診断のシーケン
スフローである。定格条件から順次空気流量を変化させ
ていき、各々の点でのセル電圧値と直流電流値とを測定
することを基本としている。各空気流量の変化幅は、こ
の例では−3%〜+9%としているが、他のプラントの
制御条件において許容されるならば、変化させる空気流
量を−10%から+20%程度にまで振らせる方が望ま
しい。測定した各点の空気流量での直流電流値を次式に
代入し、また平均酸素濃度は下記のようにして算出でき
る。
FIG. 6 is a sequence flow of the automatic characteristic diagnosis of the fuel cell. Basically, the air flow rate is sequentially changed from the rated condition, and the cell voltage value and the DC current value at each point are measured. In this example, the width of change of each air flow rate is -3% to + 9%, but if allowed under other plant control conditions, the air flow rate to be changed is varied from -10% to about + 20%. Is more desirable. The measured direct current value at the air flow rate at each point is substituted into the following equation, and the average oxygen concentration can be calculated as follows.

【0029】[0029]

【数1】 なお、水蒸気排出量は、改質ガスのスチーム/カーボン
比や流量に依存するため、定格条件での水蒸気排出量は
別途計算する必要がある。
(Equation 1) Since the amount of steam discharge depends on the steam / carbon ratio and the flow rate of the reformed gas, it is necessary to separately calculate the amount of steam discharge under rated conditions.

【0030】計算で求めた平均酸素濃度の対数値毎にセ
ル電圧をプロットして一次回帰直線を求めて、純酸素で
の平均酸素濃度でのセル電圧の外挿値を求めて、酸素ゲ
インを算出する。酸素ゲインからのセルの拡散性能の評
価には、ショートスタックや実験室レベルの小型セルで
構築したデータベースからガス拡散性能などのセル状態
を求める。もちろん、こうしたデータベースを用いずと
も、単に求めた酸素ゲインだけから電解質の拡散性能の
概略評価することができる。燃料極側についても同様の
方法で設定することができる。
The cell voltage is plotted for each logarithmic value of the calculated average oxygen concentration to obtain a linear regression line, an extrapolated value of the cell voltage at the average oxygen concentration in pure oxygen is obtained, and the oxygen gain is calculated. calculate. To evaluate the cell diffusion performance from the oxygen gain, the cell state such as gas diffusion performance is obtained from a database constructed with short stacks and laboratory-level small cells. Of course, without using such a database, it is possible to roughly evaluate the diffusion performance of the electrolyte only from the obtained oxygen gain. The fuel electrode side can be set in the same manner.

【0031】一連の診断は、制御装置内のシーケンスプ
ログラムとして登録しておくことで、容易に実施するこ
とができ、しかも例えば500h毎などに自動的にタイマ
ー設定で実施することで、経時変化を把握して燃料電池
の的確な特性診断結果を得ることができる。
A series of diagnoses can be easily performed by registering them as a sequence program in the control device. In addition, a change over time can be performed by automatically setting a timer every 500 hours, for example. It is possible to obtain an accurate characteristic diagnosis result of the fuel cell by grasping it.

【0032】なお、空気流量増のほかにも、酸素ゲイン
の増大があまりに顕著な場合には、運転モードの変更な
どによって、電極内に過剰吸収された電解質を電極外に
吐き出させるような処置をとることも考慮できる。ま
た、スタック全体の電圧の場合はもちろん、数枚のセル
を基本単位としたブロック電圧を計測して、各ブロック
電圧毎に酸素ゲインを求めることができれば、診断の精
度が高くなり、対策処置の効果も高くなることが期待で
きる。
If the increase in the oxygen gain is extremely significant in addition to the increase in the air flow rate, a measure is taken to change the operation mode to discharge the electrolyte excessively absorbed in the electrode to the outside of the electrode. It can also be taken. In addition, if the oxygen voltage can be obtained for each block voltage by measuring the block voltage of several cells as a basic unit, as well as the voltage of the entire stack, the accuracy of diagnosis will increase, and measures for countermeasures will be taken. The effect can be expected to be higher.

【0033】実施の形態2.次に燃料電池特性回復のた
めの処置について説明する。低下した燃料電池特性を回
復させる手段として、空気流量を増加させる処置をとる
ことは有効であるが、むやみに空気流量を増大させるこ
とは、空気ブロワー消費電力の増大による発電効率低下
を招く。そのため、状況に合った空気流量増量の適正量
の導出が必要である。
Embodiment 2 FIG. Next, measures for recovering the fuel cell characteristics will be described. It is effective to take measures to increase the air flow rate as a means of restoring the lowered fuel cell characteristics. However, increasing the air flow rate unnecessarily causes a decrease in power generation efficiency due to an increase in power consumption of the air blower. Therefore, it is necessary to derive an appropriate amount of increase in the air flow rate according to the situation.

【0034】先に説明した図1に示すように、同一の空
気供給量増加に対するセル電圧の増分は、運転中期のΔ
より、運転終期のΔVの方が大きくなっている。
同一の空気供給量増加に伴う補機動力増分は、中期も終
期も同じだが、それに伴う電圧増加による発電効率向上
は、終期の方が大きくなっている。この様子を図につい
て説明する。
As shown in FIG. 1 described above, the cell voltage increment for the same air supply increase is Δ
ΔV 2 at the end of operation is larger than V 1 .
The increase in auxiliary power with the same increase in air supply is the same in the medium term and the end, but the improvement in power generation efficiency due to the accompanying increase in voltage is greater at the end. This situation will be described with reference to the drawings.

【0035】図7に仕様Bの電極における、空気供給量
増加に伴う補機動力増加による発電効率のロス分と、空
気供給量増加に伴うセル特性向上による発電効率向上の
関係を示す。補機動力ロス増に対して特性向上による発
電効率増加が見られる。図7中のブレークイーブン線
は、その線上ではロス分と向上分とが相殺しあった点を
示し、ブレークイーブン線より上ならば全体の効率が向
上し利得になるが、ブレークイーブン線より下ならば全
体の効率が低下し損失になることを意味する。
FIG. 7 shows the relationship between the loss of power generation efficiency due to an increase in auxiliary power due to an increase in air supply and the improvement in power generation efficiency due to an improvement in cell characteristics with an increase in air supply at the electrode of specification B. An increase in power generation efficiency due to improved characteristics is seen against an increase in auxiliary power loss. The break-even line in FIG. 7 indicates that the loss and the improvement offset each other on the line. If the break-even line is above the break-even line, the overall efficiency is improved and the gain is obtained, but the break-even line is below the break-even line. Then, it means that the overall efficiency is reduced and a loss is caused.

【0036】運転初期にはほぼブレークイーブン線上に
あり、定格点よりも空気供給量を増加させても効率増大
は小さい。しかし、運転中期や終期になるにしたがって
発電効率の利得が増大している。そこで、発電効率の利
得分を計算し、適量な空気流量増加分を導出し、適切な
特性回復処置をとることができる。
In the initial stage of the operation, it is almost on the break even line, and even if the air supply amount is increased beyond the rated point, the increase in efficiency is small. However, the gain of the power generation efficiency is increasing as the operation is in the middle stage or the end stage. Therefore, it is possible to calculate the gain of the power generation efficiency, derive an appropriate increase in the air flow rate, and take an appropriate characteristic recovery measure.

【0037】水素については、水素供給量増は補機動力
増ではなく原料投入量増になるため、直接発電効率の低
下に影響する。そのため、発電効率の損失が多くなる。
しかし、外乱などの影響により燃料極側のガス拡散性能
が低下している場合には、燃料電池の信頼性を低下させ
るため、導出された水素ゲインの値に応じて、発電効率
低下を犠牲にして供給燃料ガス量を増大することもやむ
をえないと判断される。
With respect to hydrogen, an increase in the amount of supplied hydrogen is not an increase in the power of auxiliary equipment, but an increase in the amount of input raw materials. Therefore, the loss of power generation efficiency increases.
However, if the gas diffusion performance on the fuel electrode side is reduced due to the influence of disturbance or the like, to reduce the reliability of the fuel cell, the reduction in power generation efficiency is sacrificed according to the derived hydrogen gain value. Therefore, it is determined that it is unavoidable to increase the amount of supplied fuel gas.

【0038】図8は燃料電池の運転方法のシーケンスフ
ロー図を示す。この例では、図6の自動特性診断の実施
結果を踏まえて、セル特性が低下していることが判明し
た場合の特性回復処置のシーケンス図を示すものであ
る。基本的には、酸素ゲインが増大している場合には空
気流量増に対する特性回復度合いが増加しているため、
発電効率の最大値が得られるような空気流量増量を導出
する手順を自動化したものである。即ち、空気流量増に
伴う補機動力ロスと、特性向上による発電効率向上との
兼ね合いから最大発電効率を示す空気供給量を導出する
手順を自動化したものである。
FIG. 8 shows a sequence flow chart of a method of operating the fuel cell. In this example, a sequence diagram of a characteristic recovery process when it is determined that the cell characteristics are degraded based on the result of the automatic characteristic diagnosis shown in FIG. 6 is shown. Basically, when the oxygen gain is increasing, the degree of characteristic recovery with respect to an increase in air flow rate is increasing.
This is an automated procedure for deriving an increase in the air flow rate such that the maximum value of the power generation efficiency is obtained. That is, the procedure for deriving the air supply amount indicating the maximum power generation efficiency is automated based on the balance between the power loss of the auxiliary equipment due to the increase in the air flow rate and the power generation efficiency improvement due to the characteristic improvement.

【0039】なお、最大発電効率を示す空気供給量を導
出する手順は燃料電池の特性診断と関連させないで、別
途単独で行ってもよいことはもちろんである。こうした
手順を自動化することで、常に発電効率最大での運転を
行うことができるようになる。もちろん、プラント機器
の能力(ブロワーの最大風量など)による制限があり、一
律には実施できない場合もある。その際にはその情報を
運転監視員に出力することで、別途対応を考慮すること
になる。いずれにしろ、常時こうした情報を監視し出力
制御することで、発電プラントとしての信頼性が向上す
る。
It should be noted that the procedure for deriving the air supply amount that indicates the maximum power generation efficiency may be performed separately and independently without relating to the diagnosis of the characteristics of the fuel cell. By automating such a procedure, it is possible to always operate at the maximum power generation efficiency. Of course, there is a limitation due to the capacity of the plant equipment (such as the maximum air volume of the blower), and there is a case where the operation cannot be performed uniformly. In that case, by outputting the information to the operation monitoring staff, the countermeasures will be separately considered. In any case, by constantly monitoring such information and controlling the output, the reliability of the power plant is improved.

【0040】燃料極側については、前述したように水素
ゲイン増大に対応した量の燃料供給量増大は、効率低下
を招くことになる。その場合には空気量を増大させても
水素ゲインの低減効果があるため、まず空気量を増大さ
せた上で、少しでも燃料供給量増を抑制させるシーケン
スを組む必要がある。
On the fuel electrode side, as described above, an increase in the fuel supply amount corresponding to the increase in the hydrogen gain causes a decrease in efficiency. In this case, even if the air amount is increased, the effect of reducing the hydrogen gain can be obtained. Therefore, it is necessary to first increase the air amount and then set up a sequence for suppressing an increase in the fuel supply amount even a little.

【0041】[0041]

【発明の効果】以上説明したように、この発明の燃料電
池の特性診断方法によれば、空気極に供給する空気流量
を定格空気流量を含む複数レベルの空気流量に変化させ
て、その際のそれぞれの電池電圧と直流電流を測定し、
次に各空気流量と各直流電流とから得られた空気極の入
口および出口の各酸素濃度から各平均酸素濃度を求め、
その後各測定点の平均酸素濃度と電池電圧との一次回帰
により純酸素濃度における電池電圧の外挿値を求め、こ
の電池電圧と定格空気流量に対応した定格電池電圧との
差から酸素ゲインを求め、この酸素ゲインから空気極の
ガス拡散性能を診断するようにしたので、外乱による受
けたガス拡散性能の低下を容易に知ることができ、外乱
による燃料電池の損傷を回避することができる。
As described above, according to the fuel cell characteristic diagnosis method of the present invention, the air flow supplied to the air electrode is changed to a plurality of levels of air flow including the rated air flow. Measure each battery voltage and DC current,
Next, each average oxygen concentration is obtained from each oxygen concentration at the inlet and outlet of the air electrode obtained from each air flow rate and each DC current,
After that, the extrapolation value of the battery voltage at the pure oxygen concentration was obtained by linear regression of the average oxygen concentration and the battery voltage at each measurement point, and the oxygen gain was obtained from the difference between this battery voltage and the rated battery voltage corresponding to the rated air flow rate. Since the gas diffusion performance of the air electrode is diagnosed based on the oxygen gain, it is possible to easily know that the gas diffusion performance has decreased due to the disturbance, and to avoid damage to the fuel cell due to the disturbance.

【0042】また、酸素ゲインから空気極のガス拡散性
能を診断するまでの一連の工程をシーケンス制御するよ
うにしたときには、容易に的確な診断が可能となり、燃
料電池の特性診断の信頼性が向上する。
Further, when a series of steps from the oxygen gain to the diagnosis of the gas diffusion performance of the air electrode are sequence-controlled, accurate diagnosis can be easily performed, and the reliability of fuel cell characteristic diagnosis is improved. I do.

【0043】また、この発明の燃料電池の特性診断方法
によれば、燃料極に供給する燃料ガスを定格燃料ガス流
量を含む複数レベルの燃料ガス流量に変化させて、その
際のそれぞれの電池電圧と直流電流を測定し、次に各燃
料ガス流量と各直流電流とから得られた燃料極の入口お
よび出口の各水素濃度から各平均水素濃度を求め、その
後各測定点の平均水素濃度と電池電圧との一次回帰によ
り純水素濃度における電池電圧の外挿値を求め、この電
池電圧と定格水素流量に対応した定格電池電圧との差か
ら水素ゲインを求め、外乱による受けたガス拡散性能の
低下を容易に知ることができ、外乱による燃料電池の損
傷を回避することができる。
According to the fuel cell characteristic diagnosis method of the present invention, the fuel gas supplied to the fuel electrode is changed to a plurality of levels of fuel gas flow including the rated fuel gas flow, and the respective cell voltages at that time are changed. And the DC current, and then calculate the average hydrogen concentration from each hydrogen concentration at the inlet and outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current, and then calculate the average hydrogen concentration at each measurement point and the battery The extrapolation value of the battery voltage at the pure hydrogen concentration is obtained by linear regression with the voltage, and the hydrogen gain is obtained from the difference between this battery voltage and the rated battery voltage corresponding to the rated hydrogen flow rate. Can be easily known, and damage to the fuel cell due to disturbance can be avoided.

【0044】また、水素ゲインから燃料極のガス拡散性
能を診断するまでの一連の工程をシーケンス制御するよ
うにしたときには、容易に的確な診断が可能となり、燃
料電池の特性診断の信頼性が向上する。
Further, when a series of steps from the hydrogen gain to the diagnosis of the gas diffusion performance of the fuel electrode are sequence-controlled, accurate diagnosis can be easily performed, and the reliability of the fuel cell characteristic diagnosis is improved. I do.

【0045】また、この発明の燃料電池の運転方法によ
れば、空気極に供給する空気流量を複数レベルの空気流
量に変化させて、その際のそれぞれの電池電圧と直流電
流を測定し、次に各空気流量と各直流電流とから得られ
た空気極の入口および出口の各酸素濃度から各平均酸素
濃度を求め、その後各測定点の平均酸素濃度と電池電圧
との一次回帰による関係式を求め、その後この関係式か
ら空気流量増加に対する発電効率の利得を求めて適量な
空気流量を導出し、その導出した空気流量で定格運転を
行うようにしたので、発電効率の高い運転を行うことが
できる。
According to the fuel cell operating method of the present invention, the air flow supplied to the air electrode is changed to a plurality of levels of air flow, and the respective cell voltages and DC currents at that time are measured. The average oxygen concentration is obtained from the oxygen concentration at the inlet and outlet of the air electrode obtained from each air flow rate and each DC current, and then the relational expression by linear regression between the average oxygen concentration at each measurement point and the battery voltage is obtained. After that, an appropriate amount of air flow was derived by calculating the gain of power generation efficiency with respect to the increase in air flow rate from this relational expression, and the rated operation was performed with the derived air flow rate. it can.

【0046】また、適量な空気流量を導出し、その導出
した空気流量で定格運転を行うまでの一連の工程をシー
ケンス制御するようにしたときには、容易に的確な燃料
電池の運転を行うことができる。
Further, when an appropriate amount of air flow is derived, and a series of steps until the rated operation is performed at the derived air flow is sequence-controlled, the fuel cell can be easily and accurately operated. .

【0047】また、この発明の燃料電池の運転方法によ
れば、燃料極に供給する燃料ガス流量を複数レベルの流
量に変化させて、その際のそれぞれの電池電圧と直流電
流を測定し、次に各燃料ガス流量と各直流電流とから得
られた燃料極の入口および出口の各水素濃度から各平均
水素濃度を求め、その後各測定点の平均水素濃度と電池
電圧との一次回帰による関係式を求め、その後この関係
式から適量な燃料ガス流量を求め、その燃料ガス流量で
定格運転を行うようにしたので、適正な燃料電池の運転
を行うことができる。
Further, according to the fuel cell operating method of the present invention, the flow rate of the fuel gas supplied to the fuel electrode is changed to a plurality of levels, and the cell voltage and DC current at that time are measured. The average hydrogen concentration is obtained from each hydrogen concentration at the inlet and outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current, and then the relational expression by linear regression between the average hydrogen concentration at each measurement point and the battery voltage Then, an appropriate amount of fuel gas flow rate is obtained from this relational expression, and the rated operation is performed at the fuel gas flow rate, so that an appropriate fuel cell operation can be performed.

【0048】また、適量な燃料ガス流量を求め、その燃
料ガス流量で定格運転を行うまでの一連の工程をシーケ
ンス制御するようにしたときには、容易に的確な燃料電
池の運転を行うことができる。
Further, when an appropriate amount of fuel gas flow rate is obtained and a series of steps until the rated operation is performed at the fuel gas flow rate is sequence-controlled, the fuel cell can be easily and accurately operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 燃料電池供給空気流量とセル電圧との関係を
示す図である。
FIG. 1 is a diagram showing a relationship between a fuel cell supply air flow rate and a cell voltage.

【図2】 燃料電池空気極側酸素分圧の対数平均値とセ
ル電圧との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a logarithmic average value of a fuel cell air electrode side oxygen partial pressure and a cell voltage.

【図3】 各種電極ごとの酸素ゲインの経時変化を示す
図である。
FIG. 3 is a diagram showing a change over time in oxygen gain for each type of electrode.

【図4】 特性診断による評価結果を示す図である。FIG. 4 is a diagram showing evaluation results obtained by characteristic diagnosis.

【図5】 燃料電池燃料極側水素分圧の対数平均値とセ
ル電圧との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a logarithmic average value of a fuel cell fuel electrode side hydrogen partial pressure and a cell voltage.

【図6】 燃料電池の自動特性診断のシーケンスフロー
図である。
FIG. 6 is a sequence flowchart of a fuel cell automatic characteristic diagnosis.

【図7】 空気供給量増加による、補機動力ロスと特性
向上での発電効率増加との関係を示す図である。
FIG. 7 is a diagram illustrating a relationship between an auxiliary machine power loss and an increase in power generation efficiency due to an improvement in characteristics due to an increase in an air supply amount.

【図8】 燃料電池の自動特性診断に基づき定格条件自
動設定のシーケンスフロー図である。
FIG. 8 is a sequence flow chart of rating condition automatic setting based on fuel cell automatic characteristic diagnosis.

フロントページの続き (72)発明者 松本 芳一 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内Continuation of front page (72) Inventor Yoshiichi Matsumoto 3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Kansai Electric Power Company

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスと空気とを供給し、電気化学反
応によって外部に電力を取り出す燃料電池の特性診断方
法であって、空気極に供給する空気流量を定格空気流量
を含む複数レベルの空気流量に変化させて、その際のそ
れぞれの電池電圧と直流電流を測定し、次に各空気流量
と各直流電流とから得られた空気極の入口および出口の
各酸素濃度から各平均酸素濃度を求め、その後各測定点
の平均酸素濃度と電池電圧との一次回帰により純酸素濃
度における電池電圧の外挿値を求め、この電池電圧と定
格空気流量に対応した定格電池電圧との差から酸素ゲイ
ンを求め、この酸素ゲインから空気極のガス拡散性能を
診断する燃料電池の特性診断方法。
1. A method for diagnosing characteristics of a fuel cell, wherein fuel gas and air are supplied and electric power is extracted to the outside by an electrochemical reaction. The flow rate was changed, the respective battery voltage and DC current at that time were measured, and then the respective average oxygen concentrations were calculated from the oxygen concentrations at the inlet and outlet of the cathode obtained from each air flow rate and each DC current. An extrapolated value of the battery voltage at the pure oxygen concentration is obtained by first-order regression of the average oxygen concentration at each measurement point and the battery voltage, and the oxygen gain is calculated from the difference between this battery voltage and the rated battery voltage corresponding to the rated air flow rate. And a fuel cell characteristic diagnosis method for diagnosing the gas diffusion performance of the air electrode from the oxygen gain.
【請求項2】 酸素ゲインから空気極のガス拡散性能を
診断するまでの一連の工程をシーケンス制御する請求項
1記載の燃料電池の特性診断方法。
2. The method for diagnosing characteristics of a fuel cell according to claim 1, wherein a series of steps from the oxygen gain to diagnosing the gas diffusion performance of the air electrode is sequence-controlled.
【請求項3】 燃料ガスと空気とを供給し、電気化学反
応によって外部に電力を取り出す燃料電池の特性診断方
法であって、燃料極に供給する燃料ガスを定格燃料ガス
流量を含む複数レベルの燃料ガス流量に変化させて、そ
の際のそれぞれの電池電圧と直流電流を測定し、次に各
燃料ガス流量と各直流電流とから得られた燃料極の入口
および出口の各水素濃度から各平均水素濃度を求め、そ
の後各測定点の平均水素濃度と電池電圧との一次回帰に
より純水素濃度における電池電圧の外挿値を求め、この
電池電圧と定格水素流量に対応した定格電池電圧との差
から水素ゲインを求め、この水素ゲインから燃料極のガ
ス拡散性能を診断する燃料電池の特性診断方法。
3. A method for diagnosing characteristics of a fuel cell in which fuel gas and air are supplied and electric power is extracted to the outside by an electrochemical reaction, wherein a fuel gas supplied to a fuel electrode has a plurality of levels including a rated fuel gas flow rate. The fuel cell flow rate was changed, and the respective battery voltage and DC current at that time were measured.Then, each average was obtained from each hydrogen concentration at the inlet and outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current. Calculate the hydrogen concentration, then calculate the extrapolated value of the battery voltage at the pure hydrogen concentration by linear regression of the average hydrogen concentration at each measurement point and the battery voltage, and calculate the difference between this battery voltage and the rated battery voltage corresponding to the rated hydrogen flow rate. A fuel cell characteristic diagnosis method for obtaining a hydrogen gain from the fuel cell and diagnosing the gas diffusion performance of the fuel electrode from the hydrogen gain.
【請求項4】 水素ゲインから燃料極のガス拡散性能を
診断するまでの一連の工程をシーケンス制御する請求項
3記載の燃料電池の特性診断方法。
4. The fuel cell characteristic diagnosis method according to claim 3, wherein a series of steps from the hydrogen gain to the diagnosis of the gas diffusion performance of the fuel electrode are sequence-controlled.
【請求項5】 燃料電池はリン酸型燃料電池である請求
項1ないし請求項4の何れかに記載の燃料電池の特性診
断方法。
5. The method according to claim 1, wherein the fuel cell is a phosphoric acid fuel cell.
【請求項6】 燃料ガスと空気とを供給し、電気化学反
応によって外部に電力を取り出す燃料電池の運転方法で
あって、空気極に供給する空気流量を複数レベルの空気
流量に変化させて、その際のそれぞれの電池電圧と直流
電流を測定し、次に各空気流量と各直流電流とから得ら
れた空気極の入口および出口の各酸素濃度から各平均酸
素濃度を求め、その後各測定点の平均酸素濃度と電池電
圧との一次回帰による関係式を求め、その後この関係式
から空気流量増加に対する発電効率の利得を求めて適量
な空気流量を導出し、その導出した空気流量で定格運転
を行う燃料電池の運転方法。
6. A method of operating a fuel cell which supplies a fuel gas and air and takes out electric power by an electrochemical reaction, wherein a flow rate of air supplied to an air electrode is changed to a plurality of levels of air flow rate. At that time, each battery voltage and DC current were measured, and then each average oxygen concentration was obtained from each oxygen concentration at the inlet and outlet of the air electrode obtained from each air flow rate and each DC current. Of the average oxygen concentration of the battery and the battery voltage by linear regression.After that, the power generation efficiency gain with respect to the increase of the air flow rate is calculated from this relational expression to derive an appropriate air flow rate. How to operate the fuel cell.
【請求項7】 適量な空気流量を導出し、その導出した
空気流量で定格運転を行うまでの一連の工程をシーケン
ス制御する請求項6記載の燃料電池の運転方法。
7. The fuel cell operating method according to claim 6, wherein an appropriate amount of air flow is derived, and a series of steps until a rated operation is performed with the derived air flow is sequence-controlled.
【請求項8】 燃料ガスと空気とを供給し、電気化学反
応によって外部に電力を取り出す燃料電池の運転方法で
あって、燃料極に供給する燃料ガス流量を複数レベルの
流量に変化させて、その際のそれぞれの電池電圧と直流
電流を測定し、次に各燃料ガス流量と各直流電流とから
得られた燃料極の入口および出口の各水素濃度から各平
均水素濃度を求め、その後各測定点の平均水素濃度と電
池電圧との一次回帰による関係式を求め、その後この関
係式から適量な燃料ガス流量を求め、その燃料ガス流量
で定格運転を行う燃料電池の運転方法。
8. A method of operating a fuel cell which supplies a fuel gas and air and takes out electric power by an electrochemical reaction, wherein a flow rate of a fuel gas supplied to a fuel electrode is changed to a flow rate of a plurality of levels. At that time, each battery voltage and DC current were measured, and then each average hydrogen concentration was obtained from each hydrogen concentration at the inlet and outlet of the fuel electrode obtained from each fuel gas flow rate and each DC current. A method of operating a fuel cell in which a relational expression based on linear regression between the average hydrogen concentration at a point and the cell voltage is obtained, and then an appropriate fuel gas flow rate is obtained from the relational expression, and the rated operation is performed at the fuel gas flow rate.
【請求項9】 適量な燃料ガス流量を求め、その燃料ガ
ス流量で定格運転を行うまでの一連の工程をシーケンス
制御する請求項8記載の燃料電池の運転方法。
9. The fuel cell operating method according to claim 8, wherein an appropriate amount of fuel gas flow rate is obtained, and a series of steps until a rated operation is performed at the fuel gas flow rate is sequence-controlled.
【請求項10】 燃料電池はリン酸型燃料電池である請
求項6ないし請求項9の何れかに記載の燃料電池の運転
方法。
10. The method for operating a fuel cell according to claim 6, wherein the fuel cell is a phosphoric acid type fuel cell.
JP10958897A 1997-04-25 1997-04-25 Fuel cell characteristic diagnosis method and fuel cell operation method Expired - Fee Related JP3455392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10958897A JP3455392B2 (en) 1997-04-25 1997-04-25 Fuel cell characteristic diagnosis method and fuel cell operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10958897A JP3455392B2 (en) 1997-04-25 1997-04-25 Fuel cell characteristic diagnosis method and fuel cell operation method

Publications (2)

Publication Number Publication Date
JPH10302823A true JPH10302823A (en) 1998-11-13
JP3455392B2 JP3455392B2 (en) 2003-10-14

Family

ID=14514077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10958897A Expired - Fee Related JP3455392B2 (en) 1997-04-25 1997-04-25 Fuel cell characteristic diagnosis method and fuel cell operation method

Country Status (1)

Country Link
JP (1) JP3455392B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166498A (en) * 2003-12-03 2005-06-23 Denso Corp Fuel cell system
JP2005243614A (en) * 2004-01-27 2005-09-08 Fuji Electric Holdings Co Ltd Method of operating fuel cell generator
JP2006004654A (en) * 2004-06-15 2006-01-05 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP2007066565A (en) * 2005-08-29 2007-03-15 Toyota Motor Corp Fuel cell system
JP2007149443A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Fuel cell evaluation system
JP2007287632A (en) * 2006-04-20 2007-11-01 Mitsubishi Heavy Ind Ltd Fuel cell, manufacturing method of water electrolysis cell, and cell structure
JP2010177078A (en) * 2009-01-30 2010-08-12 Honda Motor Co Ltd Method for determining performance of fuel cell
WO2012091035A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2014082115A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Fuel cell system and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4682512B2 (en) * 2003-12-03 2011-05-11 株式会社デンソー Fuel cell system
JP2005166498A (en) * 2003-12-03 2005-06-23 Denso Corp Fuel cell system
JP2005243614A (en) * 2004-01-27 2005-09-08 Fuji Electric Holdings Co Ltd Method of operating fuel cell generator
JP2006004654A (en) * 2004-06-15 2006-01-05 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system
JP4634071B2 (en) * 2004-06-15 2011-02-16 東芝燃料電池システム株式会社 Fuel cell power generation system
JP2007066565A (en) * 2005-08-29 2007-03-15 Toyota Motor Corp Fuel cell system
JP2007149443A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Fuel cell evaluation system
JP2007287632A (en) * 2006-04-20 2007-11-01 Mitsubishi Heavy Ind Ltd Fuel cell, manufacturing method of water electrolysis cell, and cell structure
JP2010177078A (en) * 2009-01-30 2010-08-12 Honda Motor Co Ltd Method for determining performance of fuel cell
WO2012091035A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2012142124A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Fuel cell system
CN103299470A (en) * 2010-12-28 2013-09-11 吉坤日矿日石能源株式会社 Fuel cell system
JP2014082115A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Fuel cell system and control method thereof

Also Published As

Publication number Publication date
JP3455392B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JP4905182B2 (en) Fuel cell system
CN106549176B (en) The verifying and correction of GEN2 anode hydrogen gas concentration estimation
US8524405B2 (en) Detection of small anode leaks in fuel cell systems
US6432569B1 (en) Method and apparatus for monitoring a selected group of fuel cells of a high-temperature fuel cell stack
JP4227814B2 (en) Battery state diagnosis apparatus and battery state diagnosis method
O'Rourke et al. In situ detection of anode flooding of a PEM fuel cell
JP6853913B2 (en) Fuel cell system with built-in gas connection for connection to external test gas supply
CN106856244B (en) Method and system for diagnosing the state of a fuel cell stack
JP2007311255A (en) Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program
DK1570538T3 (en) Method and Device for Monitoring Fuel Cell Tensions
JP3455392B2 (en) Fuel cell characteristic diagnosis method and fuel cell operation method
KR101418179B1 (en) Fuel cell stack diagnosis method and device by detecting cell voltage and impedance
JP4595367B2 (en) Deterioration diagnosis method and apparatus for fuel cell
JP2016127029A (en) Systems and methods for validating detected leaks in fuel cell system
US20070259219A1 (en) Technique and apparatus to detect and recover from an unhealthy condition of a fuel cell stack
JP5270904B2 (en) Fuel cell characteristics diagnosis method
US20100114513A1 (en) Estimating minimum voltage of fuel cells
KR101724500B1 (en) Fuel cell stack diagnostic system and diagnostic method thereof
KR20120096615A (en) Catalyst deterioration jundging method for fuel cell
JP2010231973A (en) Electrochemical system and load connection/disconnection method for the same
JP2004319332A (en) Fuel cell system
JP6722122B2 (en) Catalyst poisoning determination program, fuel cell aging program, and fuel cell system
JP4945882B2 (en) Fuel cell performance analysis method
JP5178305B2 (en) Fuel cell system and cell voltage control method for fuel cell system
JP5305119B2 (en) Fuel cell power generation monitoring system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees