JPH10300587A - Apparatus and method for measurement of wavelength - Google Patents
Apparatus and method for measurement of wavelengthInfo
- Publication number
- JPH10300587A JPH10300587A JP9127929A JP12792997A JPH10300587A JP H10300587 A JPH10300587 A JP H10300587A JP 9127929 A JP9127929 A JP 9127929A JP 12792997 A JP12792997 A JP 12792997A JP H10300587 A JPH10300587 A JP H10300587A
- Authority
- JP
- Japan
- Prior art keywords
- light
- wavelength
- quadratic function
- detected
- test light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 9
- 238000005259 measurement Methods 0.000 title description 5
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000012887 quadratic function Methods 0.000 claims abstract description 27
- 238000009792 diffusion process Methods 0.000 claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000000691 measurement method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000004075 alteration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J9/02—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
- G01J9/0246—Measuring optical wavelength
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザー光の波長
変動量および絶対波長を検出する波長測定装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength measuring device for detecting a wavelength variation and an absolute wavelength of a laser beam.
【0002】[0002]
【従来の技術】近年、半導体の製造や半導体チップ実装
基板の製造では、回路パターンがますます微細化してお
り、これらのパターンを焼き付ける半導体素子製造装置
には、より解像力の高いものが要求されてきている。そ
して、微細な回路パターンの露光を行うために、従来の
紫外光線として利用されてきた超高圧水銀灯に代わっ
て、より短波長でより高出力の紫外光線を発するエキシ
マレーザーを光源とする半導体露光装置や、その半導体
露光装置に用いる露光投影レンズの波面収差測定装置が
開発されている。しかるに、エキシマレーザーは発振波
長に不安定さがあるので、波面収差の正確な測定を行う
ためには、光源の波長変動量ないしは絶対波長を正確に
測定する必要がある。従来、この種のエキシマレーザー
を光源とする光の波長を測定する方法としては、ファブ
リ・ペロー干渉計を用いて干渉縞を生成し、この干渉縞
を解析する方法が知られている。2. Description of the Related Art In recent years, in the manufacture of semiconductors and semiconductor chip mounting substrates, circuit patterns have become increasingly finer, and semiconductor device manufacturing apparatuses for printing these patterns have been required to have higher resolution. ing. In order to expose a fine circuit pattern, a semiconductor exposure apparatus that uses an excimer laser that emits a shorter wavelength and higher output ultraviolet light as a light source instead of an ultra-high pressure mercury lamp that has been used as a conventional ultraviolet light. Also, a wavefront aberration measuring device for an exposure projection lens used in the semiconductor exposure device has been developed. However, since the excimer laser has an unstable oscillation wavelength, it is necessary to accurately measure the wavelength variation or the absolute wavelength of the light source in order to accurately measure the wavefront aberration. Conventionally, as a method of measuring the wavelength of light using this type of excimer laser as a light source, a method of generating interference fringes using a Fabry-Perot interferometer and analyzing the interference fringes is known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来の
波長測定においては、ファブリ・ペロー干渉計により生
成した同心円状の複数の干渉縞のうちの1本だけを利用
することにより、波長の変動量を求めていたため、測定
精度の高い波長測定を行うことができなかった。またフ
ァブリ・ペロー干渉計による干渉縞は、同心円状となる
複数の干渉縞として得られるが、1本の干渉縞の情報だ
けから波長変動量を求めた場合、干渉縞の読み取り誤差
が直接測定精度に影響を与えるという不都合があった。
そこで、本発明は、エキシマレーザーなどの発振波長に
不安定さがある光源の波長変動量及び絶対波長を高精度
で測定することができる波長測定装置及び方法を提供す
ることを課題とする。However, in the conventional wavelength measurement, only one of a plurality of concentric interference fringes generated by a Fabry-Perot interferometer is used to reduce the wavelength variation. As a result, wavelength measurement with high measurement accuracy could not be performed. In addition, the interference fringes by the Fabry-Perot interferometer are obtained as a plurality of concentric interference fringes, but when the amount of wavelength variation is obtained from only the information of one interference fringe, the reading error of the interference fringes is directly measured accuracy. Had the disadvantage of affecting
Therefore, an object of the present invention is to provide a wavelength measuring apparatus and a wavelength measuring method capable of measuring a wavelength fluctuation amount and an absolute wavelength of a light source having an unstable oscillation wavelength such as an excimer laser with high accuracy.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、光源からの被検光を拡散板で拡散してエ
タロンに入射させ、エタロンを透過した被検光を集光レ
ンズに入射させ、集光レンズで被検光を焦点面に集光さ
せて、焦点面に生じる干渉縞をラインセンサで検出する
ことにより、被検光の波長変動量を測定する波長測定装
置において、干渉縞のピーク位置と次数の関係を2次関
数によってフィッティングし、2次関数の極値の変動量
に基づいて被検光の波長変動量を求める処理装置を有す
ることを特徴とする波長測定装置である。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a method of diffusing test light from a light source with a diffuser plate, causing the light to enter an etalon, and collecting the test light transmitted through the etalon. In a wavelength measuring device that measures the wavelength variation of the test light by focusing the test light on the focal plane with a condenser lens and detecting the interference fringes generated on the focal plane with a line sensor, A wavelength measuring apparatus having a processing device for fitting a relationship between a peak position and an order of an interference fringe by a quadratic function and obtaining a wavelength fluctuation amount of the test light based on a fluctuation amount of an extreme value of the quadratic function. It is.
【0005】本発明はまた、光源からの被検光を拡散板
で拡散してエタロンに入射させ、エタロンを透過した被
検光を集光レンズに入射させ、集光レンズで被検光を焦
点面に集光させて、焦点面に生じる干渉縞をラインセン
サで検出することにより、被検光の絶対波長を測定する
波長測定装置において、光源と拡散板の間の光路中に、
被検光を基準光源からの基準光に切り換える光路切換手
段を配置し、被検光を拡散板に入射させたときの干渉縞
のピーク位置と次数の関係を2次関数によってフィッテ
ィングして2次関数の極値を求め、基準光を拡散板に入
射させたときの干渉縞のピーク位置と次数の関係を2次
関数によってフィッティングして2次関数の極値を求
め、被検光についての極値と基準光についての極値とに
基づいて被検光の絶対波長を求める処理装置を有するこ
とを特徴とする波長測定装置である。According to the present invention, the test light from the light source is diffused by a diffusion plate and made incident on an etalon, the test light transmitted through the etalon is made incident on a condenser lens, and the test light is focused by the condenser lens. In a wavelength measurement device that measures the absolute wavelength of the test light by detecting the interference fringes generated on the focal plane by a line sensor by focusing the light on the surface, in the optical path between the light source and the diffusion plate,
An optical path switching means for switching the test light to the reference light from the reference light source is disposed, and the relationship between the peak position and the order of the interference fringes when the test light is made incident on the diffuser is fitted by a quadratic function to perform the quadratic function. The relationship between the peak position and the order of the interference fringes when the reference light is made incident on the diffusion plate is fitted by a quadratic function to obtain the extremum of the function, and the extremum of the quadratic function is obtained. A wavelength measuring device comprising a processing device for obtaining an absolute wavelength of test light based on a value and an extreme value of a reference light.
【0006】本発明はまた、光源からの被検光を拡散板
で拡散してエタロンに入射させ、エタロンを透過した被
検光を集光レンズに入射させ、集光レンズで被検光を焦
点面に集光させて、焦点面に生じる干渉縞をラインセン
サで検出し、干渉縞のピーク位置と次数の関係を2次関
数によってフィッティングし2次関数の極値の変動量に
基づいて被検光の波長変動量を求める波長測定方法であ
る。According to the present invention, the test light from the light source is diffused by a diffusion plate and made incident on an etalon, the test light transmitted through the etalon is made incident on a condenser lens, and the test light is focused by the condenser lens. The light is condensed on a plane, the interference fringes generated on the focal plane are detected by a line sensor, the relationship between the peak position and the order of the interference fringes is fitted by a quadratic function, and the test is performed based on the variation of the extreme value of the quadratic function This is a wavelength measurement method for obtaining the wavelength variation of light.
【0007】本発明はまた、光源からの被検光を拡散板
で拡散してエタロンに入射させ、エタロンを透過した被
検光を集光レンズに入射させ、集光レンズで被検光を焦
点面に集光させて、焦点面に生じる干渉縞をラインセン
サで検出し、干渉縞のピーク位置と次数の関係を2次関
数によってフィッティングして2次関数の極値を求める
工程と、光源を基準光源に置き換え、基準光源からの基
準光の干渉縞のピーク位置と次数の関係を2次関数によ
ってフィッティングして2次関数の極値を求める工程
と、被検光についての極値と基準光についての極値とに
基づいて被検光の絶対波長を求める工程とを有する波長
測定方法である。According to the present invention, the test light from the light source is diffused by a diffusion plate and made incident on an etalon, the test light transmitted through the etalon is made incident on a condenser lens, and the test light is focused by the condenser lens. Focusing the light on a surface, detecting interference fringes generated on the focal plane with a line sensor, fitting the relationship between the peak position and the order of the interference fringes by a quadratic function to obtain an extreme value of the quadratic function, Substituting the reference light source and fitting the relationship between the peak position and the order of the interference fringes of the reference light from the reference light source by a quadratic function to obtain an extremum of the quadratic function; Obtaining the absolute wavelength of the test light based on the extreme value of
【0008】[0008]
【発明の実施の形態】まず本発明の一実施例に係る被検
光の波長変動量を測定する波長測定装置について説明す
る。本実施例に係る波長測定装置の配置図を図1に示
す。本実施例に係る波長測定装置に用いる干渉光学系と
しては、ファブリ・ぺロー干渉計を用いる。光源1から
出射された被検光は、光量を調整するための可変NDフ
ィルタ2を透過した後、拡散板3に入射して拡散され、
様々な入射角度を持ってエタロン4に入射する。エタロ
ン4を透過した被検光は、集光レンズ5を透過して、焦
点面上に干渉縞を形成する。この干渉縞の光量分布を焦
点面上に配置されたラインセンサ6によって検知し、処
理装置7によって干渉縞のピーク位置を算出する。な
お、ラインセンサ6は、焦点面上において干渉計の光軸
zと交わるように配置されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a description will be given of a wavelength measuring apparatus for measuring a wavelength variation of a test light according to an embodiment of the present invention. FIG. 1 shows an arrangement diagram of the wavelength measuring apparatus according to the present embodiment. A Fabry-Perot interferometer is used as an interference optical system used in the wavelength measuring apparatus according to the present embodiment. The test light emitted from the light source 1 passes through the variable ND filter 2 for adjusting the light amount, and then enters the diffusion plate 3 and is diffused.
The etalon 4 enters the etalon 4 at various incident angles. The test light transmitted through the etalon 4 transmits through the condenser lens 5 and forms interference fringes on the focal plane. The light amount distribution of the interference fringes is detected by the line sensor 6 arranged on the focal plane, and the peak position of the interference fringes is calculated by the processing device 7. The line sensor 6 is disposed so as to intersect the optical axis z of the interferometer on the focal plane.
【0009】ここで、被検光の波長変動量を求める方法
について説明する。ファブリ・ペロー干渉計の概略図を
図2に示す。図2において、被検光は、高反射率を有す
るミラー面4a、4bを間隔dで対向させたエタロン4
に、入射角度θmを持って入射する。エタロン4を透過
した被検光は、集光レンズ5を透過し、集光レンズ5の
焦点面上に干渉縞を形成する。このときファブリ・ペロ
ー干渉計による干渉縞の基本式は、 である。ここで、λは被検光の波長であり、nは2枚の
エタロン板を配置した環境(一般には、空気)の屈折率
であり、mは干渉縞の次数を表す整数である。Here, a method of obtaining the wavelength variation of the test light will be described. A schematic diagram of the Fabry-Perot interferometer is shown in FIG. In FIG. 2, the test light is an etalon 4 in which mirror surfaces 4a and 4b having high reflectivity are opposed at an interval d.
To be incident at the incident angle theta m. The test light that has passed through the etalon 4 passes through the condenser lens 5 and forms interference fringes on the focal plane of the condenser lens 5. At this time, the basic formula of the interference fringe by the Fabry-Perot interferometer is It is. Here, λ is the wavelength of the test light, n is the refractive index of an environment (generally, air) in which two etalon plates are arranged, and m is an integer representing the order of interference fringes.
【0010】また、集光レンズ5に角度θmで入射され
た光束の結像位置(焦点面上における干渉縞の中心Oか
らの距離、即ち光軸zからの距離)x (m)は、集光レ
ンズ5の焦点距離をfとすると、 である。Further, the condenser lens 5 has an angle θ.mIncident on
Of the focused light beam (the center O of the interference fringes on the focal plane
Distance from the optical axis z) x (M) is the focusing light
If the focal length of lens 5 is f,It is.
【0011】入射角度θmを比較的小さな範囲内で考え
ると、 という2つ近似が成り立ち、(3)、(4)式を、それ
ぞれ(1)、(2)式に代入し、さらに(2)式を
(1)式に代入して整理すると、 という関係式が得られる。Considering the incident angle θ m within a relatively small range, The following two approximations hold. Substituting equations (3) and (4) into equations (1) and (2), and substituting equation (2) into equation (1), Is obtained.
【0012】(5)式に基づき、干渉縞のピーク位置x
(m)と次数mの関係を図3に示す。(5)式は干渉縞
のピーク位置x (m)と次数mを変数とした2次関数で
あり、干渉縞のピーク位置x (m)と次数mを、(5)
式によってフィッティングすることにより、(5)式の
極値を求めるが、まず干渉縞のピーク位置x (m)に対
して干渉縞の次数mを対応させる必要がある。干渉縞の
うちで最も内側に発生する干渉縞のピーク位置x (m)
の次数は、(1)式で規定される最大次数mmaxに該当
するが、この最大次数mmaxを次のように求める。Based on the equation (5), the peak position x of the interference fringes
FIG. 3 shows the relationship between (m) and the order m. Equation (5) is the interference fringe
Peak position x (M) and a quadratic function with the order m as a variable
Yes, peak position x of interference fringes (M) and the order m, (5)
By fitting according to the equation, the equation (5)
The extreme value is obtained. First, the peak position x of the interference fringe is determined. (M)
It is necessary to make the order m of the interference fringes correspond. Interference fringe
The peak position x of the innermost fringe that occurs (M)
Is the maximum order m defined by the equation (1).maxCorresponds to
, But this maximum order mmaxIs determined as follows.
【0013】いま(5)式の極値をm extとすると、 であり、n、d、λの概略の値は判明しているから、
(6)式より、極値m extについて正確ではないが概略
の値は求めることができる。なお、次数mは整数である
のに対し、極値m extは一般に実数である。この極値m
extの概略値をm ext′とし、概略値m ext′を超えない
最大整数を[m ext′]と定義し、αをm ext′の小数部
とすれば、 m ext′=[m ext′]+α (0≦α<1) (9) と表すことができ、また求めるmmaxは、 mmax=[m ext] である。Now, the extreme value of the equation (5) is represented by m extThenSince approximate values of n, d, and λ are known,
From equation (6), the extreme value m extNot accurate but approximate
Can be determined. Note that the order m is an integer.
, Whereas the extreme value m extIs generally a real number. This extreme value m
extApproximate value of m ext'And the approximate value m extNot exceed ′
The maximum integer is [m ext'] And α is m ext′ Decimal part
Then m ext'= [M ext'] + Α (0 ≦ α <1) (9)maxIs mmax= [M ext].
【0014】一般には、mmax=[m ext′]=
[m ext]と判断することができるが、極値の概略値m
ext′は真の極値m extとの間で誤差を有することから、
この誤差を考慮すれば、αが0に近い場合の最大次数m
maxは、[m ext′]若しくは[m ext′]−1のいずれ
かであり、αが1に近い場合の最大次数mmaxは、[m
ext′]または[m ext′]+1のいずれかである。すな
わち、例えばm ext′=10000.01である場合に
は、最大次数mmaxは、9999、若しくは10000
のいずれかの値となる。一方、m ext′=10000.
99である場合には、最大次数mmaxは、10000、
若しくは10001のいずれかの値となる。この場合
に、最大次数mmaxが、[m ext′]若しくは
[m ext′]−1、または[m ext′]若しくは
[m ext′]+1のいずれかであるかを判別するには、
以下のように極値の概略値m ext′と、干渉縞のピーク
位置x (m)を比較すればよい。In general, mmax= [M ext'] =
[M ext], But the approximate value of the extreme value m
ext'Is the true extremum m extBecause there is an error between
Considering this error, the maximum order m when α is close to 0
maxIs [m ext'] Or [m ext'] -1
And the maximum degree m when α is close to 1maxIs [m
ext'] Or [m ext'] +1. sand
That is, for example, m ext'= 10000.01
Is the maximum order mmaxIs 9999 or 10000
Is one of the following values. On the other hand, m ext'= 10000.
If 99, the maximum order mmaxIs 10,000,
Alternatively, the value becomes one of 10001. in this case
And the maximum order mmaxIs [m ext'] Or
[M ext'] -1 or [m ext'] Or
[M ext'] +1
Approximate value of extreme value m as follows ext′ And the peak of the interference fringes
Position x (M) may be compared.
【0015】まず、(5)式におけるx (m)=0(原
点)の位置を規定する。エタロン4による干渉縞は、ラ
インセンサ6の置かれた焦点面上で、m個の同心円とし
て形成される。したがって、例えば、k次の干渉縞につ
いては、干渉縞の中心に関し対称な点x (k)、x ′
(k)が測定される。この一対の点x (k)、x ′
(k)の中点(x (k)+x ′(k))/2を計算する
ことによって、干渉縞の中心Oの座標を求めることがで
き、この干渉縞の中心Oを(5)式における原点x
(m)=0と規定する。そして、αが0に近い場合であ
って、原点x (m)=0の近傍に、干渉縞のピーク位置
x (m)が検出された場合は、mmax=[m ext′]であ
り、検出されない場合は、mmax=[m ext′]−1と判
断する。一方、αが1に近い場合であって、原点x
(m)=0の近傍に、干渉縞のピーク位置x (m)が検
出された場合は、mmax=[m ext′]+1であり、検出
されない場合は、mmax=[m ext′]と判断する。First, x in equation (5) (M) = 0 (hara
Point). The interference fringes due to etalon 4
On the focal plane where the in-sensor 6 is located, m concentric circles
Formed. Therefore, for example, for k-th order interference fringes,
Therefore, a point x symmetrical with respect to the center of the interference fringe (K), x ′
(K) is measured. This pair of points x (K), x ′
(K) midpoint (x (K) + x '(K)) / 2
Thus, the coordinates of the center O of the interference fringes can be obtained.
The center O of this interference fringe is defined as the origin x in the equation (5).
(M) = 0. And when α is close to 0
The origin x (M) = 0 peak position of interference fringes near 0
x If (m) is detected, mmax= [M ext']
If not detected, mmax= [M ext'] -1
Refuse. On the other hand, when α is close to 1 and the origin x
(M) = 0 near the interference fringe peak position x (M)
If issued, mmax= [M ext'] +1 and detected
If not, mmax= [M ext'].
【0016】このように求めた最大次数mmaxは、干渉
縞のうちで最も内側に発生する干渉縞のピーク位置x
(mmax)に対応するから、座標(mmax,x
(mmax))、及び干渉縞の中心から外側に向かって、
順に、(mmax−1,x (mmax−1))、(mmax−
2,x (mmax−2))、‥‥‥のいくつかの座標を
(5)式によってフィッティングし、極値m extを求め
ることができる。The maximum order m thus obtainedmaxIs the interference
The peak position x of the interference fringe occurring at the innermost position among the fringes
(Mmax), The coordinates (mmax, X
(Mmax)), And outward from the center of the fringes,
In order, (mmax-1, x (Mmax-1)), (mmax−
2, x (Mmax-2)), some coordinates of ‥‥‥
The fitting is performed according to the equation (5), and the extreme value m is obtained. extAsk for
Can be
【0017】ところで、(6)式において、極値mext
を波長λで微分すると、 を得るが、(8)式右辺のλ2/2ndは、エタロン4
のFSR(フリー・スぺクトル・レンジ)であるから、
(8)式は、 と表すことができる。以上より、(5)式の極値の変動
量ΔmextとエタロンのFSRの積から、被検光の波長
変動量Δλを求めることができる。なお、気圧計や温度
計で気圧や温度を測定し、その結果に基づき補正した空
気の屈折率nから、エタロン4のFSRを補正すること
によって、さらに高精度に被検光の波長変動量Δλを求
めることができる。In the expression (6), the extreme value m ext
Differentiating with respect to wavelength λ, Where λ 2 / 2nd on the right side of equation (8) is etalon 4
FSR (Free Spectrum Range)
Equation (8) is It can be expressed as. From the above, the wavelength variation Δλ of the test light can be obtained from the product of the variation Δm ext of the extreme value in Expression (5) and the FSR of the etalon. The barometric pressure or temperature is measured with a barometer or a thermometer, and the FSR of the etalon 4 is corrected from the refractive index n of the air corrected based on the results, so that the wavelength variation Δλ of the test light can be further accurately determined. Can be requested.
【0018】つぎに、本発明の他の実施例に係る被検光
の絶対波長を測定する波長測定装置について説明する。
本実施例に係る波長測定装置では、被検光を測定する
前、または測定した後に、図1に示した波長測定装置に
おいて、波長が既知の基準光を用いて被検光と同様な処
理をすることにより、(5)式の極値と波長との対応づ
けを行い、被検光の絶対波長を求めるものである。Next, a wavelength measuring apparatus for measuring the absolute wavelength of the test light according to another embodiment of the present invention will be described.
In the wavelength measuring apparatus according to the present embodiment, before or after measuring the test light, the wavelength measuring apparatus shown in FIG. 1 performs the same process as the test light using the reference light whose wavelength is known. By doing so, the extreme value of equation (5) is associated with the wavelength, and the absolute wavelength of the test light is determined.
【0019】本実施例に係る波長測定装置では、図1に
おいて、光源1と拡散板3の間の光路中に、光路切換手
段としてのミラー8を挿入し、被検光を基準光源9から
の基準光に切り換えて、基準光をファブリ・ペロー干渉
計に入射させる。なお、本実施例に係る波長測定装置で
は、被検光の光量だけでなく基準光の光量も調整するた
め、光源1と可変NDフィルタ2との間にミラー8を配
置している。In the wavelength measuring apparatus according to the present embodiment, a mirror 8 as an optical path switching means is inserted into an optical path between the light source 1 and the diffusion plate 3 in FIG. Switching to the reference light, the reference light is made incident on the Fabry-Perot interferometer. In the wavelength measuring apparatus according to the present embodiment, a mirror 8 is arranged between the light source 1 and the variable ND filter 2 in order to adjust not only the amount of the test light but also the amount of the reference light.
【0020】本実施例に係る波長測定装置では、被検光
の測定の場合と同様に、既知の波長λ* を有する基準光
を、エタロン4に入射させ、ラインセンサ6で干渉縞の
光量分布を検知する。この干渉縞の光量分布から、処理
装置7によって干渉縞のピーク位置x*(m)を算出
し、この干渉縞のピーク位置x*(m)に対し、前述の
場合と同様に次数mを対応させて、(5)式によってフ
ィッティングし、基準光についての極値m* extを求め
る。極値m* extは、(5)式より、 であるから、(10)式を(6)式と比較することによ
って、次式を得る。 (11)式において、基準光の波長λ* は既知であるか
ら、被検光の絶対波長λ を算出することができる。In the wavelength measuring apparatus according to the present embodiment, the test light
The known wavelength λ* Reference light with
Is incident on the etalon 4 and the line sensor 6 detects interference fringes.
Detect light intensity distribution. From the light intensity distribution of this interference fringe,
The peak position x of the interference fringe by the device 7*Calculate (m)
And the peak position x of this interference fringe*(M)
As in the case described above, the order m is made to correspond to the
The extremum m for the reference light* extAsk for
You. Extreme value m* extIs, from equation (5),Therefore, by comparing equation (10) with equation (6),
Thus, the following equation is obtained.In equation (11), the wavelength λ of the reference light* Is known
The absolute wavelength λ of the test light Can be calculated.
【0021】なお、(5)式におけるxm=0(原点)
の位置は、前述したように干渉縞の中心に関し対称な点
xk、xk′の中点(xk+xk′)/2を計算することに
よって、干渉縞の中心Oの座標を求め、(5)式におけ
る原点xm=0と規定している。これにより、ラインセ
ンサ5が外部からの振動を受け、干渉縞全体が干渉縞の
直径方向にシフトしても、干渉縞のピーク位置と原点の
相対位置関係は変化しないから、測定結果が外部からの
振動によって影響を受けることはなく、高精度な波長変
動量及び絶対波長の測定を行うことが可能である。It should be noted that x m = 0 in equation (5) (origin)
Is obtained by calculating the coordinates of the center O of the interference fringes by calculating the midpoint (x k + x k ') / 2 of the points x k and x k ′ symmetrical with respect to the center of the interference fringes as described above. It is defined that the origin x m = 0 in the equation (5). As a result, even if the line sensor 5 receives external vibration and the entire interference fringe shifts in the diameter direction of the interference fringe, the relative positional relationship between the peak position of the interference fringe and the origin does not change. It is not affected by the vibrations, and it is possible to measure the wavelength fluctuation amount and the absolute wavelength with high accuracy.
【0022】[0022]
【発明の効果】以上のように、本発明によれば、ファブ
リ・ペロー干渉計を用い、形成された同心円状の干渉縞
の複数のピーク位置のデータに基づいて、高精度で被検
光の波長変動量を測定することが可能となった。また、
波長が既知である基準光を用いることにより、波長の変
動量のみならず被検光の絶対波長を求めることも可能と
なった。As described above, according to the present invention, the Fabry-Perot interferometer is used to accurately detect the test light based on the data on the plurality of peak positions of the formed concentric interference fringes. It has become possible to measure the wavelength variation. Also,
By using the reference light whose wavelength is known, it has become possible to obtain not only the amount of change in the wavelength but also the absolute wavelength of the test light.
【図1】本発明の一実施例に係る波長測定装置の配置図FIG. 1 is a layout diagram of a wavelength measuring device according to an embodiment of the present invention.
【図2】ファブリ・ペロー干渉計の概略図FIG. 2 is a schematic diagram of a Fabry-Perot interferometer
【図3】干渉縞のピーク位置と次数の関係を示した図FIG. 3 is a diagram showing a relationship between a peak position of an interference fringe and an order.
1…光源 2…可変N
Dフィルタ 3…拡散板 4…エタロ
ン 4a、4b…ミラー面 5…集光レ
ンズ 6…ラインセンサ 7…処理装
置 8…ミラー 9…基準光
源 z…光軸1: Light source 2: Variable N
D filter 3 ... Diffusion plate 4 ... Etalon 4a, 4b ... Mirror surface 5 ... Condenser lens 6 ... Line sensor 7 ... Processing device 8 ... Mirror 9 ... Reference light source z ... Optical axis
Claims (4)
ロンに入射させ、該エタロンを透過した前記被検光を集
光レンズに入射させ、該集光レンズで前記被検光を焦点
面に集光させて、該焦点面に生じる干渉縞をラインセン
サで検出することにより、前記被検光の波長変動量を測
定する波長測定装置において、 前記干渉縞のピーク位置と次数の関係を2次関数によっ
てフィッティングし、該2次関数の極値の変動量に基づ
いて前記被検光の波長変動量を求める処理装置を有する
ことを特徴とする波長測定装置。1. A test light from a light source is diffused by a diffusion plate and made incident on an etalon, and the test light transmitted through the etalon is made incident on a condenser lens. In a wavelength measuring apparatus that measures the wavelength variation of the test light by converging light on a focal plane and detecting an interference fringe generated on the focal plane with a line sensor, a relationship between a peak position of the interference fringe and an order Is fitted with a quadratic function, and a processing device for obtaining the wavelength fluctuation amount of the test light based on the fluctuation amount of the extreme value of the quadratic function is provided.
ロンに入射させ、該エタロンを透過した前記被検光を集
光レンズに入射させ、該集光レンズで前記被検光を焦点
面に集光させて、該焦点面に生じる干渉縞をラインセン
サで検出することにより、前記被検光の絶対波長を測定
する波長測定装置において、 前記光源と前記拡散板の間の光路中に、前記被検光を基
準光源からの基準光に切り換える光路切換手段を配置
し、 前記被検光を前記拡散板に入射させたときの前記干渉縞
のピーク位置と次数の関係を2次関数によってフィッテ
ィングして該2次関数の極値を求め、前記基準光を前記
拡散板に入射させたときの前記干渉縞のピーク位置と次
数の関係を2次関数によってフィッティングして該2次
関数の極値を求め、被検光についての前記極値と基準光
についての前記極値とに基づいて前記被検光の絶対波長
を求める処理装置を有することを特徴とする波長測定装
置。2. A test light from a light source is diffused by a diffusion plate and made incident on an etalon, and the test light transmitted through the etalon is made incident on a condenser lens. By condensing on a focal plane and detecting an interference fringe generated on the focal plane with a line sensor, in a wavelength measuring device for measuring the absolute wavelength of the test light, in a light path between the light source and the diffusion plate, An optical path switching means for switching the test light to a reference light from a reference light source is disposed, and a relationship between a peak position and an order of the interference fringes when the test light is incident on the diffusion plate is fitted by a quadratic function. Then, the relationship between the peak position and the order of the interference fringes when the reference light is incident on the diffusion plate is fitted by a quadratic function to obtain the extremum of the quadratic function. To determine the Wavelength measuring apparatus characterized by having a processing device for determining the absolute wavelength of the test light on the basis of said extreme value for extreme and the reference light.
ロンに入射させ、該エタロンを透過した前記被検光を集
光レンズに入射させ、該集光レンズで前記被検光を焦点
面に集光させて、該焦点面に生じる干渉縞をラインセン
サで検出し、前記干渉縞のピーク位置と次数の関係を2
次関数によってフィッティングし、該2次関数の極値の
変動量に基づいて前記被検光の波長変動量を求める波長
測定方法。3. The test light from a light source is diffused by a diffusion plate and made incident on an etalon, and the test light transmitted through the etalon is made incident on a condenser lens. The light is focused on the focal plane, interference fringes generated on the focal plane are detected by a line sensor, and the relationship between the peak position and the order of the interference fringes is determined by two.
A wavelength measurement method in which fitting is performed using a quadratic function, and the wavelength fluctuation amount of the test light is obtained based on the fluctuation amount of the extreme value of the quadratic function.
ロンに入射させ、該エタロンを透過した前記被検光を集
光レンズに入射させ、該集光レンズで前記被検光を焦点
面に集光させて、該焦点面に生じる干渉縞をラインセン
サで検出し、前記干渉縞のピーク位置と次数の関係を2
次関数によってフィッティングして該2次関数の極値を
求める工程と、 前記光源を基準光源に置き換え、該基準光源からの基準
光の干渉縞のピーク位置と次数の関係を2次関数によっ
てフィッティングして該2次関数の極値を求める工程
と、 被検光についての前記極値と基準光についての前記極値
とに基づいて前記被検光の絶対波長を求める工程とを有
する波長測定方法。4. A test light from a light source is diffused by a diffusion plate and made incident on an etalon, and the test light transmitted through the etalon is made incident on a condenser lens. The light is focused on the focal plane, interference fringes generated on the focal plane are detected by a line sensor, and the relationship between the peak position and the order of the interference fringes is determined by two.
Fitting an extremum of the quadratic function by a quadratic function, replacing the light source with a reference light source, and fitting a relationship between a peak position and an order of interference fringes of reference light from the reference light source by a quadratic function. Obtaining an extremum of the quadratic function by using the extremum of the test light and the extremum of the reference light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9127929A JPH10300587A (en) | 1997-04-30 | 1997-04-30 | Apparatus and method for measurement of wavelength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9127929A JPH10300587A (en) | 1997-04-30 | 1997-04-30 | Apparatus and method for measurement of wavelength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10300587A true JPH10300587A (en) | 1998-11-13 |
Family
ID=14972136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9127929A Pending JPH10300587A (en) | 1997-04-30 | 1997-04-30 | Apparatus and method for measurement of wavelength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10300587A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1026487A3 (en) * | 1999-02-04 | 2000-12-13 | Cymer, Inc. | Double pass etalon spectrometer |
US6320663B1 (en) | 1999-01-22 | 2001-11-20 | Cymer, Inc. | Method and device for spectral measurements of laser beam |
US6359693B2 (en) | 1999-02-04 | 2002-03-19 | Cymer, Inc. | Double pass double etalon spectrometer |
JP2003046188A (en) * | 2001-08-01 | 2003-02-14 | Nec Corp | Wavelength stabilized laser, module and method of stabilizing wavelength of laser light |
CN115077728A (en) * | 2022-08-22 | 2022-09-20 | 苏州联讯仪器有限公司 | Multi-wavelength detection method, device and system |
-
1997
- 1997-04-30 JP JP9127929A patent/JPH10300587A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6320663B1 (en) | 1999-01-22 | 2001-11-20 | Cymer, Inc. | Method and device for spectral measurements of laser beam |
EP1026487A3 (en) * | 1999-02-04 | 2000-12-13 | Cymer, Inc. | Double pass etalon spectrometer |
US6243170B1 (en) | 1999-02-04 | 2001-06-05 | Cymer, Inc. | Double pass etalon spectrometer |
US6359693B2 (en) | 1999-02-04 | 2002-03-19 | Cymer, Inc. | Double pass double etalon spectrometer |
JP2003046188A (en) * | 2001-08-01 | 2003-02-14 | Nec Corp | Wavelength stabilized laser, module and method of stabilizing wavelength of laser light |
CN115077728A (en) * | 2022-08-22 | 2022-09-20 | 苏州联讯仪器有限公司 | Multi-wavelength detection method, device and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2546350B2 (en) | Alignment device | |
US7924437B2 (en) | Measurement method and apparatus, exposure apparatus | |
KR100756769B1 (en) | Exposure method and exposure management system | |
JP3175515B2 (en) | Exposure apparatus and device manufacturing method using the same | |
JP2002543372A (en) | Interference device and method for compensating for refractive index fluctuation | |
TWI764013B (en) | Exposure apparatus and article manufacturing method | |
JP4408040B2 (en) | Measurement method and apparatus using interference, exposure method and apparatus using the same, and device manufacturing method | |
JPH11266045A (en) | Narrow-band module inspection device | |
JP2013115348A (en) | Calculation method of variation in imaging characteristics of projection optical system, exposure device and manufacturing method of device | |
JP3359193B2 (en) | Exposure apparatus and device manufacturing method using the same | |
JPH10300587A (en) | Apparatus and method for measurement of wavelength | |
JP3139020B2 (en) | Photomask inspection apparatus and photomask inspection method | |
US11774867B2 (en) | Radiation measurement system | |
US20100125432A1 (en) | Measurement apparatus, measurement method, computer, program, and exposure apparatus | |
JPH0235304A (en) | Position aligning apparatus | |
WO2023072745A1 (en) | Projection exposure apparatus, method for operating the projection exposure apparatus | |
JPH10300586A (en) | Apparatus and method for measurement of wavelength | |
JPH06104158A (en) | Position detector | |
JP3219223B2 (en) | Characteristic value measuring method and device | |
RU2680615C1 (en) | Method for determining deformations of wavefront of light beam caused by waviness of surfaces of optical system | |
JP2000088546A (en) | Apparatus and method of measuring shape | |
JP2000097622A (en) | Interferometer | |
JPH116784A (en) | Device and method for measuring shape of aspherical surface | |
CN112782940B (en) | Aberration measuring method, article manufacturing method, and exposure apparatus | |
KR100805823B1 (en) | Optical element surface measuring system and method |