JPH10300673A - Inductively coupled plasma emission spectrometer - Google Patents
Inductively coupled plasma emission spectrometerInfo
- Publication number
- JPH10300673A JPH10300673A JP10422797A JP10422797A JPH10300673A JP H10300673 A JPH10300673 A JP H10300673A JP 10422797 A JP10422797 A JP 10422797A JP 10422797 A JP10422797 A JP 10422797A JP H10300673 A JPH10300673 A JP H10300673A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- inductively coupled
- coupled plasma
- intensity
- emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009616 inductively coupled plasma Methods 0.000 title claims abstract description 25
- 238000005259 measurement Methods 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 11
- 230000035945 sensitivity Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
(57)【要約】
【課題】誘導結合プラズマ分光分析装置で、高感度・高
精度分析を可能とする。
【解決手段】従来用いられている分光器の出射スリット
から通常バックグラウンド波長を測定する波長分離れた
ところにバックグラウンド波長測定用の出射スリットを
設け、その後ろに試料のk発光強度測定用の検知器を設
けることにより元素の信号強度とバックグラウンド波長
の信号強度を同時に測定可能とし、バックグラウンド波
長の信号強度の揺らぎにより測定信号強度を補正する。
(57) [Summary] [PROBLEMS] To enable high sensitivity and high precision analysis with an inductively coupled plasma spectrometer. An emission slit for measuring a background wavelength is provided at a place separated from an emission slit of a conventionally used spectroscope usually for measuring a background wavelength, and an emission slit for measuring a k emission intensity of a sample is provided behind the emission slit. By providing the detector, the signal intensity of the element and the signal intensity of the background wavelength can be measured simultaneously, and the measured signal intensity is corrected by the fluctuation of the signal intensity of the background wavelength.
Description
【0001】[0001]
【発明の属する技術分野】本発明は誘導結合プラズマ発
光分光分析装置に関する。[0001] 1. Field of the Invention [0002] The present invention relates to an inductively coupled plasma emission spectrometer.
【0002】[0002]
【従来の技術】従来までの誘導結合プラズマ発光分光分
析装置では、試料の粘性・マトリクス成分などの影響を
除去するため目的とする元素の分析波長の他に測定波長
の近傍の信号強度の基準となるバックグラウンド波長を
測定する。従来までの誘導結合プラズマ発光分析装置で
は図1のような測定波長用の検知器しか備えていないた
めバックグラウンド波長と測定波長の同時測定を行えず
霧化器の噴霧効率によるばらつき、プラズマの揺らぎに
よるばらつきなどにより測定者は測定値の信頼性につい
て不安を持っていた。霧化器の噴霧効率によるばらつ
き,プラズマの揺らぎによるばらつきなどを除去し、高
感度かつ高精度な分析手法として、目的とする元素の発
光波長の信号を測定する分光器とは別の分光器を装置内
に設け内標準測定がある。この方法では新たに測定試料
中に内標準元素を添加しなければならず、添加時の分抽
誤差,測定者の分取量間違いなどによる測定誤差が発生
する可能性があり、さらに上記のような同時内標準測定
法で一般に内標準元素として選択可能な元素は試料中に
絶対入っていないと思われるYなどの限られた元素であ
り、実際に測定する元素と測定波長が大きく離れている
場合が多く、そのため同時に参照強度を測定してもその
信頼性は非常に低いという問題があった。またこのほか
にも固体検知器を用いた同時測定の方法があるがこの方
法では設計しようとする所望の分光測光装置を適合する
アレイセンサを探すことは非常に困難である。さらに個
々の検知器の大きさ,センサの素子数が限定されること
よりこの装置で広い波長範囲を高分解測定することは非
常に困難である。2. Description of the Related Art Conventional inductively coupled plasma optical emission spectrometers have a standard of signal intensity in the vicinity of a measurement wavelength in addition to an analysis wavelength of a target element in order to remove influences such as viscosity and matrix components of a sample. Measure the background wavelength. Conventional inductively coupled plasma emission analyzers have only a detector for the measurement wavelength as shown in FIG. 1, so that the background wavelength and the measurement wavelength cannot be measured simultaneously. The measurer was worried about the reliability of the measured values due to variations due to the measurement. As a high-sensitivity and high-precision analysis method, a spectrometer different from the spectrometer that measures the signal of the emission wavelength of the target element is used to remove variations due to the atomization efficiency of the atomizer and fluctuations due to plasma fluctuation. There is an internal standard measurement provided in the device. In this method, an internal standard element must be newly added to the measurement sample, and there is a possibility that a measurement error occurs due to a sampling error at the time of addition, an incorrect collection amount of a measurer, and the like. In general, the elements that can be selected as internal standard elements in the simultaneous internal standard measurement method are limited elements such as Y that are considered to be absolutely not contained in the sample, and the measurement wavelength is far apart from the element to be actually measured In many cases, there is a problem that the reliability is extremely low even when the reference intensity is measured at the same time. In addition, there is a simultaneous measurement method using a solid-state detector. However, it is very difficult with this method to find an array sensor suitable for a desired spectrophotometer to be designed. Further, since the size of each detector and the number of sensor elements are limited, it is very difficult to perform high-resolution measurement over a wide wavelength range with this device.
【0003】また、同一分光器内に検知器を複数個設置
するポリクロメータとよばれる分光器を誘導結合プラズ
マ発光分析装置に適用したものは従来より存在している
が、いずれも多元素を同時に分析するために使用されて
おり、発光分析で重要なファクタをなすバックグラウン
ド波長の測定のためにはミラー等を動かし別途測定しな
ければならずバックグラウンド波長と測定波長の同時サ
ンプリングは行われていなかった。[0003] Further, a spectrometer called a polychromator, in which a plurality of detectors are installed in the same spectrometer, has been applied to an inductively coupled plasma emission spectrometer. It is used for analysis, and to measure the background wavelength, which is an important factor in emission analysis, must be measured separately by moving a mirror etc.Simultaneous sampling of the background wavelength and the measurement wavelength is performed. Did not.
【0004】[0004]
【発明が解決しようとする課題】図1の従来技術による
方法では、第一に内標準元素を試料中に添加しなければ
ならず添加時の分抽誤差・分取量間違い・試料の汚染の
可能性があること第二に内標準元素測定用分光器を新た
に設けなければならないという問題があり、図2の従来
技術による方法では第一にアレイセンサの種類が少なく
波長範囲を自由に選択できないこと第二に検知器の大き
さ,素子数が限定されており使用する光学系が限定され
ること。第三に誘導プラズマ発光分析では非常に近接線
が多く高分解の検知器が必要とされるため非常に高価に
なってしまうことなどの問題が発生する。In the method according to the prior art shown in FIG. 1, first, an internal standard element must be added to a sample. Secondly, there is a problem that a spectroscope for measuring internal standard elements must be newly provided. In the method according to the prior art shown in FIG. 2, first, the number of array sensors is small and the wavelength range can be freely selected. Second, the size of the detector and the number of elements are limited, and the optical system used is limited. Third, inductively coupled plasma emission analysis has a problem that it becomes very expensive because there are so many near lines and a high-resolution detector is required.
【0005】本発明の目的は、上記した従来技術の問題
点を改善し、測定波長近傍の信号を参照強度として測定
可能にし、プラズマの揺らぎ,噴霧器の揺らぎなどのノ
イズ成分を除去し、簡便に、高精度,高感度な誘導結合
プラズマ発光分析装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned problems of the prior art, to enable a signal near a measurement wavelength to be measured as a reference intensity, to remove noise components such as plasma fluctuations and sprayer fluctuations, and to simplify the operation. It is an object of the present invention to provide a high-precision, high-sensitivity inductively coupled plasma emission spectrometer.
【0006】[0006]
【課題を解決するための手段】本発明は上記の目的を達
成するために、請求項1の誘導結合プラズマ発光分光分
析装置で、測定波長の強度を測定する検知器の他に同一
分光器内に別の検知器、などを設けるか、または同時に
信号強度を測定可能な半導体検知器を設けることにより
目的とする元素の測定波長とは異なる波長の信号強度を
測定することのできる機能を持たせ、目的とする元素の
発光強度を測定する際、常にバックグラウンド強度の揺
らぎを測定し、この揺らぎの度合いにより目的とする発
光強度を補正することにより上記目的を達成することが
できる。In order to achieve the above object, the present invention provides an inductively coupled plasma emission spectrometer according to the first aspect of the present invention, which includes a detector for measuring the intensity of a wavelength to be measured, as well as a detector for measuring the intensity of a wavelength to be measured. Provide a function that can measure the signal intensity at a wavelength different from the measurement wavelength of the target element by providing another detector, etc., or by providing a semiconductor detector that can simultaneously measure the signal intensity. When measuring the emission intensity of the target element, the fluctuation of the background intensity is always measured, and the target light emission intensity is corrected based on the degree of the fluctuation, thereby achieving the above object.
【0007】上記した構成によれば、誘導結合プラズマ
発光分析装置で、新たに別の分光器を備えることなく、
自由に光学系の設計が行えるばかりでなく、安価に測定
波長とバックグラウンド波長の同時測定が行え簡便に高
感度・高精度分析が可能となる。さらに、目的とする元
素の測定波長とバックグラウンド波長を同時に測定でき
るため積算にかかる時間が短縮されるため必要試料量が
少なくて済むという利点がある。[0007] According to the above configuration, the inductively coupled plasma emission spectrometer can be provided without newly providing another spectroscope.
Not only can the optical system be designed freely, but also the simultaneous measurement of the measurement wavelength and the background wavelength can be performed at low cost, and high-sensitivity and high-accuracy analysis can be easily performed. Furthermore, since the measurement wavelength and the background wavelength of the target element can be measured simultaneously, the time required for integration is shortened, so that there is an advantage that the required sample amount is small.
【0008】[0008]
【発明の実施の形態】図1,図2は従来技術を説明する
ための装置の説明図、図3は本発明を適用するための誘
導結合プラズマ発光分光分析装置の構成を示す説明図で
ある。図3,図4は測定信号のサンプリング方法と補正
方法の説明図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are explanatory views of an apparatus for explaining a conventional technique, and FIG. 3 is an explanatory view showing a configuration of an inductively coupled plasma emission spectrometer for applying the present invention. . 3 and 4 are explanatory diagrams of a sampling method and a correction method of the measurement signal.
【0009】図1に示すように、この実施例の誘導結合
プラズマ発光分光分析装置が、プラズマを点灯させるた
めの高周波を発生させる高周波電源部11,実際にプラ
ズマを点灯する光源部12,前記光源部の光を波長に従
って分散素子を用いて分光する分光器13,その分光さ
れた光を検知する検出器14,前記光分散素子を走査す
る波長駆動装置15,前記高周波電源部,検出部,波長
駆動装置を制御する制御部16とを有する点では、従来
の装置と同じである。As shown in FIG. 1, an inductively coupled plasma emission spectrometer of this embodiment includes a high frequency power supply 11 for generating a high frequency for lighting plasma, a light source 12 for actually lighting plasma, and the light source. Spectroscope 13 that disperses the light of the section using a dispersion element according to the wavelength, a detector 14 that detects the dispersed light, a wavelength driving device 15 that scans the light dispersion element, the high-frequency power supply section, a detection section, It is the same as the conventional device in having a control unit 16 for controlling the driving device.
【0010】従来の誘導結合プラズマ発光分析装置では
図2に示すように測定用の分光器の出射スリット・検知
器はひとつしか有しておらずバックグラウンド波長を測
定させるには波長駆動部により出射スリットにバックグ
ラウンドとして設定した波長まで移動させなければなら
ず信号強度とバックグラウンド強度を同時に測定を行う
ことができない。そこで本発明では従来の出射スリット
から測定波長−バックグラウンド設定波長の位置に別の
出射スリットを設け、その後ろに検知器を置き測定波長
とバックグラウンド波長が同時に測定可能となる。また
これら2つの強度を同時に測定できる半導体検知器など
を設置してもよい。As shown in FIG. 2, the conventional inductively coupled plasma emission spectrometer has only one exit slit / detector of a spectroscope for measurement. The wavelength must be moved to the wavelength set in the slit as the background, and the signal intensity and the background intensity cannot be measured simultaneously. Therefore, in the present invention, another exit slit is provided at the position of the measurement wavelength-the background setting wavelength from the conventional exit slit, and a detector is placed behind the exit slit so that the measurement wavelength and the background wavelength can be measured simultaneously. Further, a semiconductor detector or the like which can measure these two intensities simultaneously may be provided.
【0011】目的とする元素の発光強度Isとバックグ
ラウンド波長での発光強度Ibはプラズマの揺らぎなど
により時間と共に図4に示すように変動する。通常、誘
導結合プラズマ発光分析での信号強度は、目的とする元
素の測定波長で一定時間の信号強度を測定し積算平均し
たものからバックグラウンド波長での信号強度の積算平
均値を減算したものを用いる。The luminous intensity Is of the target element and the luminous intensity Ib at the background wavelength fluctuate with time due to fluctuations of plasma as shown in FIG. Normally, the signal intensity in the inductively coupled plasma emission analysis is obtained by subtracting the integrated average value of the signal intensity at the background wavelength from the integrated value of the signal intensity measured for a predetermined time at the measurement wavelength of the target element. Used.
【0012】[0012]
【数1】 (Equation 1)
【0013】従来の誘導結合プラズマ発光分析装置では
目的とする元素の測定波長とバックグラウンド波長では
同時にサンプリングすることができず図4に示すような
周期的でないプラズマの揺らぎなどによる変動を補正す
ることはできませんでした。そこで本発明は、この揺ら
ぎを数2または数3を用いて補正する。In the conventional inductively coupled plasma emission analyzer, it is not possible to simultaneously sample at the measurement wavelength and the background wavelength of the target element, and to correct fluctuations due to non-periodic plasma fluctuations as shown in FIG. Could not. Therefore, the present invention corrects this fluctuation using Equation 2 or Equation 3.
【0014】[0014]
【数2】 (Equation 2)
【0015】[0015]
【数3】 (Equation 3)
【0016】数2によればIs(t)は図4に示す目的
とする元素の発光強度の時間の関数であり、Ib(t)
はバックグラウンド波長での発光強度の時間の関数であ
る。一定時間内の両者の挙動は、プラズマの揺らぎ等の
影響で図4に示すようにほぼ同等であると考えられる。
このため各時間経過毎にIs(t)/Ib(t)を求め
積算したものを測定値とすることにより図4に示すノイ
ズ成分による影響は除去することができる。しかし低濃
度の試料を測定する際にはIs(t)とIb(t)はほぼ同
じ数字を示すようになりIs(t)/Ib(t)は限り
なく0に近くなってしまい誤差が大きくなる。そこで数
2に示すようにIb(t)を規格化するため定数I′で
除算する。I′には一定区間でのIb(t)の平均値を
用いるのが適当であると考えられる。この際、便宜的に
Ib(t)の初期値をI′としてもよい。これにより数
2の分母の部分は1に限りなく近くなり真のノイズ成分
の影響を取り除くことが可能となり低濃度域での測定の
場合でも高い信頼性を得ることができる。さらに先述し
た低濃度域の測定に有効な方法として数2の方法も考え
られる。Is(t),Ib(t)は数2の時と同様に、
図4に示す目的とする元素の発光強度の時間の関数およ
びバックグラウンド波長での発光強度の時間の関数であ
る。数2では目的とする元素の発光波長の強度からバッ
クグラウンド波長の強度を減算したものを積算し、ノイ
ズ成分を除去することができる。さらに目的とする元素
の測定波長とバックグラウンド波長の強度を同時に測定
できるため図3,図4からわかるように積算にかかる時
間も従来と比較して短くすむ。これらの方法によりプラ
ズマの揺らぎ等の図3に示すようなノイズ成分の補正
し、高感度かつ高精度な誘導結合プラズマ発光分析が可
能となる。According to equation (2), Is (t) is a function of the emission intensity of the target element shown in FIG.
Is a function of the emission intensity at background wavelength over time. It is considered that both behaviors within a certain period of time are almost the same as shown in FIG. 4 due to the influence of plasma fluctuation and the like.
For this reason, the influence of the noise component shown in FIG. 4 can be removed by calculating Is (t) / Ib (t) for each time lapse and calculating the integrated value as the measured value. However, when measuring a low-concentration sample, Is (t) and Ib (t) show almost the same number, and Is (t) / Ib (t) becomes infinitely close to 0, resulting in a large error. Become. Therefore, as shown in Expression 2, division is performed by a constant I 'in order to normalize Ib (t). It is considered appropriate to use the average value of Ib (t) in a certain section as I '. At this time, the initial value of Ib (t) may be set to I 'for convenience. As a result, the denominator of Equation 2 is as close as possible to 1, and the effect of the true noise component can be removed, so that high reliability can be obtained even in the measurement in the low density range. Further, as a method effective for the measurement of the low concentration region described above, the method of Expression 2 can be considered. Is (t) and Ib (t) are the same as in the case of Equation 2,
It is a function of the time of the emission intensity of the target element shown in FIG. 4 and the function of the time of the emission intensity at the background wavelength. In Equation 2, the noise component can be removed by integrating the value obtained by subtracting the intensity of the background wavelength from the intensity of the emission wavelength of the target element. Further, since the intensity of the measurement wavelength of the target element and the intensity of the background wavelength can be measured simultaneously, the time required for integration can be shortened as compared with the conventional case, as can be seen from FIGS. With these methods, noise components such as plasma fluctuations as shown in FIG. 3 can be corrected, and highly sensitive and accurate inductively coupled plasma emission analysis can be performed.
【0017】[0017]
【発明の効果】本発明では、元素分析用波長とバックグ
ラウンド波長が同時に測定できるためバックグラウンド
強度の揺らぎに同調して信号強度を補正することができ
る。これによれ高精度な信頼性の高い定量分析を行うこ
とができる。According to the present invention, since the wavelength for elemental analysis and the background wavelength can be measured simultaneously, the signal intensity can be corrected in synchronization with the fluctuation of the background intensity. Thereby, highly accurate and reliable quantitative analysis can be performed.
【図1】本発明を適用するための誘導結合プラズマ発光
分光分析装置の全体構成を示すブロック図。FIG. 1 is a block diagram showing an overall configuration of an inductively coupled plasma emission spectrometer for applying the present invention.
【図2】従来の誘導結合プラズマ発光分光分析装置の分
光器部を説明するための概略図である。FIG. 2 is a schematic diagram illustrating a spectroscope section of a conventional inductively coupled plasma emission spectrometer.
【図3】本発明における一実施例を説明するための誘導
結合プラズマ発光分光分析装置の分光器部の概略図であ
る。FIG. 3 is a schematic view of a spectroscope section of an inductively coupled plasma emission spectrometer for explaining one embodiment of the present invention.
【図4】従来の誘導結合プラズマ発光分析での信号強度
測定法を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a signal intensity measuring method in a conventional inductively coupled plasma emission analysis.
【図5】本発明における誘導結合プラズマ発光分析での
信号強度測定法を説明するための説明図である。FIG. 5 is an explanatory diagram for explaining a signal intensity measuring method in inductively coupled plasma optical emission analysis according to the present invention.
21,32…検知器、22,31…スリット、23…光
分散素子、24…ミラー、25,26…光分散素子によ
り分光された光。21, 32: Detector, 22, 31, Slit, 23: Light dispersive element, 24: Mirror, 25, 26: Light split by the light dispersive element.
Claims (3)
子を走査させる波長駆動装置を制御する制御部とを備え
た誘導結合プラズマ発光分光分析装置において、前記光
分散素子,スリット,ミラー,検知器などの素子を移動
・回転させることなく同時に複数点の波長の発光強度を
測定することのできる手段を設けたことを特徴とする誘
導結合プラズマ発光分析装置。1. An inductively coupled plasma emission spectrometer comprising a spectroscope using a light dispersion element and a control unit for controlling a wavelength driving device for scanning the light dispersion element, wherein the light dispersion element, slit, and mirror are provided. An inductively coupled plasma emission spectrometer characterized by comprising means capable of simultaneously measuring emission intensities at a plurality of wavelengths without moving or rotating elements such as a detector.
波長における信号強度をこの発光強度と同時に測定する
バックグラウンド強度測定用波長の発光強度により逐次
補正する機能を有する誘導結合プラズマ発光分析装置。2. An inductively coupled plasma emission spectrometer according to claim 1, which has a function of sequentially correcting the signal intensity of the target element at the measurement wavelength with the emission intensity at the background intensity measurement wavelength for simultaneously measuring the emission intensity. .
波長における発光強度とバックグラウンド強度を測定す
る検知器に半導体検知器を用いた誘導結合プラズマ発光
分析装置。3. An inductively coupled plasma emission spectrometer according to claim 2, wherein a semiconductor detector is used as a detector for measuring the emission intensity and background intensity of the target element at the measurement wavelength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10422797A JPH10300673A (en) | 1997-04-22 | 1997-04-22 | Inductively coupled plasma emission spectrometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10422797A JPH10300673A (en) | 1997-04-22 | 1997-04-22 | Inductively coupled plasma emission spectrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10300673A true JPH10300673A (en) | 1998-11-13 |
Family
ID=14375085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10422797A Pending JPH10300673A (en) | 1997-04-22 | 1997-04-22 | Inductively coupled plasma emission spectrometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10300673A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194402A (en) * | 2014-03-31 | 2015-11-05 | 株式会社日立ハイテクサイエンス | ICP emission spectrometer |
-
1997
- 1997-04-22 JP JP10422797A patent/JPH10300673A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015194402A (en) * | 2014-03-31 | 2015-11-05 | 株式会社日立ハイテクサイエンス | ICP emission spectrometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5850623A (en) | Method for standardizing raman spectrometers to obtain stable and transferable calibrations | |
US5771094A (en) | Film measurement system with improved calibration | |
US6351306B1 (en) | Optical measurement probe calibration configurations | |
JP4951502B2 (en) | Measuring head for spectral analysis and method for recalibration thereof | |
US5777733A (en) | Spectrometer with wavelength calibration | |
US7215422B2 (en) | Assembly and method for wavelength calibration in an echelle spectrometer | |
EP3940357A1 (en) | System and method for improving calibration transfer between multiple raman analyzer installations | |
US4300833A (en) | Method for background corrected simultaneous multielement atomic absorption analysis | |
US3837744A (en) | Spectrometers | |
US4971439A (en) | Wavelength calibration method and apparatus | |
US7130044B2 (en) | Atomic absorption spectrophotometer | |
US5315528A (en) | Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy | |
JPH10300673A (en) | Inductively coupled plasma emission spectrometer | |
US4838691A (en) | Method and apparatus for determining calibration accuracy of a scientific instrument | |
US7903253B2 (en) | Microscope | |
Mantena et al. | Diffuse Reflectance Illumination Module Improvements in Near-Infrared Spectrometer for Heterogeneous Sample Analysis | |
KR20000051127A (en) | Multifunctional Spectrophotometer with CCD detector and Integrating Sphere | |
WO2022185565A1 (en) | Spectroscopic measurement device | |
JP3266896B2 (en) | X-ray fluorescence analyzer | |
Prihhapso et al. | Development of holmium oxide glass calibration system measured using mathematical modelling | |
JPH08122246A (en) | Spectral analyzer | |
EP4206654A1 (en) | Method and system for raman spectroscopy | |
JP3624587B2 (en) | Fluorescence measuring device | |
JPS61284649A (en) | Cathode luminescence measuring instrument | |
JP2005345173A (en) | Medical photometer |