[go: up one dir, main page]

JPH10300808A - Fault location method for transmission line - Google Patents

Fault location method for transmission line

Info

Publication number
JPH10300808A
JPH10300808A JP10549397A JP10549397A JPH10300808A JP H10300808 A JPH10300808 A JP H10300808A JP 10549397 A JP10549397 A JP 10549397A JP 10549397 A JP10549397 A JP 10549397A JP H10300808 A JPH10300808 A JP H10300808A
Authority
JP
Japan
Prior art keywords
surge
transmission line
time
wave
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10549397A
Other languages
Japanese (ja)
Inventor
Tatsuo Kikuchi
辰男 菊地
Takeshi Kawakatsu
健 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP10549397A priority Critical patent/JPH10300808A/en
Publication of JPH10300808A publication Critical patent/JPH10300808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a structure for the fault location and automatically measure an arrival time difference between a direct wave and the first reflected wave. SOLUTION: A surge sensor 4 installed at one end of a transmission line 2 is used to take a surge waveform for low pass filter operation. Times for an intersection between the surge waveform to which the low pass filter operation is given and a positive/negative preset surge wave detecting comparison level are detected in sequence and a time difference between a time for the intersection at the first peak and a time for the intersection at the second peak is detected as a time difference T1 between an arrival time for the direct wave of a surge and an arrival time for the first reflected wave of the surge. A time T2 required for the surge to be reciprocally moved between one end and the other end of the transmission line 2 and a surge propagation speed (v) are used to calculate a distance Lx between one end of the transmission line 2 and a failure point where the surge is entered in accordance with Lx= v×(T2-T1)/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、送電線の一端に
設置したサージセンサを用いて、送電線における雷撃事
故時に生じるサージ波形を取得し、事故点からのサージ
の直接波が送電線の一端に到達した時刻とサージの送電
線の他端による最初の反射波が到達した時刻との時間差
を測定し、この時間差から事故点を標定する送電線の事
故点標定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a surge sensor installed at one end of a transmission line to obtain a surge waveform generated at the time of a lightning strike on the transmission line, and a surge direct wave from the accident point is applied to one end of the transmission line. The present invention relates to a method for locating a fault point on a transmission line, which measures a time difference between a time when the first wave arrives at the point of arrival and a time when the first reflected wave from the other end of the surge transmission line arrives and locates a fault point from the time difference.

【0002】[0002]

【従来の技術】二つの変電所間を結ぶ送電線に対する雷
撃事故の発生時において、送電線においてサージが侵入
した事故点を標定する従来方式として、パルスレーダー
方式、サージ受信方式、インピーダンス方式等がある
が、これらはいずれも、事故点監視のために送電線の両
端におけるパルスの送受信や商用周波数での電圧・電流
波形から事故点を標定する方法である。
2. Description of the Related Art In the event of a lightning strike on a transmission line connecting two substations, a pulse radar system, a surge reception system, an impedance system, and the like are known as conventional systems for locating an accident point where a surge has entered a transmission line. However, these methods are all methods of monitoring the fault point, transmitting and receiving pulses at both ends of the transmission line, and locating the fault point from voltage and current waveforms at commercial frequencies.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
方法では、送電線の両端に事故点の検出装置を設置する
ことが必要で、事故点の標定のための構成が複雑であっ
た。このような問題に対し、本件出願人は既に、送電線
の片端に事故点の検出装置を設置するのみで、事故点を
標定することができ、事故点の標定のための構成を簡略
化できる送電線の事故点標定方法を提案している(特願
平6−151904号)。
However, in the conventional method, it is necessary to install fault point detecting devices at both ends of the transmission line, and the configuration for locating the fault point is complicated. With respect to such a problem, the applicant of the present application can locate the fault point only by installing the fault point detecting device at one end of the transmission line, and can simplify the configuration for fault location. A method for locating faults on transmission lines has been proposed (Japanese Patent Application No. 6-151904).

【0004】この送電線の事故点標定方法は、送電線の
一端に設置したサージセンサを用いて、送電線における
雷撃事故時に生じるサージ波形を取得し、事故点からの
サージの直接波が送電線の一端に到達した時刻とサージ
の送電線の他端による最初の反射波が到達した時刻との
時間差T1 を測定し、予め測定しておいた送電線の一端
および他端間をサージが往復する時間T2 およびサージ
の送電線中の伝搬速度vと上記の直接波と最初の反射波
の到達時間差T1 とから、送電線の一端とサージが侵入
した事故点との距離LX
In this method of locating a fault on a transmission line, a surge waveform generated at the time of a lightning strike on the transmission line is acquired by using a surge sensor installed at one end of the transmission line, and a direct wave of a surge from the fault point is transmitted to the transmission line. the first reflected wave and measure the time difference T 1 of the the time has been reached, measured beforehand surge between one end and the other end of the advance power transmission line is reciprocally by the other end of the transmission line time and the surge which reaches the end of the from the propagation velocity v directly with the waves in the transmission line time T 2 and surge and the first reflected wave arrival time difference T 1 Prefecture, the distance L X of the accident point to which one end and the surge of the transmission line has penetrated

【0005】[0005]

【数3】LX =v×(T2 −T1 )/2 に従って算出することにより事故点を標定するという方
法である。ところが、上記のようなサージ波形を利用し
て事故点を標定する方法では、取得される実雷波形とし
ては、ノイズや共振波形が含まれている波形が多く、そ
のため、取得したサージ波形中における事故点からのサ
ージの直接波および送電線の他端による最初の反射波の
特定が難しく、したがって直接波および反射波の到達時
間差の特定が困難であり、波形計測アルゴリズムの確立
ができず、サージ波形から自動的に到達時間差を求める
ことができなかった。そのため、作業員がサージ波形を
実際に見て、直接波および最初の反射波の到達時刻を推
定し、さらにそれらの到達時刻から到達時間差T1 を推
定し、上記の〔数3〕に代入することで、事故点を標定
するようにしている。
Equation 3 is a method in which orientation the fault point by calculating according to L X = v × (T 2 -T 1) / 2. However, in the method of locating the fault point using the surge waveform as described above, the acquired actual lightning waveform includes many waveforms including a noise and a resonance waveform. It is difficult to identify the direct wave of the surge from the accident point and the first reflected wave from the other end of the transmission line.Therefore, it is difficult to identify the arrival time difference between the direct wave and the reflected wave, and it is not possible to establish a waveform measurement algorithm. The arrival time difference could not be automatically obtained from the waveform. Therefore, the operator watches surge waveform actually estimates the arrival time of the direct wave and the first reflected wave, further estimates the arrival time difference T 1 from their arrival times is substituted into Formula 3 above In this way, the accident point is located.

【0006】しかしながら、サージ波形を見て到達時間
差T1 を推定して事故点を標定する方法では、到達時間
差T1 の自動計測が不可能で、標定を行う人間によって
標定値が異なるという問題があった。したがって、この
発明の目的は、送電線の一端に事故点の検出装置を設け
るだけで事故点の標定を行うことができて事故点の標定
のための構成を簡略化することができ、しかも直接波お
よび最初の反射波の到達時間差の自動計測を可能として
事故点の標定をサージ波形の取得から全て自動的に行う
ことができ、標定する人間による個人差をなくし、正確
な事故点の標定が可能な送電線の事故点標定方法を提供
することである。
However, in the method of estimating the arrival time difference T 1 by looking at the surge waveform and locating the accident point, the automatic measurement of the arrival time difference T 1 is impossible, and the orientation value differs depending on the person performing the orientation. there were. Therefore, an object of the present invention is to provide an accident point locator only by providing an accident point detection device at one end of a transmission line, thereby simplifying the configuration for locating the accident point, and directly It is possible to automatically measure the difference between the arrival time of the wave and the first reflected wave, and all the fault points can be automatically located from the acquisition of the surge waveform. It is to provide a possible transmission line fault location method.

【0007】[0007]

【課題を解決するための手段】請求項1記載の送電線の
事故点標定方法は、送電線の一端に設置したサージセン
サを用いて、送電線における雷撃事故時に生じるサージ
波形を取得し、サージ波形に対してローパスフィルタ演
算を行い、ローパスフィルタ演算を施したサージ波形と
正負の所定のサージ波検出用比較レベルとの交点の時刻
を順次検出し第1番目のピークの交点の時刻と第2番目
のピークの交点の時刻との時間差を送電線に侵入したサ
ージの直接波が到達した時刻とサージの送電線の他端に
よる最初の反射波が到達した時刻との時間差T1 として
検出し、送電線の一端とサージが侵入した事故点との距
離LX を〔数3〕に従って算出する。
According to a first aspect of the present invention, there is provided a transmission line fault point locating method, comprising: obtaining a surge waveform generated at the time of a lightning strike in a transmission line by using a surge sensor installed at one end of the transmission line; A low-pass filter operation is performed on the waveform, and the time of the intersection of the surge waveform subjected to the low-pass filter operation and the predetermined comparison level for positive / negative surge wave detection is sequentially detected, and the time of the intersection of the first peak and the second intersection are detected. th detected as the time difference T 1 of the the time the first reflected wave reaches by the other end of the time and the surge of power lines direct wave reaches the surge penetrated the time difference in the transmission line between the time of intersection of the peak, the distance L X of the accident point to which one end and the surge of the transmission line has entered is calculated according to Formula 3.

【0008】この方法によれば、送電線における雷撃事
故時に生じるサージ波形を取得し、取得したサージ波形
に基づいてサージの直接波が到達した時刻とサージの最
初の反射波が到達した時刻との時間差T1 を検出し、送
電線の一端とサージが侵入した事故点との距離LX
〔数3〕に従って算出するので、送電線の一端にサージ
センサを含む事故点の検出装置を設けるだけで、事故点
の標定、つまり送電線の一端とサージが侵入した事故点
との距離LX を求め、事故点の標定を行うことができ
る。
According to this method, a surge waveform generated at the time of a lightning strike in a transmission line is acquired, and the time at which the direct wave of the surge arrives and the time at which the first reflected wave of the surge arrives based on the acquired surge waveform. detecting a time difference T 1, since one end and the surge of the transmission line is calculated according to Formula 3 the distance L X of the accident point has penetrated, to one end of the transmission line only by providing the detection device of the fault point including surge sensor in, orientation of the fault point, i.e. obtains distances L X of the accident point to which one end and the surge of the transmission line has entered, it is possible to perform orientation of the fault point.

【0009】また、取得したサージ波形に対してローパ
スフィルタ演算を行い、ローパスフィルタ演算を施した
サージ波形と正負の所定のサージ波検出用比較レベルと
の交点の時刻を順次検出し第1番目のピークの交点の時
刻と第2番目のピークの交点の時刻との時間差をサージ
の直接波が到達した時刻とサージの最初の反射波が到達
した時刻との時間差T1 として検出するので、直接波と
最初の反射波の到達時間差を自動的に求めることがで
き、直接波および最初の反射波の到達時間差の自動計測
を可能として事故点の標定をサージ波形の取得から全て
自動的に行うことができ、標定する人間による個人差を
なくし、正確な事故点の標定が可能となる。
Further, a low-pass filter operation is performed on the acquired surge waveform, and the time of the intersection of the surge waveform subjected to the low-pass filter operation and a predetermined positive / negative comparison level for surge wave detection is sequentially detected. since the first reflected wave time and of the second time and surge direct wave surge time difference between the time of intersection of the peak reaches an intersection of the peak is detected as a time difference T 1 of the the time has been reached, the direct wave And the arrival time difference between the first reflected wave and the first reflected wave can be automatically measured, and it is possible to automatically measure the arrival time difference between the direct wave and the first reflected wave, and to locate the fault point automatically from the acquisition of the surge waveform. By doing so, it is possible to eliminate individual differences among persons to be located, and to accurately locate an accident point.

【0010】請求項2記載の送電線の事故点標定方法
は、請求項1記載の送電線の事故点標定方法において、
ローパスフィルタ演算を施したサージ波形を微分し、ロ
ーパスフィルタ演算を施したサージ波形と正負の所定の
サージ波検出用比較レベルとの交点の時刻におけるサー
ジ波形の微分値の絶対値が所定の到達波検出用比較レベ
ルより大きいときに到達波とし、所定の到達波検出用比
較レベルより小さいときにノイズとみなすことを特徴と
する。
The method for locating a fault on a transmission line according to claim 2 is the method for locating a fault on a transmission line according to claim 1.
The surge waveform subjected to the low-pass filter operation is differentiated, and the absolute value of the derivative value of the surge waveform at the time of the intersection of the low-pass filter-calculated surge waveform and the predetermined positive / negative comparison level for surge wave detection is a predetermined arrival wave. It is characterized in that it is regarded as an arrival wave when it is higher than the detection comparison level, and is regarded as noise when it is lower than a predetermined arrival wave detection comparison level.

【0011】この方法によれば、サージ波形中の到達波
とノイズとを区別することができ、ノイズによる誤標定
を防止することができる。請求項3記載の送電線の事故
点標定方法は、送電線の一端に設置したサージセンサを
用いて、送電線における雷撃事故時に生じるサージ波形
を取得し、サージ波形に対してローパスフィルタ演算を
行い、ローパスフィルタ演算を施したサージ波形の正負
のピークの出現時刻を順次検出し第1番目のピークの時
刻と第2番目のピークの時刻との時間差を送電線に侵入
したサージの直接波が送電線の一端に到達した時刻とサ
ージの送電線の他端による最初の反射波が到達した時刻
との時間差T1 として検出し、送電線の一端とサージが
侵入した事故点との距離LXを〔数3〕に従って算出す
ることを特徴とする。
According to this method, the arrival wave in the surge waveform and the noise can be distinguished, and erroneous orientation due to the noise can be prevented. According to a third aspect of the present invention, there is provided a transmission line fault point locating method, wherein a surge waveform generated at the time of a lightning strike on a transmission line is acquired by using a surge sensor installed at one end of the transmission line, and a low-pass filter operation is performed on the surge waveform. The time of appearance of the positive and negative peaks of the surge waveform subjected to the low-pass filter operation is sequentially detected, and the time difference between the first peak time and the second peak time is transmitted by the direct wave of the surge entering the transmission line. detected as the time difference T 1 of the the time the first reflected wave by the other end of the transmission line time and the surge which reaches the one end of the wire has reached the distance L X of the accident point to which one end and the surge of the transmission line has penetrated It is characterized in that it is calculated according to [Equation 3].

【0012】この方法によれば、送電線の一端に設置し
たサージセンサを用いて、送電線における雷撃事故時に
生じるサージ波形を取得し、取得したサージ波形に基づ
いてサージの直接波が到達した時刻とサージの最初の反
射波が到達した時刻との時間差T1 を検出し、送電線の
一端とサージが侵入した事故点との距離LX を〔数3〕
に従って算出するので、送電線の一端にサージセンサを
含む事故点の検出装置を設けるだけで、事故点の標定、
つまり送電線の一端とサージが侵入した事故点との距離
X を求め、事故点の標定を行うことができる。
According to this method, the surge waveform generated at the time of the lightning strike on the transmission line is acquired by using the surge sensor installed at one end of the transmission line, and the time at which the direct surge wave arrives based on the acquired surge waveform. detecting a time difference T 1 of the the time the first reflected wave surge arrives and, the distance L X of the accident point to which one end and the surge of the transmission line has entered Formula 3
Calculate according to the following formula, simply install an accident point detection device including a surge sensor at one end of the transmission line,
That obtains distances L X of the accident point to which one end and the surge of the transmission line has entered, it is possible to perform orientation of the fault point.

【0013】また、取得したサージ波形に対してローパ
スフィルタ演算を行い、ローパスフィルタ演算を施した
サージ波形の正負のピークの出現時刻を順次検出し第1
番目のピークの時刻と第2番目のピークの時刻との時間
差をサージの直接波が送電線の一端に到達した時刻とサ
ージの最初の反射波が到達した時刻との時間差T1 とし
て検出するので、直接波と最初の反射波の到達時間差を
自動的に求めることができ、直接波および最初の反射波
の到達時間差の自動計測を可能として事故点の標定をサ
ージ波形の取得から全て自動的に行うことができ、標定
する人間による個人差をなくし、正確な事故点の標定が
可能となる。
A low-pass filter operation is performed on the acquired surge waveform, and the appearance times of positive and negative peaks of the surge waveform subjected to the low-pass filter operation are sequentially detected.
Th and time of the peak because a direct wave surge time difference between the time of the second peak is detected as a time difference T 1 of the the time the first reflected wave time and the surge which reaches the end of the transmission line has reached The arrival time difference between the direct wave and the first reflected wave can be obtained automatically, and the arrival time difference between the direct wave and the first reflected wave can be automatically measured. This makes it possible to eliminate the individual differences among the persons who perform the localization, thereby enabling accurate localization of the accident point.

【0014】請求項4記載の送電線の事故点標定方法
は、請求項3記載の送電線の事故点標定方法において、
ローパスフィルタ演算を施したサージ波形を微分し、ロ
ーパスフィルタ演算を施したサージ波形の正負のピーク
の出現時刻におけるサージ波形の微分値の絶対値が所定
の到達波検出用比較レベルより大きいときに到達波と
し、所定の到達波検出用比較レベルより小さいときにノ
イズとみなすことを特徴とする。
According to a fourth aspect of the present invention, there is provided the transmission line fault point locating method according to the third aspect.
The surge waveform subjected to the low-pass filter operation is differentiated, and is reached when the absolute value of the derivative value of the surge waveform at the appearance time of the positive and negative peaks of the surge waveform subjected to the low-pass filter operation is greater than a predetermined arrival wave detection comparison level. And is regarded as noise when it is smaller than a predetermined arrival wave detection comparison level.

【0015】この方法によれば、サージ波形中の到達波
とノイズとを区別することができ、ノイズによる誤標定
を防止することができる。
According to this method, the arrival wave in the surge waveform and the noise can be distinguished, and erroneous orientation due to the noise can be prevented.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照しながら説明する。 〔第1の実施の形態〕この発明の第1の実施の形態の送
電線の事故点標定方法について図1ないし図7を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] A method for locating a fault on a transmission line according to a first embodiment of the present invention will be described with reference to FIGS.

【0017】図1は送電線に雷撃を受けたときに事故点
の標定を行う装置の概略図を示している。図1におい
て、1Aおよび1Bはそれぞれ変電所、2は変電所1
A,1B間を結ぶ事故点監視の対象となる送電線であ
り、例えば2つの変電所1A,1B間が一つの事故点監
視区間となっている。3は雷撃を示し、矢符の先端は事
故点7を示している。4は送電線2の一端(この例で
は、変電所1A)に設置したサージセンサで、サージ変
流器4Aおよびサージ変圧器4Bからなる。5は雷撃3
によって送電線2へ侵入したサージの波形を測定・記録
可能な波形測定装置で、変電所1Aに設置されている。
6は取得したサージ波形より事故点7からの直接波およ
び送電線2の他端(変電所1B)からの最初の反射波の
到達時間差を読み取って事故点を標定する演算処理装置
で、変電所1Aに設置されている。
FIG. 1 is a schematic view of an apparatus for locating an accident point when a lightning strike occurs on a power transmission line. In FIG. 1, 1A and 1B are substations respectively, 2 is a substation 1
A transmission line connecting between A and 1B and subject to fault point monitoring. For example, one fault point monitoring section is between two substations 1A and 1B. 3 indicates a lightning strike, and the tip of the arrow indicates the accident point 7. A surge sensor 4 is installed at one end of the transmission line 2 (in this example, a substation 1A) and includes a surge current transformer 4A and a surge transformer 4B. 5 is lightning strike 3
This is a waveform measuring device that can measure and record the waveform of the surge that has entered the transmission line 2 by the substation 1A.
Reference numeral 6 denotes an arithmetic processing unit which reads the arrival time difference between the direct wave from the fault point 7 and the first reflected wave from the other end of the transmission line 2 (the substation 1B) from the acquired surge waveform to locate the fault point. 1A.

【0018】図2は、図1に示した系統において送電線
2に雷撃3を受けた場合のサージ波の伝搬・反射の様子
を示すもので、紙面の縦方向は時間軸を示し、矢印8
A,8Bはサージ波形の進行を示している。図2では、
送電線2に雷撃3が加えられたときに、サージセンサ4
が設置された送電線2の一端(変電所1A)には、まず
事故点7から入ったサージ波形が直接波(1波目)とし
て到達し、つぎに事故点7から入ったサージ波形が送電
線2の他端(変電所1B)で反射されて最初の反射波
(2波目)として到達し、つぎに1波目が送電線2の一
端(変電所1A)で反射され、さらに送電線2の他端
(変電所1B)で反射されて3波目として到達し、以下
同様にして4波目以降が到達する。
FIG. 2 shows a state of propagation and reflection of a surge wave when the power transmission line 2 receives a lightning strike 3 in the system shown in FIG. 1. The vertical direction of the paper indicates the time axis, and the arrow 8
A and 8B show the progress of the surge waveform. In FIG.
When a lightning strike 3 is applied to the transmission line 2, a surge sensor 4
At the one end (substation 1A) of the transmission line 2 where the surge waveform first arrives as a direct wave (first wave) from the fault point 7, and then the surge waveform from the fault point 7 is transmitted. It is reflected at the other end of the electric wire 2 (substation 1B) and arrives as the first reflected wave (second wave), then the first wave is reflected at one end of the transmission line 2 (substation 1A), and further transmitted The second wave is reflected at the other end (substation 1B) and arrives as the third wave, and the fourth wave and thereafter arrive in the same manner.

【0019】上記のように、送電線2の一端(変電所1
A)に順次到達するサージ波を、送電線2の一端(変電
所1A)に設けたサージセンサ4で検出して、波形測定
装置5で測定・記録する(取得する)。この波形測定装
置5で測定・記録されたサージ波(電圧波もしくは電流
波)は、概略、図3に示すような波形となる。図3にお
いては、直接波(1波目)の到達時刻から最初の反射波
(2波目)の到達時刻までの時間差をT1 (μs)と
し、直接波(1波目)の到達時刻から2回目の反射波
(3波目)の到達時刻までの時間、つまり送電線2の一
端と他端の間をサージが往復するのに要する時間をT2
(μs)としている。
As described above, one end of the transmission line 2 (the substation 1
A surge wave that sequentially arrives at A) is detected by a surge sensor 4 provided at one end of the transmission line 2 (substation 1A), and measured and recorded (acquired) by a waveform measuring device 5. The surge wave (voltage wave or current wave) measured and recorded by the waveform measuring device 5 has a waveform as schematically shown in FIG. In FIG. 3, the time difference from the arrival time of the direct wave (first wave) to the arrival time of the first reflected wave (second wave) is T 1 (μs), and the time difference from the arrival time of the direct wave (first wave) is The time until the arrival time of the second reflected wave (third wave), that is, the time required for the surge to reciprocate between one end and the other end of the transmission line 2 is represented by T 2
(Μs).

【0020】ここで、上記の時間T1 ,T2 を用いて、
事故点7の標定、つまり、送電線2の一端(変電所1
A)から事故点7までの距離を求める手順について、図
4を参照しながら説明する。図4において、LX (k
m)は送電線2の事故点7からサージセンサ4を設置し
た送電線2の一端(変電所1A)までの距離、LY (k
m)は送電線2の事故点7から送電線2の他端(変電所
1B)までの距離である。
Here, using the above times T 1 and T 2 ,
The location of accident point 7, that is, one end of transmission line 2 (substation 1
The procedure for obtaining the distance from A) to the accident point 7 will be described with reference to FIG. In FIG. 4, L X (k
m) is the distance from the fault point 7 of the transmission line 2 to one end (substation 1A) of the transmission line 2 where the surge sensor 4 is installed, L Y (k
m) is the distance from the fault point 7 of the transmission line 2 to the other end of the transmission line 2 (substation 1B).

【0021】送電線2中のサージ伝搬速度をv(km/
μs)とすると、サージ伝搬速度vは、
The surge propagation speed in the transmission line 2 is expressed as v (km / km / km).
μs), the surge propagation velocity v becomes

【0022】[0022]

【数4】v=2×(LX +LY )/T2 で表される。また、時間差T1 ## EQU4 ## It is represented by v = 2 × (L X + L Y ) / T 2 . The time difference T 1 is

【0023】[0023]

【数5】 T1 =(2LY +LX )/v−LX /v =2LY /v で表される。したがって、距離LX は、T 1 = (2L Y + L X ) / v−L X / v = 2L Y / v Therefore, the distance L X is

【0024】[0024]

【数6】LX =v×(T2 −T1 )/2 で求めることができる。つまり、雷撃3が生じたとき
に、サージ波形から、時間差T1 を求め、予め求めてお
いた時間T2 およびサージ伝播速度vと時間差T1とを
基に、上記の〔数6〕の演算を行うことにより、事故点
7を標定することができる。
[6] can be determined by L X = v × (T 2 -T 1) / 2. That is, when the lightning strike 3 occurs, the time difference T 1 is obtained from the surge waveform, and the above-described calculation of [Equation 6] is performed based on the time T 2 and the surge propagation speed v and the time difference T 1 obtained in advance. , The accident point 7 can be located.

【0025】送電線2に侵入したサージの直接波が送電
線2の一端に到達した時刻とサージの送電線2の他端に
よる最初の反射波が到達した時刻との時間差T1 は、以
下のようにようにして自動的に求める。すなわち、送電
線2の一端に設置したサージセンサ4を用いて、送電線
2における雷撃事故時に生じるサージ波形を取得し、サ
ージ波形に対してローパスフィルタ演算(例えば、移動
平均演算)を行い、ローパスフィルタ演算を施したサー
ジ波形と正負の所定のサージ波検出用比較レベルとの交
点の時刻を順次検出し第1番目のピークの交点の時刻と
第2番目のピークの交点の時刻との時間差を上記の時間
差T1 とする。
The time difference T 1 between the time when the direct wave of the surge entering the transmission line 2 reaches one end of the transmission line 2 and the time when the first reflected wave from the other end of the transmission line 2 of the surge arrives is as follows. So as to ask automatically. That is, using the surge sensor 4 installed at one end of the transmission line 2, a surge waveform generated at the time of a lightning strike on the transmission line 2 is acquired, and a low-pass filter operation (for example, a moving average operation) is performed on the surge waveform, and a low-pass filter is performed. The time of the intersection of the surge waveform subjected to the filter operation and the predetermined comparison level for positive / negative surge wave detection is sequentially detected, and the time difference between the time of the intersection of the first peak and the time of the intersection of the second peak is determined. the time difference T 1 of the above.

【0026】サージ伝搬速度vは送電線2の長さがわか
っておれば、〔数4〕に従って算出できるが、サージセ
ンサ4を含む事故点の検出装置の据え付け時に予め人工
雷試験もしくは変電所1Aでの遮断器動作による開閉サ
ージについて時間T2 を測定し、算出しておく。ここ
で、上記の事故点の標定のアルゴリズムについて、図5
の流れ図および図6および図7を参照しながら説明す
る。図6(a),(b),(c)は送電線路亘長15.
6kmの送電線で実際に発生した雷撃事故の一例の発生
時に取得した3相分のサージ電圧波形を示す波形図であ
り、図7(a),(b),(c)は図6のサージ電圧波
形に対して移動平均法によるローパスフィルタ演算を行
った後の3相分のサージ電圧波形を示す波形図である。
If the length of the transmission line 2 is known, the surge propagation speed v can be calculated according to [Equation 4]. However, when the fault detecting device including the surge sensor 4 is installed, an artificial lightning test or a test at the substation 1A is performed in advance. for switching surge by the breaker operation measures the time T 2, previously calculated. Here, the algorithm for locating the accident point described above is shown in FIG.
6 and FIG. 7 will be described. 6 (a), 6 (b) and 6 (c) show transmission line lengths.
FIGS. 7A, 7B, and 7C are waveform diagrams showing three-phase surge voltage waveforms obtained when an example of a lightning strike actually occurred on a 6 km transmission line, and FIGS. It is a waveform diagram which shows the surge voltage waveform of three phases after performing the low pass filter operation by the moving average method with respect to a voltage waveform.

【0027】まず、図6に示されるようなサージ波形の
データをサンプリングによって取得する(ステップS
1)。つぎに、取得したサージ波形のサンプリングデー
タに対してローパスフィルタに通すことに相当するロー
パスフィルタ演算、例えば移動平均演算を行うことによ
り、図7に示すような高周波成分を除去したサージ波形
を得る(ステップS2)。
First, surge waveform data as shown in FIG. 6 is obtained by sampling (step S).
1). Next, a low-pass filter operation equivalent to passing the obtained surge waveform sampling data through a low-pass filter, for example, a moving average operation, is performed to obtain a surge waveform from which high-frequency components are removed as shown in FIG. 7 ( Step S2).

【0028】つぎに、ローパスフィルタ演算を行ったサ
ージ波形から波高値が最大となるピークの波高値を求め
るとともに(ステップS3)、ローパスフィルタ演算後
のサージ波形に対して微分演算を行い、微分サージ波形
を得る(ステップS4)。図7(a)のA相のサージ波
形では、波高値が最大となるピークの波高値は561A
(19.9μsの時点)であった。
Next, the peak value of the peak at which the peak value is maximum is obtained from the surge waveform on which the low-pass filter operation has been performed (step S3), and a differential operation is performed on the surge waveform after the low-pass filter operation. A waveform is obtained (step S4). In the A-phase surge waveform of FIG. 7A, the peak value at which the peak value is the maximum is 561A.
(At 19.9 μs).

【0029】つぎに、サージ波形における波高値が最大
となるピークの波高値を基にして正負のサージ波検出用
比較レベルを演算・設定する(ステップS5)。例え
ば、サージ波検出用比較レベルをピークの波高値の±1
/4に設定する。最大ピークの波高値が561Aの場
合、サージ波検出用比較レベルは140Aとなる。つぎ
に、ローパスフィルタ演算を行ったサージ波形とサージ
波検出用比較レベルとの交点の時刻を検出する(ステッ
プS6)。
Next, a positive / negative comparison level for surge wave detection is calculated and set based on the peak value of the peak at which the peak value in the surge waveform is maximum (step S5). For example, the comparison level for surge wave detection is set to ± 1 of the peak value of the peak.
Set to / 4. When the peak value of the maximum peak is 561A, the comparison level for surge wave detection is 140A. Next, the time of the intersection of the surge waveform subjected to the low-pass filter operation and the comparison level for surge wave detection is detected (step S6).

【0030】つぎに、上記の交点の時刻は、正の交点で
は、正の微分値の点のみ記憶し、負の交点では、負の微
分値の点のみ記憶する(ステップS7)。これは、波形
ピークの前縁部分とサージ波検出用比較レベルとの交点
を記憶するということになる。つぎに、ステップS4の
演算結果に基づき、微分サージ波形の微分値の最大値に
基づいて到達波検出用比較レベル(絶対値)を設定する
(ステップS8)。この場合、到達波検出用比較レベル
は、例えば微分値の最大値の80%程度に設定される。
Next, at the time of the above intersection, only the point of the positive differential value is stored at the positive intersection, and only the point of the negative differential value is stored at the negative intersection (step S7). This means that the intersection of the leading edge portion of the waveform peak and the comparison level for surge wave detection is stored. Next, based on the calculation result of step S4, the arrival wave detection comparison level (absolute value) is set based on the maximum value of the differential value of the differential surge waveform (step S8). In this case, the arrival wave detection comparison level is set to, for example, about 80% of the maximum value of the differential value.

【0031】つぎに、ステップS7で記憶した微分値の
絶対値を到達波検出用比較レベルより大きいかどうか判
定する(ステップS9)。ステップS9の判定結果がY
ESのときは波形ピークが到達波であるとみなし(ステ
ップS10)、NOのときは波形ピークがノイズである
とみなす(ステップS11)。
Next, it is determined whether or not the absolute value of the differential value stored in step S7 is larger than the arrival wave detection comparison level (step S9). If the decision result in the step S9 is Y
In the case of ES, the waveform peak is regarded as the arrival wave (step S10), and in the case of NO, the waveform peak is regarded as noise (step S11).

【0032】ステップS9の判定結果がYESのとき
に、第1波目(直接波)および第2波目(反射波)を出
現時刻を検出・記憶する(ステップS12)。図7で
は、サージ波形とサージ波検出用比較レベルとの交点に
おいて、直接波に対応するもの(最初の交点)は19.
3μsのところに存在し、最初の反射波に対応するもの
(2番目の交点)は、63.3μsのところに存在す
る。なお、直接波のピークに対して最初の反射波のピー
クは逆極性となっており、この2つの時刻が記憶され
る。
If the decision result in the step S9 is YES, the appearance times of the first wave (direct wave) and the second wave (reflected wave) are detected and stored (step S12). In FIG. 7, at the intersection between the surge waveform and the comparison level for surge wave detection, the one corresponding to the direct wave (the first intersection) is 19.
The one that is at 3 μs and corresponds to the first reflected wave (the second intersection) is at 63.3 μs. Note that the peak of the first reflected wave has the opposite polarity to the peak of the direct wave, and these two times are stored.

【0033】つぎに、第1波目(直接波)および第2波
目(反射波)の到達時間差T1 を演算する(ステップS
13)。この場合、時間差T1
Next, the arrival time difference T 1 between the first wave (direct wave) and the second wave (reflected wave) is calculated (step S).
13). In this case, the time difference T 1 is

【0034】[0034]

【数7】T1 =63.3−18.3=44.0μs である。つぎに、到達時間差に基づいて事故点7の標
定、つまり、〔数6〕の演算を行って送電線2の一端か
ら事故点7までの送電線2の長さを算出する(ステップ
S14)。本送電線2では、サージ伝搬速度vが0.2
94km/μsであり、T 2 =106μsであり、〔数
6〕の演算を行うと、LX =9.1kmとなった。
[Equation 7] T1= 63.3-18.3 = 44.0 μs. Next, based on the arrival time difference,
, That is, the calculation of [Equation 6] is performed to determine whether
From the fault to the fault point 7 is calculated (step
S14). In the transmission line 2, the surge propagation speed v is 0.2
94 km / μs, and T Two= 106 μs, [number
6], LX= 9.1 km.

【0035】なお、サージ伝搬速度vは、〔数4〕に基
づいて以下のようにして求めた。すなわち、
The surge propagation speed v was obtained as follows based on [Equation 4]. That is,

【0036】[0036]

【数8】 v=2×15.6/106 =0.294(km/μs) となる。また、距離LX は以下のようにして算出した。
すなわち、
## EQU8 ## v = 2 × 15.6 / 106 = 0.294 (km / μs) The distance L X was calculated as follows.
That is,

【0037】[0037]

【数9】 LX =0.294×(106−44)/2 ≒9.1(km) 一方、上記した送電線路亘長15.6kmの送電線で実
際に発生した雷撃事故の一例の場合、巡視結果による
と、送電線2の一端(変電所1A側)から9.4kmの
地点でA相に雷撃事故が発生していた。したがって、演
算により求めた距離LX は巡視結果に比べて−300m
の差でほぼ一致し、十分な精度が得られることが明らか
になった。
Equation 9] L X = 0.294 × (106-44) / 2 ≒ 9.1 (km) On the other hand, in the case of an example of a torpedo accident actually occurs in the transmission line of the transmission line route length 15.6km described above According to the results of the patrol, a lightning strike occurred in phase A at a point 9.4 km from one end of the transmission line 2 (substation 1A side). Therefore, the distance L X obtained by the calculation is -300 m compared to the inspection result.
, And it became clear that sufficient accuracy was obtained.

【0038】この実施の形態の送電線の事故点標定方法
によれば、送電線2の一端に設置したサージセンサ4を
用いて、送電線2における雷撃事故時に生じるサージ波
形を取得し、取得したサージ波形から送電線2に侵入し
たサージの直接波が送電線2の一端に到達した時刻とサ
ージの送電線2の他端による最初の反射波が到達した時
刻との時間差T1 を検出し、送電線2の一端とサージが
侵入した事故点との距離LX を〔数6〕に従って算出す
るだけで、送電線2の一端からサージが侵入した事故点
までの距離LX を求めることができ、したがって送電線
2の一端にサージセンサ4を含む事故点の検出装置を設
けるだけで事故点の標定を行うことができ、事故点の標
定のための構成を簡略化することができる。この結果、
事故点の検出装置の据え付け工事が簡単化され、装置台
数も少なく済むので、安価になる。また、サージ波形を
基に事故点の標定を行うため、高速動作が可能となる。
したがって、高速動作が可能な進行波リレーへも使用用
途が拡がる。また、取得したサージ波形に対してローパ
スフィルタ演算を行い、ローパスフィルタ演算を施した
サージ波形と正負の所定のサージ波検出用比較レベルと
の交点の時刻を順次検出し第1番目のピークの交点の時
刻と第2番目のピークの交点の時刻との時間差を送電線
2に侵入したサージの直接波が送電線2の一端に到達し
た時刻とサージの送電線2の他端による最初の反射波が
到達した時刻との時間差T1 として検出するので、直接
波と最初の反射波の到達時間差を自動的に求めることが
でき、直接波および最初の反射波の到達時間差の自動計
測を可能として事故点の標定をサージ波形の取得から全
て自動的に行うことができ、標定する人間による個人差
をなくし、正確な事故点の標定が可能となる。
According to the transmission line fault point locating method of this embodiment, the surge waveform generated at the time of the lightning strike in the transmission line 2 is acquired and acquired using the surge sensor 4 installed at one end of the transmission line 2. From the surge waveform, a time difference T 1 between the time when the direct wave of the surge that has entered the transmission line 2 reaches one end of the transmission line 2 and the time when the first reflected wave from the other end of the transmission line 2 of the surge reaches is detected. simply calculates the distance L X of the accident point to which one end and the surge of the transmission line 2 has penetrated according [6], a surge from one end of transmission line 2 is able to obtain the distance L X to the fault point invaded Therefore, it is possible to locate the fault point only by providing the fault point detection device including the surge sensor 4 at one end of the transmission line 2, thereby simplifying the configuration for fault location. As a result,
The installation work of the accident point detecting device is simplified, and the number of devices is reduced, so that the cost is reduced. In addition, since the fault point is located based on the surge waveform, high-speed operation is possible.
Therefore, the use application is extended to a traveling wave relay that can operate at high speed. Further, a low-pass filter operation is performed on the acquired surge waveform, the time of the intersection of the surge waveform subjected to the low-pass filter operation and the predetermined positive / negative comparison level for surge wave detection is sequentially detected, and the intersection of the first peak is detected. The time difference between the time of the second peak and the time of the intersection of the second peak is determined by the time when the direct wave of the surge entering the transmission line 2 reaches one end of the transmission line 2 and the first reflected wave by the other end of the transmission line 2 of the surge. since but detected as the time difference T 1 of the the time has been reached, it is possible to automatically determine the arrival time difference between the direct wave and the first reflected wave, the accident as possible the automatic measurement of the direct wave and the arrival time difference of the first reflected wave All points can be automatically located from the acquisition of the surge waveform, eliminating individual differences among persons to be located, making it possible to accurately locate an accident point.

【0039】また、ローパスフィルタ演算を施したサー
ジ波形を微分し、ローパスフィルタ演算を施したサージ
波形と正負の所定のサージ波検出用比較レベルとの交点
の時刻におけるサージ波形の微分値の絶対値が所定の到
達波検出用比較レベルより大きいときに到達波とし、所
定の到達波検出用比較レベルより小さいときにノイズと
みなすので、サージ波形中の到達波とノイズとを区別す
ることができ、ノイズによる誤標定を防止することがで
きる。
Further, the surge waveform subjected to the low-pass filter operation is differentiated, and the absolute value of the differential value of the surge waveform at the time of the intersection of the surge waveform subjected to the low-pass filter operation and a predetermined positive / negative comparison level for surge wave detection. When the arrival wave is larger than the predetermined arrival wave detection comparison level, the arrival wave is regarded as noise, and when the arrival wave is smaller than the predetermined arrival wave detection comparison level, the arrival wave is regarded as noise. Misorientation due to noise can be prevented.

【0040】〔第2の実施の形態〕この発明の第2の実
施の形態の送電線の事故点標定方法について図8を参照
しながら説明する。この送電線の事故点標定方法は、
〔数6〕に従って距離LX を算出する点は第1の実施の
形態と同じであるが、その前処理としての到達時間差T
1 を求めるアルゴリズムが第1の実施の形態とは異な
る。
[Second Embodiment] A method of locating a fault on a transmission line according to a second embodiment of the present invention will be described with reference to FIG. The method for locating accidents on this transmission line is as follows:
Although the point of calculating the distance L X according [6] is the same as the first embodiment, the arrival time difference T as the pretreatment
The algorithm for obtaining 1 is different from that of the first embodiment.

【0041】送電線2に侵入したサージの直接波が送電
線2の一端に到達した時刻とサージの送電線2の他端に
よる最初の反射波が到達した時刻との時間差T1 は、以
下のようにようにして自動的に求める。すなわち、送電
線2の一端に設置したサージセンサ4を用いて、送電線
2における雷撃事故時に生じるサージ波形を取得し、サ
ージ波形に対してローパスフィルタ演算(例えば、移動
平均演算)を行い、ローパスフィルタ演算を施したサー
ジ波形の正負のピークの出現時刻を順次検出し第1番目
のピークの時刻と第2番目のピークの時刻との時間差を
上記の時間差T 1 とする。
The direct wave of the surge that has entered the transmission line 2
At the time when it reaches one end of line 2 and at the other end of
Time difference T from the time when the first reflected wave arrives1Is
Automatically ask as below. That is, power transmission
Using the surge sensor 4 installed at one end of the wire 2, the transmission line
Obtain the surge waveform generated during the lightning strike in
Low-pass filter operation (eg, moving
Averaging) and the low-pass filter
The time of appearance of the positive and negative peaks of the waveform
The time difference between the time of the peak and the time of the second peak is
The above time difference T 1And

【0042】サージ伝搬速度vは送電線2の長さがわか
っておれば、〔数4〕に従って算出できるが、サージセ
ンサ4を含む事故点の検出装置の据え付け時に予め人工
雷試験もしくは変電所1Aでの遮断器動作による開閉サ
ージについて時間T2 を測定し、算出しておく。ここ
で、上記の事故点の標定のアルゴリズムについて、図8
の流れ図および図6および図7を参照しながら説明す
る。
If the length of the transmission line 2 is known, the surge propagation speed v can be calculated according to [Equation 4]. However, the artificial lightning test or the substation 1A beforehand when installing the fault point detecting device including the surge sensor 4 is performed. for switching surge by the breaker operation measures the time T 2, previously calculated. Here, the algorithm for locating the accident point described above is shown in FIG.
6 and FIG. 7 will be described.

【0043】まず、図6に示されるようなサージ波形の
データをサンプリングによって取得する(ステップT
1)。つぎに、取得したサージ波形のサンプリングデー
タに対してローパスフィルタに通すことに相当するロー
パスフィルタ演算、例えば移動平均演算を行うことによ
り、図7に示すような高周波成分を除去したサージ波形
を得る(ステップT2)。
First, surge waveform data as shown in FIG. 6 is obtained by sampling (step T).
1). Next, a low-pass filter operation equivalent to passing the obtained surge waveform sampling data through a low-pass filter, for example, a moving average operation, is performed to obtain a surge waveform from which high-frequency components are removed as shown in FIG. 7 ( Step T2).

【0044】つぎに、ローパスフィルタ演算を行って高
周波成分を除去した後のサージ波形の波形ピークの出現
時刻を絶対値の大きい順に記憶する(ステップT3)。
これは、サージ波形のピークの極性が事故点7からの直
接波の波形ピークの極性と送電線2の他端からの反射波
の極性が逆になるからである。つぎに、ローパスフィル
タ演算後のサージ波形の微分演算を行い、微分サージ波
形を得る(ステップT4)。
Next, the appearance times of the waveform peaks of the surge waveform after the high-frequency component is removed by performing the low-pass filter operation are stored in order of the absolute value (step T3).
This is because the polarity of the peak of the surge waveform is opposite to the polarity of the waveform peak of the direct wave from the accident point 7 and the polarity of the reflected wave from the other end of the transmission line 2. Next, a differential operation of the surge waveform after the low-pass filter operation is performed to obtain a differential surge waveform (step T4).

【0045】つぎに、微分サージ波形の微分値の最大値
を基にして到達波検出用比較レベル(絶対値)を設定す
る(ステップT5)。つぎに、ステップT4で求めた微
分サージ波形におけるステップT3で記憶したサージ波
形の各波形ピークの出現時刻の微分値の絶対値を到達波
検出用比較レベルより大きいかどうか判定する(ステッ
プT6)。
Next, the arrival wave detection comparison level (absolute value) is set based on the maximum value of the differential value of the differential surge waveform (step T5). Next, it is determined whether or not the absolute value of the differential value at the appearance time of each waveform peak of the surge waveform stored in step T3 in the differential surge waveform obtained in step T4 is larger than the arrival wave detection comparison level (step T6).

【0046】ステップT6の判定結果がYESのときは
波形ピークが到達波であるとみなし(ステップT7)、
NOのときは波形ピークがノイズであるとみなす(ステ
ップT8)。ステップT6の判定結果がYESのとき
に、第1波目(直接波)および第2波目(反射波)を出
現時刻を検出・記憶する(ステップT9)。図7(a)
では、例えば19.9μsの時点と、63.9μsの時
点とにピークがあり、63.9μsの時点のピークは−
205Aとなっている。
If the decision result in the step T6 is YES, the waveform peak is regarded as a reaching wave (step T7),
If NO, the waveform peak is regarded as noise (step T8). When the determination result in step T6 is YES, the appearance times of the first wave (direct wave) and the second wave (reflected wave) are detected and stored (step T9). FIG. 7 (a)
Then, for example, there are peaks at the time point of 19.9 μs and the time point of 63.9 μs, and the peak at the time point of 63.9 μs is −
205A.

【0047】つぎに、第1波目(直接波)および第2波
目(反射波)の到達時間差を演算する(ステップT1
0)。図7(a)の場合、
Next, the arrival time difference between the first wave (direct wave) and the second wave (reflected wave) is calculated (step T1).
0). In the case of FIG.

【0048】[0048]

【数10】T1 =63.9−19.9=44.0μs となる。つぎに、到達時間差に基づいて事故点7の標
定、つまり、〔数6〕の演算を行って送電線2の一端か
ら事故点7までの送電線2の長さを算出する(ステップ
T11)。本送電線2では、前述したように、サージ伝
搬速度vが0.294km/μsであり、T2 =106
μsであり、〔数6〕の演算を行うと、第1の実施の形
態と同様に、LX =9.1kmとなった。
T 1 = 63.9-19.9 = 44.0 μs Next, the fault point 7 is located based on the arrival time difference, that is, the calculation of [Equation 6] is performed to calculate the length of the power transmission line 2 from one end of the power transmission line 2 to the fault point 7 (step T11). In the transmission line 2, as described above, the surge propagation speed v is 0.294 km / μs, and T 2 = 106
μs, and when the operation of [Equation 6] is performed, L X = 9.1 km, as in the first embodiment.

【0049】一方、上記した送電線路亘長15.6km
の送電線で実際に発生した雷撃事故の一例の場合、巡視
結果によると、送電線2の一端(変電所1A側)から
9.4kmの地点でA相に雷撃事故が発生していたの
で、演算により求めた距離LX は巡視結果に比べて−3
00mの差でほぼ一致し、十分な精度が得られることが
明らかになった。
On the other hand, the above-mentioned transmission line path length of 15.6 km
In the case of an example of a lightning strike that actually occurred on the transmission line No. 3, according to the patrol result, a lightning strike occurred on the phase A at a point 9.4 km from one end of the transmission line 2 (the substation 1A side). The distance L X obtained by the calculation is -3 compared to the inspection result.
The difference almost coincided with the difference of 00 m, and it was clear that sufficient accuracy was obtained.

【0050】この実施の形態によれば、送電線2の一端
に設置したサージセンサ4を用いて、送電線2における
雷撃事故時に生じるサージ波形を取得し、取得したサー
ジ波形から送電線2に侵入したサージの直接波が送電線
2の一端に到達した時刻とサージの送電線2の他端によ
る最初の反射波が到達した時刻との時間差T1 を検出
し、送電線2の一端とサージが侵入した事故点との距離
X を〔数6〕に従って算出するだけで、送電線2の一
端からサージが侵入した事故点までの距離LX を求める
ことができ、したがって送電線2の一端にサージセンサ
4を含む事故点の検出装置を設けるだけで事故点の標定
を行うことができ、事故点の標定のための構成を簡略化
することができる。この結果、事故点の検出装置の据え
付け工事が簡単化され、装置台数も少なく済むので、安
価になる。また、サージ波形を基に事故点の標定を行う
ため、高速動作が可能となる。したがって、高速動作が
可能な進行波リレーへも使用用途が拡がる。
According to this embodiment, the surge waveform generated at the time of the lightning strike on the transmission line 2 is acquired by using the surge sensor 4 installed at one end of the transmission line 2, and the surge waveform invading the transmission line 2 is obtained from the acquired surge waveform. The time difference T 1 between the time when the direct wave of the surge reaches the one end of the transmission line 2 and the time when the first reflected wave from the other end of the transmission line 2 arrives is detected, and one end of the transmission line 2 and the surge are detected. by invading the distance L X of the accident point just calculated according [6], a surge from one end of transmission line 2 is able to obtain the distance L X to the fault point which has entered, thus the one end of the transmission line 2 The fault point can be located simply by providing a fault point detecting device including the surge sensor 4, and the configuration for fault point location can be simplified. As a result, the installation work of the accident point detection device is simplified, and the number of devices is reduced, so that the cost is reduced. In addition, since the fault point is located based on the surge waveform, high-speed operation is possible. Therefore, the use application is extended to a traveling wave relay that can operate at high speed.

【0051】また、取得したサージ波形に対してローパ
スフィルタ演算を行い、ローパスフィルタ演算を施した
サージ波形の正負のピークの出現時刻を順次検出し第1
番目のピークの時刻と第2番目のピークの時刻との時間
差を送電線2に侵入したサージの直接波が送電線2の一
端に到達した時刻とサージの送電線2の他端による最初
の反射波が到達した時刻との時間差T1 として検出する
ので、直接波と最初の反射波の到達時間差を自動的に求
めることができ、直接波および最初の反射波の到達時間
差の自動計測を可能として事故点の標定をサージ波形の
取得から全て自動的に行うことができ、標定する人間に
よる個人差をなくし、正確な事故点の標定が可能とな
る。
Further, a low-pass filter operation is performed on the acquired surge waveform, and the appearance times of the positive and negative peaks of the surge waveform subjected to the low-pass filter operation are sequentially detected.
The time difference between the time of the second peak and the time of the second peak is determined by the time when the direct wave of the surge entering the transmission line 2 reaches one end of the transmission line 2 and the first reflection of the surge by the other end of the transmission line 2. and detects a time difference T 1 of the the time the wave arrives, it is possible to automatically determine the arrival time difference between the direct wave and the first reflected wave, as a possible automatic measurement of the direct wave and the arrival time difference of the first reflected wave The location of the accident point can be automatically performed from the acquisition of the surge waveform, eliminating individual differences among the persons to be located, making it possible to accurately locate the accident point.

【0052】また、ローパスフィルタ演算を施したサー
ジ波形を微分し、ローパスフィルタ演算を施したサージ
波形の正負のピークの出現時刻におけるサージ波形の微
分値の絶対値が所定の到達波検出用比較レベルより大き
いときに到達波とし、所定の到達波検出用比較レベルよ
り小さいときにノイズとみなすので、サージ波形中の到
達波とノイズとを区別することができ、ノイズによる誤
標定を防止することができる。
Further, the surge waveform subjected to the low-pass filter operation is differentiated, and the absolute value of the differential value of the surge waveform at the appearance time of the positive or negative peak of the surge waveform subjected to the low-pass filter operation is determined by a predetermined arrival wave detection comparison level. When it is larger than the predetermined arrival wave detection comparison level, the arrival wave is regarded as noise, and when it is smaller than the predetermined arrival wave detection comparison level, the arrival wave and noise in the surge waveform can be distinguished from each other, thereby preventing misorientation due to noise. it can.

【0053】[0053]

【発明の効果】請求項1記載の送電線の事故点標定方法
によれば、送電線の一端からサージが侵入した事故点ま
での距離を求めることができ、したがって送電線の一端
にサージセンサを含む事故点の検出装置を設けるだけで
事故点の標定を行うことができ、事故点の標定のための
構成を簡略化することができる。この結果、事故点の検
出装置の据え付け工事が簡単化され、装置台数も少なく
済むので、安価になる。また、サージ波形を基に事故点
の標定を行うため、高速動作が可能となる。したがっ
て、高速動作が可能な進行波リレーへも使用用途が拡が
る。また、直接波と最初の反射波の到達時間差を自動的
に求めることができ、直接波および最初の反射波の到達
時間差の自動計測を可能として事故点の標定をサージ波
形の取得から全て自動的に行うことができ、標定する人
間による個人差をなくし、正確な事故点の標定が可能と
なる。
According to the method for locating a fault point on a transmission line according to the first aspect, the distance from one end of the transmission line to the fault point where the surge has entered can be obtained. It is possible to locate an accident point only by providing a detection device for the accident point including the accident point, thereby simplifying the configuration for locating the accident point. As a result, the installation work of the accident point detection device is simplified, and the number of devices is reduced, so that the cost is reduced. In addition, since the fault point is located based on the surge waveform, high-speed operation is possible. Therefore, the use application is extended to a traveling wave relay that can operate at high speed. In addition, the arrival time difference between the direct wave and the first reflected wave can be automatically obtained, and the arrival time difference between the direct wave and the first reflected wave can be automatically measured. This makes it possible to eliminate the individual differences among the people who are locating, and to accurately locate the accident point.

【0054】請求項2記載の送電線の事故点標定方法に
よれば、サージ波形中の到達波とノイズとを区別するこ
とができ、ノイズによる誤標定を防止することができ
る。請求項3記載の送電線の事故点標定方法によれば、
送電線の一端からサージが侵入した事故点までの距離を
求めることができ、したがって送電線の一端にサージセ
ンサを含む事故点の検出装置を設けるだけで事故点の標
定を行うことができ、事故点の標定のための構成を簡略
化することができる。この結果、事故点の検出装置の据
え付け工事が簡単化され、装置台数も少なく済むので、
安価になる。また、サージ波形を基に事故点の標定を行
うため、高速動作が可能となる。したがって、高速動作
が可能な進行波リレーへも使用用途が拡がる。
According to the method for locating a fault point on a transmission line according to the second aspect, the arrival wave in the surge waveform and noise can be distinguished, and erroneous localization due to noise can be prevented. According to the method for locating a fault on a transmission line according to claim 3,
The distance from one end of the transmission line to the accident point where the surge invaded can be obtained.Therefore, the accident point can be located simply by installing an accident point detection device including a surge sensor at one end of the transmission line. The configuration for locating points can be simplified. As a result, the installation work of the accident point detection device is simplified, and the number of devices is reduced.
Become cheap. In addition, since the fault point is located based on the surge waveform, high-speed operation is possible. Therefore, the use application is extended to a traveling wave relay that can operate at high speed.

【0055】また、直接波と最初の反射波の到達時間差
を自動的に求めることができ、直接波および最初の反射
波の到達時間差の自動計測を可能として事故点の標定を
サージ波形の取得から全て自動的に行うことができ、標
定する人間による個人差をなくし、正確な事故点の標定
が可能となる。請求項4記載の送電線の事故点標定方法
によれば、サージ波形中の到達波とノイズとを区別する
ことができ、ノイズによる誤標定を防止することができ
る。
Further, the arrival time difference between the direct wave and the first reflected wave can be automatically obtained, and the arrival time difference between the direct wave and the first reflected wave can be automatically measured. All of them can be performed automatically, eliminating the individual differences among the persons to be located, making it possible to accurately locate the accident point. According to the transmission line fault point locating method according to the fourth aspect, it is possible to distinguish between the arrival wave in the surge waveform and the noise, and to prevent erroneous localization due to the noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】送電線に雷撃を受けたときに事故点の標定を行
う装置の概略図である。
FIG. 1 is a schematic diagram of an apparatus for locating an accident point when a lightning strike occurs on a transmission line.

【図2】この発明の第1の実施の形態の送電線の事故点
標定方法において送電線に雷撃を受けた場合のサージ波
の伝搬・反射の様子を示す概略図である。
FIG. 2 is a schematic diagram showing a state of propagation and reflection of a surge wave when a lightning strike is applied to a transmission line in the method for locating a fault on a transmission line according to the first embodiment of the present invention.

【図3】サージ波の反射波形図である。FIG. 3 is a reflection waveform diagram of a surge wave.

【図4】送電線の両端と事故点との距離を示す概略図で
ある。
FIG. 4 is a schematic diagram showing a distance between both ends of a transmission line and an accident point.

【図5】この発明の第1の実施の形態における直接波と
最初の反射波の時間差を検出するアルゴリズムを示す流
れ図である。
FIG. 5 is a flowchart showing an algorithm for detecting a time difference between a direct wave and a first reflected wave according to the first embodiment of the present invention.

【図6】この発明の第1の実施の形態において実際の雷
撃事故の発生時に取得した3相分のサージ電圧波形を示
す波形図である。
FIG. 6 is a waveform chart showing surge voltage waveforms for three phases acquired at the time of the occurrence of the actual lightning strike in the first embodiment of the present invention.

【図7】この発明の第1の実施の形態においてローパス
フィルタ演算後の3相分のサージ電圧波形を示す波形図
である。
FIG. 7 is a waveform chart showing surge voltage waveforms for three phases after a low-pass filter operation in the first embodiment of the present invention.

【図8】この発明の第2の実施の形態における直接波と
最初の反射波の時間差を検出するアルゴリズムを示す流
れ図である。
FIG. 8 is a flowchart showing an algorithm for detecting a time difference between a direct wave and a first reflected wave according to the second embodiment of the present invention.

【図9】先行技術における直接波と最初の反射波の時間
差を検出するアルゴリズムを示す流れ図である。
FIG. 9 is a flowchart showing an algorithm for detecting a time difference between a direct wave and a first reflected wave in the prior art.

【符号の説明】[Explanation of symbols]

1A,1B 変電所 2 送電線 3 雷撃 4 サージセンサ 5 波形測定装置 6 演算処理装置 7 事故点 1A, 1B Substation 2 Transmission Line 3 Lightning Strike 4 Surge Sensor 5 Waveform Measuring Device 6 Arithmetic Processing Unit 7 Accident Point

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 送電線の一端に設置したサージセンサを
用いて、前記送電線における雷撃事故時に生じるサージ
波形を取得し、前記サージ波形に対してローパスフィル
タ演算を行い、前記ローパスフィルタ演算を施したサー
ジ波形と正負の所定のサージ波検出用比較レベルとの交
点の時刻を順次検出し第1番目のピークの交点の時刻と
第2番目のピークの交点の時刻との時間差を前記送電線
に侵入したサージの直接波が前記送電線の一端に到達し
た時刻と前記サージの前記送電線の他端による最初の反
射波が到達した時刻との時間差T1 として検出し、前記
送電線の一端と他端の間をサージが往復するのに要する
時間をT2 とし、サージ伝搬速度をvとしたときに、前
記送電線の一端と前記サージが侵入した事故点との距離
X を 【数1】LX =v×(T2 −T1 )/2 に従って算出することを特徴とする送電線の事故点標定
方法。
1. Using a surge sensor installed at one end of a transmission line, obtain a surge waveform generated at the time of a lightning strike on the transmission line, perform a low-pass filter operation on the surge waveform, and perform the low-pass filter operation. The time of the intersection of the generated surge waveform and the predetermined comparison level for positive / negative surge wave detection is sequentially detected, and the time difference between the time of the intersection of the first peak and the time of the intersection of the second peak is transmitted to the transmission line. detecting the direct wave of invading surges as the time difference T 1 of the the first time the reflected wave arrives by the other end of the transmission line of the surge and the time it reaches the end of the transmission line, one end of said transmission line When the time required for the surge to reciprocate between the other ends is T 2 and the surge propagation speed is v, the distance L X between one end of the transmission line and the accident point where the surge has penetrated is given by ] L X v × (T 2 -T 1) / 2 fault point locating method of the transmission line, characterized by calculating in accordance with.
【請求項2】 ローパスフィルタ演算を施したサージ波
形を微分し、前記ローパスフィルタ演算を施したサージ
波形と正負の所定のサージ波検出用比較レベルとの交点
の時刻における前記サージ波形の微分値の絶対値が所定
の到達波検出用比較レベルより大きいときに到達波と
し、前記所定の到達波検出用比較レベルより小さいとき
にノイズとみなすことを特徴とする請求項1記載の送電
線の事故点標定方法。
2. A surge waveform subjected to a low-pass filter operation is differentiated, and a differential value of the surge waveform at a time of an intersection between the surge waveform subjected to the low-pass filter operation and a predetermined positive / negative comparison level for surge wave detection is calculated. 2. The fault point of a transmission line according to claim 1, wherein when the absolute value is greater than a predetermined arrival wave detection comparison level, the arrival wave is determined, and when the absolute value is smaller than the predetermined arrival wave detection comparison level, the arrival wave is regarded as noise. Orientation method.
【請求項3】 送電線の一端に設置したサージセンサを
用いて、前記送電線における雷撃事故時に生じるサージ
波形を取得し、前記サージ波形に対してローパスフィル
タ演算を行い、前記ローパスフィルタ演算を施したサー
ジ波形の正負のピークの出現時刻を順次検出し第1番目
のピークの時刻と第2番目のピークの時刻との時間差を
前記送電線に侵入したサージの直接波が前記送電線の一
端に到達した時刻と前記サージの前記送電線の他端によ
る最初の反射波が到達した時刻との時間差T1 として検
出し、前記送電線の一端と他端の間をサージが往復する
のに要する時間をT2 とし、サージ伝搬速度をvとした
ときに、前記送電線の一端と前記サージが侵入した事故
点との距離LX を 【数2】LX =v×(T2 −T1 )/2 に従って算出することを特徴とする送電線の事故点標定
方法。
3. Using a surge sensor installed at one end of a transmission line, obtain a surge waveform generated during a lightning strike on the transmission line, perform a low-pass filter operation on the surge waveform, and perform the low-pass filter operation. The appearance time of the positive and negative peaks of the generated surge waveform is sequentially detected, and the time difference between the time of the first peak and the time of the second peak is detected by a direct wave of the surge that has entered the transmission line at one end of the transmission line. the first reflected wave is detected as a time difference T 1 of the the time has been reached, the time required between the one end and the other end of the transmission line to surge back and forth by the other end of the transmission line of the surge and the arrived time Is defined as T 2 and the surge propagation speed is defined as v, and the distance L X between one end of the transmission line and the accident point where the surge has penetrated is given by: L X = v × (T 2 −T 1 ) / 2 Fault point locating method of the transmission line, wherein the door.
【請求項4】 ローパスフィルタ演算を施したサージ波
形を微分し、前記ローパスフィルタ演算を施したサージ
波形の正負のピークの出現時刻における前記サージ波形
の微分値の絶対値が所定の到達波検出用比較レベルより
大きいときに到達波とし、前記所定の到達波検出用比較
レベルより小さいときにノイズとみなすことを特徴とす
る請求項3記載の送電線の事故点標定方法。
4. A surge waveform subjected to a low-pass filter operation is differentiated, and an absolute value of a differential value of the surge waveform at a time of appearance of a positive or negative peak of the surge waveform subjected to the low-pass filter operation is used to detect a predetermined arrival wave. 4. The method according to claim 3, wherein the arrival wave is regarded as an arrival wave when the level is larger than the comparison level, and as a noise when the level is smaller than the predetermined arrival wave detection comparison level.
JP10549397A 1997-04-23 1997-04-23 Fault location method for transmission line Pending JPH10300808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10549397A JPH10300808A (en) 1997-04-23 1997-04-23 Fault location method for transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10549397A JPH10300808A (en) 1997-04-23 1997-04-23 Fault location method for transmission line

Publications (1)

Publication Number Publication Date
JPH10300808A true JPH10300808A (en) 1998-11-13

Family

ID=14409133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10549397A Pending JPH10300808A (en) 1997-04-23 1997-04-23 Fault location method for transmission line

Country Status (1)

Country Link
JP (1) JPH10300808A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474192B1 (en) * 2002-11-13 2005-03-11 명지대학교 Method for detecting fault location on transmission line using travelling waves
WO2008154749A1 (en) * 2007-06-21 2008-12-24 Hydro-Quebec Appliance and method for monitoring a phase line of a section of an electrical energy grid line
CN102628913A (en) * 2012-04-09 2012-08-08 清华大学 Electric transmission line three-dimensional lightning calculating method based on electric transmission line structure and terrain
CN103364691A (en) * 2013-07-09 2013-10-23 上海交通大学 Distributed fault location method for overhead line-cable hybrid circuit
JP2021050954A (en) * 2019-09-24 2021-04-01 株式会社日立製作所 Power grid monitoring device and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474192B1 (en) * 2002-11-13 2005-03-11 명지대학교 Method for detecting fault location on transmission line using travelling waves
WO2008154749A1 (en) * 2007-06-21 2008-12-24 Hydro-Quebec Appliance and method for monitoring a phase line of a section of an electrical energy grid line
EP2165403A1 (en) * 2007-06-21 2010-03-24 Hydro-Québec Appliance and method for monitoring a phase line of a section of an electrical energy grid line
US8502542B2 (en) 2007-06-21 2013-08-06 Hydro Quebec Apparatus and method for monitoring a phase line of a section of an electrical energy transmission line
EP2165403A4 (en) * 2007-06-21 2014-01-22 Hydro Quebec APPARATUS AND METHOD FOR MONITORING A PHASE LINE OF A SECTION OF AN ELECTRIC POWER TRANSMISSION LINE
CN102628913A (en) * 2012-04-09 2012-08-08 清华大学 Electric transmission line three-dimensional lightning calculating method based on electric transmission line structure and terrain
CN102628913B (en) * 2012-04-09 2014-03-12 清华大学 Electric transmission line three-dimensional lightning calculating method based on electric transmission line structure and terrain
CN103364691A (en) * 2013-07-09 2013-10-23 上海交通大学 Distributed fault location method for overhead line-cable hybrid circuit
JP2021050954A (en) * 2019-09-24 2021-04-01 株式会社日立製作所 Power grid monitoring device and method

Similar Documents

Publication Publication Date Title
US4499417A (en) Determining location of faults in power transmission lines
US10656198B2 (en) Electric power system monitoring using high-frequency signals
US6822457B2 (en) Method of precisely determining the location of a fault on an electrical transmission system
EP1787135B1 (en) Traveling wave based relay protection
US20190187202A1 (en) Traveling wave fault location with dispersion compensation in electric power delivery systems
US8990036B1 (en) Power line parameter adjustment and fault location using traveling waves
US9851390B2 (en) Method for locating distribution network circuit fault based on full waveform information
CA2110056C (en) Advanced cable fault locator
KR101531641B1 (en) A partial discharge measuring apparatus in a power cable and a method therof
US20150081236A1 (en) Traveling wave validation using estimated fault location
US20140002098A1 (en) Locating of partial-discharge-generating faults
WO2016118584A1 (en) Fault location using traveling waves
CN102798804B (en) High-voltage power cable fault on-line positioning device
JP6857876B2 (en) Fictitious power distribution system exploration system and fictitious power distribution system exploration method
KR20200033536A (en) Apparatus for detecting fault location of underground cable and method thereof
CN115356585B (en) A hybrid line fault location method and system based on traveling wave ranging
JPH10300808A (en) Fault location method for transmission line
RU2532760C1 (en) Method for determining damaged point of branched power transmission line
CN111065932A (en) Traveling wave identification using distortion for power system protection
WO2018122627A1 (en) Travelling wave based method for locating a fault in a transmission line and device therefor
JPH0815363A (en) Fault location method for transmission line
JPH0862277A (en) Apparatus for locating fault point of transmission line
CN115754584B (en) Distribution network line single-phase earth fault positioning method and system
Le et al. Performance Evaluation of Traveling Wave Fault Locator for a 220kV Hoa Khanh-Thanh My Transmission Line.
RU2521790C1 (en) Method for determining damaged point of branched power transmission lines