JPH10300305A - Thermoelectric module type electric refrigerator - Google Patents
Thermoelectric module type electric refrigeratorInfo
- Publication number
- JPH10300305A JPH10300305A JP10600197A JP10600197A JPH10300305A JP H10300305 A JPH10300305 A JP H10300305A JP 10600197 A JP10600197 A JP 10600197A JP 10600197 A JP10600197 A JP 10600197A JP H10300305 A JPH10300305 A JP H10300305A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- thermoelectric
- temperature
- heat exchange
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 59
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 230000005855 radiation Effects 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 16
- 230000017525 heat dissipation Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 abstract description 4
- 238000001704 evaporation Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 9
- 238000010257 thawing Methods 0.000 description 9
- 238000005192 partition Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004781 supercooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/021—Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/14—Sensors measuring the temperature outside the refrigerator or freezer
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ペルチェ素子等の
熱電部材を使用して庫内を冷却する熱電モジュール式電
気冷蔵庫に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module type electric refrigerator for cooling the inside of a refrigerator using a thermoelectric member such as a Peltier element.
【0002】[0002]
【従来の技術】冷凍システムにペルチェ素子を使用した
技術は、特表平6−504361号公報に開示されてい
る。この技術は、ペルチェ素子の放熱面と冷却面のそれ
ぞれに、熱交換水を循環させる循環経路を熱結合した熱
電熱交換ブロックを形成し、ペルチェ素子の冷却面に熱
結合された循環経路に介装した熱交換器での冷却によっ
て目的物を冷却し、あるいはペルチェ素子の放熱面に熱
結合された循環経路に介装した熱交換器での放熱によっ
て目的物を温める。2. Description of the Related Art A technique using a Peltier element in a refrigeration system is disclosed in Japanese Patent Publication No. 6-504361. This technology forms a thermoelectric heat exchange block in which a circulation path for circulating heat exchange water is thermally coupled to each of the heat dissipation surface and the cooling surface of the Peltier element, and the thermoelectric heat exchange block is connected to the circulation path thermally coupled to the cooling surface of the Peltier element. The target object is cooled by cooling in the mounted heat exchanger, or the target object is warmed by heat radiation in a heat exchanger interposed in a circulation path thermally coupled to the heat radiation surface of the Peltier element.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来の技
術を利用して冷蔵庫を実現するためには、熱効率のさら
なる向上が必要であるがこれを満足するものはまだ提供
されていない。However, in order to realize a refrigerator using the above-mentioned conventional technology, it is necessary to further improve the thermal efficiency, but there has not yet been provided one satisfying this.
【0004】本発明者等はこの種の冷蔵庫につきいかに
効率を高めるかについて種々な実験を重ね研究してき
た。その過程で熱電モジュール式電気冷蔵庫では、熱電
部材を図7に示す駆動電圧と効率の関係、および図8に
示す駆動電圧と吸熱量との関係から設定される最適条件
にて一律に駆動するのでは、外気温度や庫内温度の影響
で、電力を無駄に消費したり、過冷却や冷却不足を招い
たりして、効率が悪くなることがあるのを知見した。[0004] The present inventors have repeatedly conducted various experiments on how to improve the efficiency of this type of refrigerator. In the process, in the thermoelectric module type electric refrigerator, the thermoelectric members are uniformly driven under the optimum conditions set from the relationship between the drive voltage and the efficiency shown in FIG. 7 and the relationship between the drive voltage and the heat absorption shown in FIG. Then, the inventor has found that the efficiency may be deteriorated due to the influence of the outside air temperature or the inside temperature, which wastes electric power or causes overcooling or insufficient cooling.
【0005】本発明の目的は、そのような知見に基づ
き、外気温度や庫内温度をも考慮した最適条件で熱電部
材を駆動して、過冷却や冷却不足がなくさらなる効率の
向上が図れる熱電モジュール式電気冷蔵庫を提供するこ
とにある。[0005] An object of the present invention is to provide a thermoelectric device that drives thermoelectric members under optimum conditions in consideration of the outside air temperature and the internal temperature based on such knowledge, thereby achieving further improvement in efficiency without overcooling or insufficient cooling. An object of the present invention is to provide a modular electric refrigerator.
【0006】[0006]
【課題を解決するための手段】上記のような目的を達成
するために、請求項1の発明は、熱電部材の放熱面に熱
結合した第1の熱交換部と前記の熱電部材の冷却面に熱
結合した第2の熱交換部とを形成した熱電熱交換ブロッ
クを備え、第1の循環ポンプと放熱用熱交換器と前記熱
電熱交換ブロックの第1の熱交換部とで第1の循環経路
をなして、その内部に液体を充填して放熱系を形成し、
第2の循環ポンプと冷却用熱交換器と前記熱電熱交換ブ
ロックの第2の熱交換部とで第2の循環経路をなして、
その内部に液体を充填して吸熱系を形成し、吸熱系の冷
却用熱交換器と冷蔵庫本体の庫内空気との熱交換で冷蔵
庫本体の庫内を冷却するとともに、放熱系の放熱用熱交
換器を外部空気と熱交換して放熱するように構成し、外
気温度を検出する外気温度検出センサと、庫内温度を検
出する庫内温度検出センサとを備え、熱電部材への駆動
電圧を、外気温度に応じたハイレベルとローレベルとに
設定し、また庫内温度に応じてそれらハイレベルとロー
レベルとを切換えるように構成したことを特徴とするも
のである。In order to achieve the above object, a first aspect of the present invention is to provide a first heat exchange portion thermally coupled to a heat radiation surface of a thermoelectric member and a cooling surface of the thermoelectric member. A thermoelectric heat exchange block formed with a second heat exchange unit thermally coupled to the first heat exchange unit, a first heat exchange unit of the thermoelectric heat exchange block, and a first circulation pump, a heat radiation heat exchanger, and a first heat exchange unit. Form a circulation path, fill the inside with liquid to form a heat dissipation system,
A second circulation path is formed by a second circulation pump, a cooling heat exchanger, and a second heat exchange unit of the thermoelectric heat exchange block,
The interior of the refrigerator is filled with a liquid to form a heat absorbing system, and the interior of the refrigerator body is cooled by heat exchange between the cooling heat exchanger of the heat absorbing system and the air inside the refrigerator body, and the heat dissipation of the heat dissipation system is performed. The heat exchanger is configured to exchange heat with external air to radiate heat, and includes an outside air temperature detection sensor that detects outside air temperature, and an inside temperature detection sensor that detects inside temperature. The high level and the low level are set according to the outside air temperature, and the high level and the low level are switched according to the inside temperature.
【0007】このような構成では、熱電部材が庫内温度
に応じてハイレベルとローレベルとに切替え駆動される
ので、高い庫内温度に対してはハイレベルにて吸熱量を
優先し、低い庫内温度に対してはローレベルにて効率を
優先して、電力の無駄な消費を避けながら庫内を所定温
度範囲に保つことができるし、前記ハイレベルとローレ
ベルが外気温度に対応して設定されて、所定の庫内温度
との差が大きなときは高目のハイレベルとローレベルと
で吸熱量を優先し、所定の庫内温度との差が小さなとき
は低目のハイレベルとローレベルとで効率を優先して、
電力の無駄な消費を避けながら庫内が所定の温度範囲を
外れて過冷却や冷却不足となるようなことを防止するこ
とができ、効率が向上する。In such a configuration, since the thermoelectric member is driven to be switched between a high level and a low level in accordance with the internal temperature, a high level of heat absorption is given priority at a high level for a high internal temperature and low. With respect to the internal temperature, priority is given to efficiency at the low level, and the internal temperature can be maintained in a predetermined temperature range while avoiding wasteful consumption of electric power, and the high level and the low level correspond to the outside air temperature. When the difference from the predetermined temperature inside the refrigerator is large, the heat absorption amount is prioritized at the higher high level and the low level, and when the difference between the predetermined temperature inside the refrigerator is small, the higher heat level is used. And priority on efficiency at low level,
It is possible to prevent the inside of the refrigerator from being overcooled or undercooled outside the predetermined temperature range while avoiding wasteful consumption of electric power, thereby improving efficiency.
【0008】この場合、請求項2の発明のように、ハイ
レベル駆動での運転の継続時間が所定時間以内である
と、外気温度に基づくハイレベルとローレベルとの値を
低くする。In this case, if the continuation time of the operation in the high-level drive is within a predetermined time, the values of the high level and the low level based on the outside air temperature are reduced.
【0009】請求項3の発明のように、ハイレベル駆動
での運転の継続時間が所定時間以上であると、外気温度
に基づくハイレベルとローレベルとの値を高くする。When the duration of the operation in the high level drive is equal to or longer than a predetermined time, the values of the high level and the low level based on the outside air temperature are increased.
【0010】請求項4の発明のように、ローレベル駆動
での運転の継続時間が所定時間以内であると、外気温度
に基づくハイレベルとローレベルとの値を高くする。If the duration of the operation in the low-level drive is within a predetermined time, the values of the high level and the low level based on the outside air temperature are increased.
【0011】請求項5の発明のように、ローレベル駆動
での運転の継続時間が所定時間以上であると、外気温度
に基づくハイレベルとローレベルとの値を低くする。If the duration of the low-level drive operation is equal to or longer than a predetermined time, the values of the high level and the low level based on the outside air temperature are reduced.
【0012】請求項6の発明にように、一定時間ごとに
熱電部材の駆動を所定の間停止し、これに併せてさら
に、請求項7の発明のように、熱電熱交換ブロックの冷
却系側温度が所定温度以上になったとき熱電部材の駆動
停止を終了し駆動を再開する。According to a sixth aspect of the present invention, the driving of the thermoelectric member is stopped for a predetermined period at predetermined time intervals, and at the same time, the cooling system side of the thermoelectric heat exchange block is further provided. When the temperature becomes equal to or higher than the predetermined temperature, the driving stop of the thermoelectric member is ended and the driving is restarted.
【0013】または、請求項8の発明のように、吸熱系
の冷却用熱交換器の温度が所定温度以上になったとき熱
電部材の駆動停止を終了し駆動を再開する。または、請
求項9の発明のように、外気温度に応じて駆動停止の開
始から終了までの時間を設定する。Alternatively, when the temperature of the heat exchanger for cooling the endothermic system becomes equal to or higher than a predetermined temperature, the driving stop of the thermoelectric member is terminated and the driving is resumed. Alternatively, a time period from the start to the end of the drive stop is set according to the outside air temperature.
【0014】請求項10の発明のように、庫内温度が所
定温度以上であるとき、熱電部材の駆動の外気温度に基
づくハイレベル値を高くする。When the internal temperature is equal to or higher than the predetermined temperature, the high level value based on the outside air temperature for driving the thermoelectric member is increased.
【0015】と云った構成を採ると、さらに好適であ
る。It is more preferable to adopt the configuration described above.
【0016】請求項11の発明は、熱電部材の放熱面に
熱結合した第1の熱交換部と前記の熱電部材の冷却面に
熱結合した第2の熱交換部とを形成した熱電熱交換ブロ
ックを備え、第1の循環ポンプと放熱用熱交換器と前記
熱電熱交換ブロックの第1の熱交換部とで第1の循環経
路をなして、その内部に液体を充填して放熱系を形成
し、第2の循環ポンプと冷却用熱交換器と前記熱電熱交
換ブロックの第2の熱交換部とで第2の循環経路をなし
て、その内部に液体を充填して吸熱系を形成し、吸熱系
の冷却用熱交換器と冷蔵庫本体の庫内空気との冷却用フ
ァンによる強制熱交換で冷蔵庫本体の庫内を冷却すると
ともに、放熱系の放熱用熱交換器を外部空気と放熱用フ
ァンにより強制熱交換して放熱するように構成し、外気
温度を検出する外気温度センサと、庫内温度を検出する
庫内温度センサとを備え、外気温度に応じて熱電部材の
駆動電圧を設定し、庫内温度に応じて熱電部材の駆動、
駆動停止を制御するように構成したことを特徴とするも
のである。According to the eleventh aspect of the present invention, there is provided a thermoelectric heat exchange unit having a first heat exchange unit thermally coupled to a heat radiation surface of a thermoelectric member and a second heat exchange unit thermally coupled to a cooling surface of the thermoelectric member. A first circulating pump, a radiating heat exchanger, and a first heat exchanging section of the thermoelectric heat exchanging block, forming a first circulating path, filling a liquid therein, and forming a radiating system. The second circulation pump, the cooling heat exchanger, and the second heat exchange part of the thermoelectric heat exchange block form a second circulation path, and are filled with liquid to form a heat absorbing system. Then, the inside of the refrigerator body is cooled by forced heat exchange between the cooling heat exchanger of the heat absorption system and the air inside the refrigerator body by the cooling fan, and the heat exchanger for heat dissipation of the heat dissipation system is radiated to the outside air. External air for detecting the external air temperature With a degree sensor, and a storage room temperature sensor for detecting the internal temperature, setting the drive voltage of the thermoelectric element according to the outside air temperature, the driving of the thermoelectric element according to the internal temperature,
The present invention is characterized in that the drive stop is controlled.
【0017】このような構成では、外気温度に応じて、
無駄に電力を消費しない駆動電圧にて熱電部材を駆動で
きて効率が向上するとともに、庫内温度に応じて、熱電
部材を必要なときだけ駆動できるので、消費電力の低減
を図るとともに、過剰な駆動による過冷却とそれによる
トラブルを防止することができる。また、庫内温度に応
じて熱電部材が駆動されないとき、第1、第2の循環ポ
ンプ、冷却用、放熱用各ファンも駆動を停止すると、こ
れらの寿命を延ばすことができる。In such a configuration, according to the outside air temperature,
The thermoelectric member can be driven with a drive voltage that does not consume power unnecessarily, and the efficiency is improved. Further, the thermoelectric member can be driven only when necessary according to the temperature in the refrigerator, so that power consumption is reduced and excessive It is possible to prevent supercooling caused by driving and troubles caused by the supercooling. In addition, when the thermoelectric members are not driven in accordance with the internal temperature, if the first and second circulating pumps, the cooling fan, and the radiation fan are also stopped, the life thereof can be extended.
【0018】この場合、請求項12のように、熱電部材
の駆動の継続時間が所定時間以上であるとき、熱電部材
の外気温度に基づく駆動電圧を高くする。In this case, when the driving time of the thermoelectric member is equal to or longer than a predetermined time, the driving voltage based on the outside air temperature of the thermoelectric member is increased.
【0019】請求項13の発明のように、庫内温度が所
定温度以上であるとき、熱電部材の外気温度に基づく駆
動電圧を高くする。When the internal temperature is equal to or higher than the predetermined temperature, the drive voltage based on the outside air temperature of the thermoelectric member is increased.
【0020】と云った構成を採ると、さらに好適であ
る。It is more preferable to adopt the configuration described above.
【0021】[0021]
【発明の実施の形態】以下、本発明の幾つかの実施の形
態とそれらの幾つかの変形例について添付の図面を参照
しながら説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention and some modifications thereof will be described below with reference to the accompanying drawings.
【0022】(実施の形態1)本実施の形態1は図1、
図3に示すように、熱電部材の一例であるモジュール化
したペルチェ素子25の放熱面に熱結合した第1の熱交
換部26aと前記のペルチェ素子25の冷却面に熱結合
した第2の熱交換部26bとを形成して一体化した熱電
熱交換ブロック11を利用した冷凍サイクル方式の熱電
モジュール電気冷蔵庫である。(Embodiment 1) Embodiment 1 is shown in FIG.
As shown in FIG. 3, a first heat exchange portion 26 a thermally coupled to a heat dissipation surface of a modularized Peltier device 25, which is an example of a thermoelectric member, and a second heat thermally coupled to a cooling surface of the Peltier device 25, This is a thermoelectric module electric refrigerator of a refrigeration cycle system using a thermoelectric heat exchange block 11 formed integrally with an exchange section 26b.
【0023】本実施の形態1の冷蔵庫の筐体は、図1、
図2に示すように冷蔵庫本体1と、この冷蔵庫本体1の
前面開口部2を開閉するように軸3で枢支された前扉4
とで構成されている。冷蔵庫本体1の背面の開口部を閉
塞する背面板5の内側にこの背面板5とは間隔をおいて
冷蔵庫本体1に取り付けられた隔壁6と、冷蔵庫本体1
の内部に取付けられた庫内形成体7との間には断熱材が
充填されて断熱壁8を構成している。前記前扉4も内部
に断熱材を充填されて断熱壁を構成し、断熱壁8とで庫
内の外回りを覆った庫内室17を開閉できるように形成
する。The housing of the refrigerator according to the first embodiment is shown in FIG.
As shown in FIG. 2, a refrigerator body 1 and a front door 4 pivotally supported by a shaft 3 to open and close a front opening 2 of the refrigerator body 1.
It is composed of A partition 6 attached to the refrigerator body 1 at an interval from the rear plate 5 inside a back plate 5 that closes an opening at the back of the refrigerator body 1, and a refrigerator body 1
A heat insulating material is filled between the inside of the container 7 and the in-compartment formed body 7 to form a heat insulating wall 8. The front door 4 is also filled with a heat insulating material to form a heat insulating wall, and the heat insulating wall 8 is formed so as to be able to open and close the interior chamber 17 that covers the inside of the interior.
【0024】基本的には、背面板5と隔壁6との間に形
成される庫外室9内には熱電熱交換ブロック11の第1
の熱交換部26aに連なる放熱系Aを内蔵して筐体外へ
の放熱を行い、庫内室17には熱電熱交換ブロック11
の第2の熱交換部26bに連なる吸熱系Bを配置して庫
内室17内からの吸熱を図り冷却する。ここに、放熱系
Aと吸熱系Bとは断熱壁8に遮られて互いに熱影響し合
わない。しかし、このような冷蔵庫の基本的な機能を満
足するための具体的な構成は、本実施の形態1に限られ
ることはなく種々に設計できるのは勿論である。なお、
第1の熱交換部26aおよび第2の熱交換部26bは、
既に知られた迷路状の熱交換通路が多数並列に形成され
たいわゆるマニホールド構造を有したものとするのが熱
効率の上で好適である。しかし、これに限られることは
ない。Basically, the first outside of the thermoelectric heat exchange block 11 is provided in the outside chamber 9 formed between the back plate 5 and the partition 6.
A heat radiation system A connected to the heat exchanging part 26a is built in and radiates heat to the outside of the housing.
A heat absorbing system B connected to the second heat exchanging portion 26b is arranged to absorb heat from the inside of the storage chamber 17 and cool it. Here, the heat radiation system A and the heat absorption system B are blocked by the heat insulating wall 8 and do not mutually affect each other. However, a specific configuration for satisfying the basic functions of such a refrigerator is not limited to the first embodiment, and can be variously designed. In addition,
The first heat exchange unit 26a and the second heat exchange unit 26b
It is preferable in terms of thermal efficiency to have a so-called manifold structure in which a number of known labyrinth-like heat exchange passages are formed in parallel. However, it is not limited to this.
【0025】熱電熱交換ブロック11のペルチェ素子2
5は通電されることによって、放熱面で放熱しながら冷
却面で吸熱し、この吸熱特性は放熱特性に依存する。放
熱系Aは、第1の循環ポンプ14aと放熱用熱交換器1
0と前記熱電熱交換ブロック11の第1の熱交換部26
aとを図3、図4に示すように管路32a〜32cで接
続して第1の循環経路をなし、その内部に液体を充填し
て形成されている。第1の循環ポンプ14aによって第
1の循環路を循環される液体は、第1の熱交換部26a
にてペルチェ素子25の放熱面で放熱される熱を受け取
り、これを放熱用熱交換器10にて外部空気A1に移行
させて放熱空気A2として、ペルチェ素子25の放熱面
での放熱効率を高める。Peltier element 2 of thermoelectric heat exchange block 11
When electricity is supplied, the heat sink 5 absorbs heat on the cooling surface while radiating heat on the heat dissipation surface, and this heat absorption characteristic depends on the heat radiation characteristic. The radiating system A includes the first circulating pump 14a and the radiating heat exchanger 1
0 and the first heat exchange section 26 of the thermoelectric heat exchange block 11
3 and 4 is connected by pipes 32a to 32c to form a first circulation path, and is formed by filling a liquid therein. The liquid circulated through the first circulation path by the first circulation pump 14a is supplied to the first heat exchange section 26a
Receives the heat radiated on the heat radiating surface of the Peltier element 25 and transfers the heat to the external air A1 in the heat radiating heat exchanger 10 to increase the heat radiating efficiency on the heat radiating surface of the Peltier element 25 as the heat radiating air A2. .
【0026】また、吸熱系Bは、第2の循環ポンプ14
bと冷却用熱交換器20と前記熱電熱交換ブロック11
の第2の熱交換部26bとを図3、図5に示すように管
路32d〜32fで接続して第2の循環経路をなし、そ
の内部に液体を充填して形成されている。第2の循環ポ
ンプ14bによって第2の循環路を循環される液体は、
第2の熱交換部26bにてペルチェ素子25の冷却面で
の吸熱により熱を奪われて冷却され、冷却用熱交換器2
0にて庫内空気B1の熱を奪って冷却し、冷却空気B2
とする。The heat absorption system B is provided with a second circulation pump 14
b, cooling heat exchanger 20 and thermoelectric heat exchange block 11
The second heat exchange section 26b is connected to the second heat exchange section 26b via conduits 32d to 32f as shown in FIGS. 3 and 5 to form a second circulation path, and is formed by filling a liquid therein. The liquid circulated through the second circulation path by the second circulation pump 14b is
In the second heat exchange section 26b, heat is deprived of heat by the heat absorption on the cooling surface of the Peltier element 25 and the cooling is performed.
0, cools the inside air B1 by removing the heat of the air B1.
And
【0027】放熱系Aは冷蔵庫の筐体外への放熱を図る
のに、放熱用熱交換器10を庫外室9内の下部に設置
し、その上に設けた放熱用ファン13aによって庫外室
9の底部を形成する下部グリル板15の吸込口15aを
通じて外部空気A1を吸引し、これを放熱用熱交換器1
0に接触させて熱交換した後、庫外室9の天面を形成す
るグリル板16の放出口16aから放熱空気A2として
冷蔵庫の筐体外に放出するように構成している。また、
吸熱系Bは庫内を冷却するのに、庫内室17の冷蔵領域
と隔壁18によって仕切られ、これにより形成された仕
切り室19内の下部に冷却用熱交換器20を設け、仕切
り室19の上部に設置した冷却用ファン13bによって
隔壁18の下部に設けた吸込口21から吸い込んだ庫内
空気B1を冷却用熱交換器20と接触させて熱交換した
後、隔壁18の上部に設けた吐出口22から冷却空気B
2として庫内に吐出し、これが庫内室17を下部に移行
しながら冷蔵物を冷却するように構成している。In the heat radiating system A, a heat radiating heat exchanger 10 is provided in a lower portion of the outside room 9 for radiating heat to the outside of the housing of the refrigerator. External air A1 is sucked through the suction port 15a of the lower grill plate 15 forming the bottom of
After the heat is exchanged by contacting the outside of the refrigerator, heat is released from the outlet 16a of the grill plate 16 forming the top surface of the outside chamber 9 to the outside of the refrigerator as radiated air A2. Also,
The heat absorbing system B is partitioned by a refrigeration region of the chamber 17 and a partition 18 to cool the inside of the chamber, and a cooling heat exchanger 20 is provided in a lower part of the partition chamber 19 formed by the partition. After the inside air B1 sucked from the suction port 21 provided at the lower part of the partition wall 18 by the cooling fan 13b provided at the upper part of the partition wall and brought into contact with the cooling heat exchanger 20 to exchange heat, the cooling air is provided above the partition wall 18. Cooling air B from discharge port 22
2 and is discharged into the refrigerator, which cools the refrigerated material while moving the refrigerator compartment 17 to the lower part.
【0028】これら、放熱系Aによる放熱のための具体
的構成、および吸熱系Bによる冷却のための具体的構成
は、本実施の形態1に限られることはなく、種々に設計
できるのは勿論である。The specific configuration for heat radiation by the heat radiation system A and the specific configuration for cooling by the heat absorption system B are not limited to the first embodiment, but can be variously designed. It is.
【0029】前記熱電熱交換ブロック11は図1、図6
に示すように冷蔵庫本体1の庫外室9と断熱壁8で仕切
られた庫内室17に設けられている。これにより、熱電
熱交換ブロック11が冷蔵庫本体1の庫内室17にあっ
て、これの吸熱系Bの全てが庫内室17側に位置し庫外
室9の温かい空気と接触しないので、吸熱系Bにて生じ
る結露水を低減することができ、その分熱効率が上が
る。The thermoelectric heat exchange block 11 is shown in FIGS.
As shown in the figure, the refrigerator main body 1 is provided in a refrigerator interior 9 and a refrigerator interior 17 partitioned by a heat insulating wall 8. As a result, the thermoelectric heat exchange block 11 is located in the interior chamber 17 of the refrigerator main body 1, and all of the heat absorbing system B is located on the interior chamber 17 side and does not come into contact with the warm air in the exterior chamber 9. Condensation water generated in the system B can be reduced, and the heat efficiency increases accordingly.
【0030】また、そのような熱電熱交換ブロック11
の配置に関連して、熱電熱交換ブロック11の第1の熱
交換部26aでの第1の循環経路の入口部27aおよび
出口部27bの配管は、熱電熱交換ブロック11の断熱
壁8との対面部11aから断熱壁8を通じて冷蔵庫本体
1の庫外室9に引き出されている。これにより、熱電熱
交換ブロック11が庫内室17に設けられても、これの
放熱側である第1の熱交換部26aは断熱壁8と対面し
て覆われ庫内空気と接触せず、相互の熱交換も防止され
るし、第1の循環経路は前記対面部11aから断熱壁8
を通じて庫外室9に引き出されていることにより、その
第1の熱交換部26aからの出入り口配管27a、27
bの部分ですら庫内空気と接触せず、相互の熱交換も防
止されるので、第1の熱交換部26aおよびこれから引
き出される放熱系Aの配管が庫内空気に及ぼす熱影響を
低減することができ、その分熱効率が上がる。Further, such a thermoelectric heat exchange block 11
In relation to the arrangement of the thermoelectric heat exchange block 11, the piping of the inlet 27 a and the outlet 27 b of the first circulation path in the first heat exchange section 26 a of the thermoelectric heat exchange block 11 It is drawn out from the facing part 11a to the outside room 9 of the refrigerator main body 1 through the heat insulating wall 8. Thereby, even if the thermoelectric heat exchange block 11 is provided in the interior chamber 17, the first heat exchange part 26a on the heat radiation side thereof is covered with the heat insulating wall 8 and does not contact the interior air, Mutual heat exchange is also prevented, and the first circulation path extends from the facing portion 11a to the heat insulating wall 8.
The pipes 27a, 27a from the first heat exchange section 26a are drawn out to the outside chamber 9 through the
Even part b does not come into contact with the air inside the refrigerator, and mutual heat exchange is also prevented, so that the first heat exchange part 26a and the piping of the heat radiation system A drawn out therefrom reduce the thermal effect on the air inside the refrigerator. Heat efficiency can be increased accordingly.
【0031】さらに、熱電熱交換ブロック11の第1の
熱交換部26aは、断熱壁8に形成した凹部8aに嵌め
合わされて、側周まわりをも断熱壁8で覆われている。
これによって、第1の熱交換部26aの側周部まわりが
庫内空気と接触し、また熱交換することをもよく防止さ
れ、放熱系Aによる庫内空気への熱影響をさらに低減す
ることができ、熱効率がさらに向上し好適である。Further, the first heat exchange portion 26a of the thermoelectric heat exchange block 11 is fitted into the concave portion 8a formed in the heat insulating wall 8, and the side circumference is also covered with the heat insulating wall 8.
Thereby, the periphery of the first heat exchanging portion 26a is prevented from coming into contact with the air inside the refrigerator and exchanging heat, and the thermal effect of the heat radiation system A on the air inside the refrigerator is further reduced. This is preferable because the thermal efficiency is further improved.
【0032】また、放熱用熱交換器10の近傍で、かつ
これと熱交換する外部空気を放熱用熱交換器10に向け
取り入れる取入経路23に、冷却用熱交換器20からの
ドレン水24を導き蒸発させる蒸発皿28が設けられて
いる。これにより、放熱用熱交換器10と熱交換するた
めに取り入れられる外部空気A1は、その取入経路23
に位置した蒸発皿28に導かれている冷却用熱交換器2
0からのドレン水24が、放熱用熱交換器10の近傍で
高い雰囲気温度にさらされて蒸発しているのを随伴さ
せ、かつ蒸発していないドレン水24を蒸発させながら
随伴して、放熱用熱交換器10との熱交換に及ぶので、
放熱用熱交換器10の放熱効率を随伴しているドレン水
の気化熱分だけ高め、熱効率を向上することができる。Further, drain water 24 from the cooling heat exchanger 20 is provided in the intake path 23 near the heat radiating heat exchanger 10 and for taking external air for heat exchange therewith toward the heat radiating heat exchanger 10. Is provided. As a result, the external air A1 that is taken in for heat exchange with the heat-radiating heat exchanger 10 has its intake path 23
Cooling heat exchanger 2 guided to the evaporating dish 28 located at
The drain water 24 from 0 is exposed to high ambient temperature in the vicinity of the heat radiation heat exchanger 10 and evaporates, and the non-evaporated drain water 24 evaporates and accompanies. Heat exchange with the heat exchanger 10 for
The heat radiation efficiency of the heat radiation heat exchanger 10 can be increased by the amount of vaporization heat of the accompanying drain water, and the heat efficiency can be improved.
【0033】蒸発皿28は冷却用熱交換器20からのド
レン水24を仕切り室19の底部から下方に延びたドレ
ン口29を通じて導かれ、冷蔵庫本体1の低位部に設け
られるのが好適であるし、冷蔵庫本体1の容積効率に影
響がなく、洗浄等のメンテナンスを行うために着脱しや
すい外部にあるのが好適であるので、本実施の形態1で
は蒸発皿28を冷蔵庫本体1の底部下の後部に設けてあ
る。これに対応して前記放熱用熱交換器10は庫外室9
の最下部にあって、蒸発皿28の直ぐ上に位置するよう
にされ、蒸発皿28に導かれるドレン水24に熱を与え
やすく蒸発させやすい。これによってドレン水24の蒸
発に伴う放熱用熱交換器10との熱交換をさらに促進で
きその分熱効率が向上する。The evaporating dish 28 guides the drain water 24 from the cooling heat exchanger 20 through a drain port 29 extending downward from the bottom of the partitioning chamber 19, and is preferably provided at a lower part of the refrigerator body 1. However, since the volume efficiency of the refrigerator main body 1 is not affected and it is preferable that the evaporating dish 28 is located at the outside which is easily detachable for performing maintenance such as cleaning, the evaporating dish 28 is placed under the bottom of the refrigerator main body 1 in the first embodiment. It is provided at the rear. Correspondingly, the heat-exchanging heat exchanger 10 is connected to the outside chamber 9.
Is located at the lowermost part and is located immediately above the evaporating dish 28, so that the drain water 24 guided to the evaporating dish 28 is easily heated and easily evaporated. Thereby, the heat exchange with the heat radiation heat exchanger 10 accompanying the evaporation of the drain water 24 can be further promoted, and the heat efficiency is improved accordingly.
【0034】また、放熱用ファン13aは図4に示すよ
うに左右に2つ設けられているのに対応して、蒸発皿2
8はそれら放熱用ファン13a、13aの間に対向する
位置に設けられ、その両側の吸込口15aから吸い込ま
れる外気A1が、蒸発皿28の両側から放熱用熱交換器
10の部分に向け流れることによって、蒸発皿28内の
ドレン水24を両側から効率よく蒸発させやすくしてい
る。In addition, as shown in FIG. 4, two radiating fans 13a are provided on the left and right,
Numeral 8 is provided at a position facing between the heat radiating fans 13a, 13a, and the outside air A1 sucked from the suction ports 15a on both sides thereof flows toward the heat radiating heat exchanger 10 from both sides of the evaporating dish 28. This facilitates efficient evaporation of the drain water 24 in the evaporating dish 28 from both sides.
【0035】なお、第1の循環ポンプ14aは図1、図
3、図4に示すように、放熱系Aの第1の循環路の最上
位置にあり、かつその上に空気溜り部37aが接続され
ているし、第2の循環ポンプ14bは図1、図3、図5
に示すように、吸熱系Bの第2の循環路の最上位置にあ
り、かつその上に空気溜り部37bが接続されている。
これによって、放熱系Aおよび吸熱系Bの第1、第2の
各循環路の液体中に万一空気が混入しても、これが第
1、第2の各循環ポンプ14a、14bを通じて、最上
位置にある空気溜り部37a、37bにまで上昇して溜
る。従って、混入空気が第1の循環路、第2の循環路を
循環したり、あるいは第1の循環ポンプ14aおよび第
2の循環ポンプ14b内に溜まってこれの機能低下を来
したりして、第1の熱交換部26a、第2の熱交換部2
6b、放熱用熱交換器10、および冷却用熱交換器20
での熱交換率が低下するようなことを防止することがで
き、これによっても熱効率が向上する。The first circulating pump 14a is located at the uppermost position of the first circulating path of the heat radiation system A as shown in FIGS. 1, 3 and 4, and an air reservoir 37a is connected thereto. And the second circulating pump 14b is shown in FIGS. 1, 3, and 5.
As shown in (2), it is located at the uppermost position of the second circulation path of the heat absorption system B, and the air reservoir 37b is connected thereon.
Accordingly, even if air is mixed in the liquid in the first and second circulation paths of the heat radiation system A and the heat absorption system B, the air is moved to the uppermost position through the first and second circulation pumps 14a and 14b. And rises to the air reservoirs 37a and 37b. Therefore, the mixed air circulates in the first circulation path and the second circulation path, or accumulates in the first circulation pump 14a and the second circulation pump 14b to cause a decrease in the function thereof. First heat exchange unit 26a, second heat exchange unit 2
6b, heat exchanger 10 for heat radiation, and heat exchanger 20 for cooling
Can be prevented from lowering in the heat exchange rate in this case, thereby also improving the thermal efficiency.
【0036】第1の循環路の第1の循環ポンプ14aよ
りも低い途中位置、および第2の循環路の第2の循環ポ
ンプ14bよりも低い途中位置には、T字管33aおよ
び33bがそれらの2つの接続口にて接続され、各T字
管33aおよび33bの残りの接続口は液体の充填口に
用い、充填後キャップ34a、34bにより塞ぐ。液体
注入時は第1、第2の各循環路の最上部である空気溜り
部37a、37bを開放して空気の逃がし口とするのが
好適であり、液体の注入と同時に第1、第2の各循環路
からの空気の追い出しができる。The T-tubes 33a and 33b are located at intermediate positions lower than the first circulation pump 14a in the first circulation path and lower than the second circulation pump 14b in the second circulation path. , And the remaining connection ports of each of the T-tubes 33a and 33b are used as liquid filling ports, and are closed with caps 34a and 34b after filling. At the time of liquid injection, it is preferable to open the air reservoirs 37a and 37b, which are the uppermost portions of the first and second circulation paths, to provide air outlets. The air can be expelled from each circulation path.
【0037】なお、本実施の形態1の熱電熱交換ブロッ
ク11は、図6に示すように合成樹脂製のカバー41を
施して設けてあり、これによってもまわりに熱影響した
り、熱影響を受けたりすることが防止され、熱効率の向
上に寄与する。The thermoelectric heat exchange block 11 according to the first embodiment is provided with a cover 41 made of a synthetic resin as shown in FIG. Receiving is prevented and contributes to improvement of thermal efficiency.
【0038】ところで、ペルチェ素子25を用いた冷凍
サイクルの熱電モジュール式電気冷蔵庫の効率は、ペル
チェ素子25を駆動する駆動電圧に対し図7に示すよう
な特性を示し、V0 で最大となる。これに対して駆動電
圧とペルチェ素子25による吸熱量との関係は図8に示
すような特性を示し、前記V0 では吸熱量はやや低めに
しか得られない。そこで、図7、図8に示す両特性を考
慮して最も有利なやや高めの電圧V1 にてペルチェ素子
25を駆動するようにすると、上記した本実施の形態1
の構成との組み合わせによって実用に耐えうる熱効率が
得られる。By the way, the efficiency of the thermoelectric module type electric refrigerator of the refrigeration cycle using the Peltier element 25 shows the characteristic shown in FIG. 7 with respect to the driving voltage for driving the Peltier element 25, and becomes maximum at V 0 . Relationship between the amount of heat absorbed by the drive voltage and the Peltier element 25 against which indicates the characteristics as shown in FIG. 8, the endothermic amount at the V 0 is obtained only slightly lower. Therefore, FIG. 7, when to drive the Peltier element 25 in consideration of both characteristics at the most advantageous slightly voltages V 1 higher as shown in FIG. 8, the first embodiment described above
In combination with the above configuration, a practically usable thermal efficiency can be obtained.
【0039】一方、外気温度の変動は、一定に保つべく
設定される庫内温度との差に変動をもたらす。これは、
冷凍サイクルを前記一定条件で駆動すると、冷却能力に
過不足を生じることを意味し、過冷却、冷却不足の原因
となる。同時に無駄な電力消費をも招き効率が低下する
ことにもなる。したがって、熱電モジュール式電気冷蔵
庫の全体の効率および性能に影響する。On the other hand, a change in the outside air temperature causes a change in a difference between the outside air temperature and the inside temperature set to keep the temperature constant. this is,
When the refrigeration cycle is driven under the above-mentioned constant conditions, it means that the cooling capacity is excessive or insufficient, which causes overcooling or insufficient cooling. At the same time, wasteful power consumption is caused and the efficiency is reduced. Therefore, it affects the overall efficiency and performance of the thermoelectric modular electric refrigerator.
【0040】そこで、本実施の形態1はこれに対処する
ために、ペルチェ素子25を駆動する駆動電圧を、図9
に示すように外気温度に応じたハイレベルVH とローレ
ベルVL とに設定し、庫内温度に応じて前記ハイレベル
VH とローレベルVL とを、図10に示すように切り換
える。このため、本実施の形態1は図1に示すように、
外気温度を検出するための外気温度センサS1と、庫内
温度を検出するための庫内温度センサS2とを備え、こ
れらが検出する温度情報は図11に示すように制御装置
51に入力し、制御装置51はそれらの入力に応じてペ
ルチェ素子25の駆動電圧を上記のように制御する。こ
の制御装置51は本実施の形態1の熱電モジュール式電
気冷蔵庫の動作を制御するマイクロコンピュータを共用
している。従って、制御装置51はドライバ52から5
6によって、放熱用ファン13a、13a、冷却用ファ
ン13b、第1の循環ポンプ14a、第2の循環ポンプ
14b、およびペルチェ素子25を駆動するようになっ
ている。もっとも、必要に応じて他のものを駆動するよ
うにもできるし、ペルチェ素子25の駆動電圧制御に専
用の制御装置を用いることもできる。Therefore, in the first embodiment, in order to cope with this, the driving voltage for driving the Peltier element 25 is changed as shown in FIG.
Set the high level V H in accordance with the outside air temperature and a low level V L as shown in, and the high level V H depending on the inside temperature and the low level V L, switched as shown in FIG. 10. For this reason, as shown in FIG.
An external air temperature sensor S1 for detecting an external air temperature and an internal temperature sensor S2 for detecting an internal temperature are input to the control device 51 as shown in FIG. The controller 51 controls the drive voltage of the Peltier element 25 in accordance with the inputs as described above. The control device 51 shares a microcomputer for controlling the operation of the thermoelectric modular electric refrigerator of the first embodiment. Therefore, the control device 51 transmits the
6 drives the heat radiation fans 13a, 13a, the cooling fan 13b, the first circulation pump 14a, the second circulation pump 14b, and the Peltier element 25. Needless to say, it is also possible to drive other components as necessary, or to use a dedicated control device for controlling the drive voltage of the Peltier element 25.
【0041】上記のような制御をすると、ペルチェ素子
25が庫内温度に応じてハイレベルVH とローレベルV
L とに切替え駆動されるので、低い庫内温度TL に対し
ては、高い庫内温度TH なるまでローレベルVL にて図
7に示すように効率を優先し、高い庫内温度TH に対し
ては、低い庫内温度TL になるまでハイレベルVH にて
図8に示すように吸熱量を優先して、電力の無駄な消費
を避けながら庫内を所定温度範囲TL からTH に保つこ
とができる。また、前記ハイレベルVH とローレベルV
L が外気温度に対応して図9に示すように設定されて、
所定の庫内温度との差が大きなときはハイレベルVHHと
ローレベルVLHとの高目の値で吸熱量をより優先し、所
定の庫内温度との差が小さなときはハイレベルVHLとロ
ーレベルVLLとの低目の値で効率をより優先して、電力
の無駄な消費を避けながら庫内が所定の温度範囲TL か
らTH を外れて過冷却や冷却不足となるようなことを防
止することができ、効率が向上する。When the above control is performed, the Peltier element 25 changes the high level VH and the low level VH according to the internal temperature.
Since the switch drive is in the L, for the low internal temperature T L, the efficiency as shown in FIG. 7 preferentially at low level V L until higher inside temperature T H, a high internal temperature T for H, preferentially an endothermic amount as shown in FIG. 8 at the high level V H to a low internal temperature T L, a given temperature in the refrigerator while avoiding wasteful consumption of power range T L it can be kept to T H from. Further, the high level V H and the low level V
L is set as shown in FIG. 9 corresponding to the outside air temperature,
When the difference from the predetermined inside temperature is large, the higher level of the high level V HH and the low level V LH gives higher priority to the heat absorption, and when the difference from the predetermined inside temperature is small, the high level V and more preferentially efficiency in HL and low eye values of the low level V LL, the refrigerator becomes supercooled and insufficient cooling off the T H from a predetermined temperature range T L while avoiding wasteful consumption of power This can be prevented, and the efficiency is improved.
【0042】これの実施例を示すと、外気温度とハイレ
ベルVH とローレベルVL との関係については以下の表
1に示すテーブルのように設定し、庫内温度とハイレベ
ル駆動およびローレベル駆動の切替え条件については以
下の表2に示すテーブルのように設定して好適であっ
た。In this embodiment, the relationship between the outside air temperature, the high level VH and the low level VL is set as shown in Table 1 below. The switching condition of the level drive was suitably set as shown in Table 2 below.
【0043】なお、ハイレベルVH での駆動は庫内温度
がTH に上がってから開始して庫内温度がTL に下がっ
たときに停止され、ローレベルVL での駆動に切り替わ
る。[0043] It should be noted that, driving at a high level V H is stopped when the inside temperature, starting from the inside temperature up to T H drops to T L, it switched to driving at a low level V L.
【0044】ローレベルVL での駆動は庫内温度がTL
に低下してから開始され庫内温度がTH になると停止さ
れ、ハイレベルVH での駆動に切り替わる。このときの
庫内温度の変化は図10に示す通りであり、この温度変
化は滑らかでかつ温度差が小さいほどよい。しかし、冷
蔵庫が通常使用されるときの庫内温度のバラツキ幅を下
回ると意味がなくなる。When driving at the low level V L , the internal temperature is T L
Is-compartment temperature begins to drop in is stopped to be a T H, I switched to driving in the high level V H. The change in the internal temperature at this time is as shown in FIG. 10, and it is better that the temperature change is smooth and the temperature difference is small. However, it is meaningless if the temperature is less than the range of the temperature inside the refrigerator when the refrigerator is normally used.
【0045】[0045]
【表1】 [Table 1]
【0046】[0046]
【表2】 [Table 2]
【0047】また、本実施の形態1では前記制御装置5
1により、図10に示すハイレベルVH での運転の例え
ば内部カウンタ57によりカウントした継続時間t
H が、所定時間以内であると、外気温度に基づくハイレ
ベルVH とローレベルVL との値を図7から図9に示す
低い値VHL、VLLにシフトし、所定時間以上であると、
外気温度に基づくハイレベルVH とローレベルVL との
値を図7から図9に示す高い値VHH、VLHとにシフトす
る。In the first embodiment, the control device 5
1, the duration t of the operation at the high level V H shown in FIG.
If H is within the predetermined time, the values of the high level V H and the low level VL based on the outside air temperature are shifted to the low values V HL and V LL shown in FIG. 7 to FIG. When,
The values of the high level VH and the low level VL based on the outside air temperature are shifted from FIG. 7 to high values VHH and VLH shown in FIG.
【0048】また、図10に示すローレベルVL での運
転の継続時間tL を例えば内部カウンタ58によりカウ
ントし、この継続時間tL が、所定時間以内であると、
外気温度に基づくハイレベルVH とローレベルVL との
値を図7から図9に示す高い値VHH、VLHにシフトと
し、所定時間以上であると、外気温度に基づくハイレベ
ルVH とローレベルVL との値を図7から図9に示す低
い値VHL、VLLにシフトとする。[0048] Also, counted by continuous time t L, for example, an internal counter 58 operating at the low level V L shown in FIG. 10, the continuation time t L is, if it is within a predetermined time,
The values of the high level V H and the low level V L based on the outside air temperature are shifted to the high values V HH and V LH shown in FIGS. 7 to 9, and if the predetermined time or more, the high level V H based on the outside air temperature is used. And the low level V L are shifted to lower values V HL and V LL shown in FIGS. 7 to 9.
【0049】これにより、外気温度別に設定した例えば
前記表1のようなハイレベルVH とローレベルVL の値
を、実際の庫内温度への影響を見ながらより適正化する
ことができ、さらなる効率の向上で節電を図り、少しの
過冷却や冷却不足も解消することができる。As a result, the values of the high level V H and the low level V L set according to the outside air temperature, for example, as shown in Table 1 can be further optimized while observing the influence on the actual internal temperature. Power savings can be achieved by further improving efficiency, and slight overcooling and undercooling can be eliminated.
【0050】また、本実施の形態1では前記制御装置5
1により、図10に示す例えば内部タイマ59で設定し
た比較的長い所定時間t1、例えば27時間経過する都
度、例えば内部タイマ60で設定したごく短い所定時間
t2の間、例えば数分の間ペルチェ素子25の駆動を停
止するようにする。In the first embodiment, the control device 5
1, the Peltier element for a relatively long predetermined time t1 set by the internal timer 59 shown in FIG. 10, for example, every 27 hours, for example, for a very short predetermined time t2 set by the internal timer 60, for example, several minutes 25 is stopped.
【0051】これは、長時間継続運転すると庫内の冷却
用熱交換器20に着霜することがあることへの対策であ
る。着霜しかかり、あるい着霜する所定の時間t1ごと
にペルチェ素子25の駆動を停止すると、これの熱電作
用が停止した状態、つまり冷凍サイクルが停止した状態
で、吸熱系Bの冷却用ファン13bおよび第2の循環ポ
ンプ14bが駆動され続けるので、ごく短い例えば数分
の間でも冷却用熱交換器20の過着霜を防止するととも
に、着霜していてもこれを確実に除霜し、また直ぐに着
霜しない状態に復元させることができ、着霜による熱効
率の低下を防止することができる。This is a countermeasure against frost formation on the cooling heat exchanger 20 in the refrigerator when the operation is continued for a long time. When the driving of the Peltier element 25 is stopped every predetermined time t1 at which frost formation starts or frost formation occurs, the cooling fan of the heat absorbing system B is stopped in a state where the thermoelectric effect is stopped, that is, the refrigeration cycle is stopped. 13b and the second circulating pump 14b continue to be driven, thereby preventing over-frosting of the cooling heat exchanger 20 even for a very short time, for example, for several minutes, and reliably defrosting even if frosted. In addition, a state in which frost does not form can be immediately restored, and a decrease in thermal efficiency due to frost can be prevented.
【0052】しかし、除霜操作の必要時間t2は庫内温
度や外気温度の影響を受けばらつきを生じる。ばらつき
幅一杯を所定時間t2の設定によってカバーするので
は、多くの場合必要以上に除霜操作することになり不利
である。However, the required time t2 of the defrosting operation varies due to the influence of the inside temperature and the outside air temperature. If the full range of variation is covered by the setting of the predetermined time t2, the defrosting operation is performed more than necessary in many cases, which is disadvantageous.
【0053】これに対処する変形例として、図1、図6
に示すように熱電熱交換ブロック11の冷却側、つまり
第2の熱交換部26b側の温度を検出する冷却側温度セ
ンサS3を設ける。除霜操作を開始してから、冷却側温
度センサS3が検出する熱電熱交換ブロック11の冷却
側温度が所定温度以下になると、制御装置51によって
除霜操作を終了させるようにする。これによって、除霜
操作が外気温度によって過不足になるのを防止すること
ができる。FIGS. 1 and 6 show a modified example to cope with this.
As shown in the figure, a cooling-side temperature sensor S3 for detecting the temperature on the cooling side of the thermoelectric heat exchange block 11, that is, the second heat exchange section 26b is provided. When the cooling-side temperature of the thermoelectric heat exchange block 11 detected by the cooling-side temperature sensor S3 becomes equal to or lower than the predetermined temperature after the start of the defrosting operation, the controller 51 terminates the defrosting operation. As a result, it is possible to prevent the defrosting operation from being excessive or insufficient due to the outside air temperature.
【0054】しかも、冷却側温度センサS3が検出する
温度情報を基に、過冷却による吸熱系Bの液体の凍結
や、これによる体積破壊を未然に警告したり、阻止した
りすることも必要に応じて行える。なお、冷却側温度セ
ンサS3は図6に示すように熱伝導性のよい金属板61
で押さえて熱電熱交換ブロック11の外面に取り付けて
ある。これによりペルチェ素子25の冷却側温度とほぼ
同程度となる熱電熱交換ブロック11の外面の温度を応
答性よく正確に検出することができる。Further, based on the temperature information detected by the cooling-side temperature sensor S3, it is necessary to warn or prevent the freezing of the liquid in the heat absorbing system B due to the supercooling and the volume destruction due to the freezing. Can be done according to. The cooling-side temperature sensor S3 is a metal plate 61 having good heat conductivity as shown in FIG.
And attached to the outer surface of the thermoelectric heat exchange block 11. Thereby, the temperature of the outer surface of the thermoelectric heat exchange block 11, which is substantially the same as the cooling-side temperature of the Peltier element 25, can be accurately detected with good responsiveness.
【0055】また、別の変形例として、庫内温度センサ
S2が検出する庫内温度が一定温度以上になると、制御
装置51によって除霜操作を停止するようにしてもよ
い。Further, as another modified example, the defrosting operation may be stopped by the control device 51 when the internal temperature detected by the internal temperature sensor S2 becomes equal to or higher than a predetermined temperature.
【0056】さらに、別の変形例として、ペルチェ素子
25の駆動を停止する時間間隔t1や除霜操作の必要時
間t2を外気温度センサS1が検出する外気温度に応じ
て設定するようにすると、外気温度の影響による着霜の
程度の違いに応じた除霜操作ができ、外気温度の違いに
よる除霜操作の過不足がなくなる。Further, as another modified example, if the time interval t1 for stopping the driving of the Peltier element 25 and the required time t2 for the defrosting operation are set in accordance with the outside air temperature detected by the outside air temperature sensor S1, the outside air The defrosting operation can be performed according to the difference in the degree of frost due to the influence of the temperature.
【0057】さらに、いま1つの変形例として、庫内温
度センサS2が検出する庫内温度がある一定の上限温度
を上回ったときに、制御装置51によって、ペルチェ素
子25の外気温度に基づく駆動のハイレベル値を高くす
る。Further, as another modified example, when the inside temperature detected by the inside temperature sensor S2 exceeds a certain upper limit temperature, the controller 51 drives the Peltier element 25 based on the outside air temperature. Increase the high level value.
【0058】これによると、電源投入時や庫内に熱いも
のを入れるなどして庫内温度が所定温度範囲を上回って
いたり、上回るようなときに、図8の吸熱量を優先して
庫内温度の早期適正化、および安定化を図ることができ
る。実施例としては、庫内温度が6℃になる都度この庫
内温度調整操作を行ったり、10℃でペルチェ素子25
の前記高くしたハイレベル値での駆動とともに、放熱用
ファン13a、冷却用ファン13b、および第1、第2
の各循環ポンプ14a、14bのフルパワー駆動を行
い、庫内温度が5℃になるとこの庫内温度調整操作を停
止するようにする。According to this, when the temperature inside the refrigerator exceeds or exceeds a predetermined temperature range when the power is turned on or when a hot thing is put into the refrigerator, the amount of heat absorbed in FIG. The temperature can be quickly adjusted and stabilized. As an embodiment, this operation for adjusting the internal temperature is performed every time the internal temperature reaches 6 ° C.
And the cooling fan 13b, and the first and second fans.
Of the circulation pumps 14a and 14b is driven at a full power, and when the internal temperature reaches 5 ° C., the internal temperature adjusting operation is stopped.
【0059】(実施の形態2)本実施の形態2は実施の
形態1の場合と基本構成は共通しているので、実施の形
態1の図を参照して説明する。(Embodiment 2) Embodiment 2 has the same basic configuration as that of Embodiment 1 and will be described with reference to the drawings of Embodiment 1.
【0060】制御装置51により、外気温度センサS1
検出する外気温度に応じてペルチェ素子25を駆動する
駆動電圧を決定し、庫内温度センサS2が検出する庫内
温度に応じてペルチェ素子25の駆動および駆動停止を
行う。The control device 51 controls the outside air temperature sensor S1.
A drive voltage for driving the Peltier element 25 is determined according to the detected outside air temperature, and the driving and stopping of the Peltier element 25 are performed according to the internal temperature detected by the internal temperature sensor S2.
【0061】このように制御すると、ペルチェ素子25
が庫内温度に応じて駆動、駆動停止されるので、低い庫
内温度TL に対してはペルチェ素子25の駆動停止にて
節電を優先し、高い庫内温度TH に対してはペルチェ素
子25の駆動にて吸熱を優先して、電力の無駄な消費を
避けながら庫内を所定温度範囲TL からTH に保つこと
ができるし、駆動電圧が外気温度に対応して例えば図9
に示すハイレベルVH程度にて、所定の庫内温度との差
が大きなときは高い値で図8に示すように吸熱量をより
優先し、所定の庫内温度との差が小さなときは低い値で
図7に示すように効率をより優先して、電力の無駄な消
費を避けながら庫内が所定の温度範囲TL からTH を外
れて過冷却や冷却不足となるようなことを防止すること
ができ、効率が向上する。With this control, the Peltier device 25
There driven according to the internal temperature, are driven down, against the lower inside temperature T L priority to power saving at the drive stop of the Peltier element 25, the Peltier device for high internal temperature T H preferentially an endotherm at drive 25, to be able to keep in the refrigerator while avoiding wasteful consumption of power from the predetermined temperature range T L to T H, for example, the drive voltage corresponding to the outside air temperature 9
At the high level V H of about illustrated in more preferentially endotherm 8 at a high value when the difference between the predetermined temperature inside a large, when the difference between the predetermined inside temperature is small and more preferentially efficiency as shown in FIG. 7 at a low value, that as the refrigerator while avoiding wasteful consumption of power is supercooled and insufficient cooling off the T H from a predetermined temperature range T L Can be prevented and efficiency is improved.
【0062】なお、本実施の形態2でのペルチェ素子2
5の駆動、駆動停止に併せ、放熱用ファン13a、冷却
用ファン13b、および第1、第2の各循環ポンプ14
a、14bを駆動、駆動停止するようにすることもで
き、このような制御を行うとこれらの寿命を延ばすこと
ができる。The Peltier device 2 according to the second embodiment
5, the cooling fan 13b, the first and second circulating pumps 14
It is also possible to drive and stop the a and b, and if such control is performed, their life can be extended.
【0063】ここで、本実施の形態2の実施例を示す
と、外気温度と駆動電圧との関係については以下の表3
に示すテーブルのように設定し、庫内温度と駆動、駆動
停止との関係については以下の表4に示すテーブルのよ
うに設定して好適であった。Here, the relationship between the outside air temperature and the driving voltage will be described in the following Table 3 showing the example of the second embodiment.
Table 4 below shows the relationship between the internal temperature, drive, and drive stop.
【0064】[0064]
【表3】 [Table 3]
【0065】[0065]
【表4】 [Table 4]
【0066】本実施の形態2のこのような操作におい
て、1つの変形例としてさらに、ペルチェ素子25の駆
動の継続時間を制御装置51のカウンタ71によりカウ
ントし、この継続時間が所定時間以上、例えば30分以
上であるとき、制御装置51によってペルチェ素子25
の外気温度に基づく表3に示す駆動電圧の値を高くす
る。これによって、運転開始時や設置条件等によって冷
却速度が遅いような場合にこれを早めることができる。In such an operation of the second embodiment, as a modified example, the duration of driving of the Peltier element 25 is further counted by the counter 71 of the control device 51, and this duration is longer than a predetermined time, for example, When it is longer than 30 minutes, the Peltier device 25 is
The driving voltage value shown in Table 3 based on the outside air temperature is increased. As a result, when the cooling rate is low at the start of operation or due to installation conditions, this can be accelerated.
【0067】また、別の変形例として、庫内温度が所定
温度以上であるとき、制御装置51によってペルチェ素
子25の外気温度に基づく表3に示す駆動電圧を高くす
る。As another modified example, when the internal temperature is equal to or higher than a predetermined temperature, the control device 51 increases the driving voltage shown in Table 3 based on the outside air temperature of the Peltier element 25.
【0068】これによっても、運転開始時や設置条件等
によって冷却速度が遅いような場合にこれを早めること
ができるし、前扉4が開かれたときや熱いものを投入さ
れたときの一時的な庫内温度の上昇にも速やかに対応す
ることができる。In this way, the cooling rate can be increased when the operation is started or when the cooling rate is slow due to installation conditions, etc., and when the front door 4 is opened or a hot thing is thrown in, the cooling rate can be reduced. It is possible to quickly respond to a rise in the temperature inside the refrigerator.
【0069】[0069]
【発明の効果】上記のように本発明によれば、電力の無
駄な消費を避けながら庫内が所定の温度範囲を外れて過
冷却や冷却不足となるようなことを防止することがで
き、効率が向上する。As described above, according to the present invention, it is possible to prevent the inside of a refrigerator from being overcooled or undercooled outside a predetermined temperature range while avoiding wasteful consumption of electric power. Efficiency is improved.
【図1】本発明の実施の形態の熱電冷蔵庫の全体構成を
示す断面図である。FIG. 1 is a cross-sectional view illustrating an overall configuration of a thermoelectric refrigerator according to an embodiment of the present invention.
【図2】図1の冷蔵庫の外観斜視図である。FIG. 2 is an external perspective view of the refrigerator of FIG.
【図3】図1の冷蔵庫の冷凍サイクルの模式図である。FIG. 3 is a schematic diagram of a refrigeration cycle of the refrigerator of FIG.
【図4】図3の冷凍サイクルの放熱系の構成を示す斜視
図である。FIG. 4 is a perspective view showing a configuration of a heat radiation system of the refrigeration cycle of FIG. 3;
【図5】図3の冷凍サイクルの吸熱系の構成例を示す斜
視図である。FIG. 5 is a perspective view showing a configuration example of a heat absorption system of the refrigeration cycle of FIG. 3;
【図6】図1の冷蔵庫の熱電熱交換ブロックの設置状態
を示す断面図である。FIG. 6 is a cross-sectional view showing an installation state of a thermoelectric heat exchange block of the refrigerator of FIG. 1;
【図7】ペルチェ素子の駆動電圧と効率の関係を示すグ
ラグである。FIG. 7 is a graph showing a relationship between a driving voltage of a Peltier element and efficiency.
【図8】ペルチェ素子駆動電圧と吸熱量の関係を示すグ
ラフである。FIG. 8 is a graph showing a relationship between a Peltier element driving voltage and a heat absorption amount.
【図9】外気温度と、この外気温度に応じて設定するペ
ルチェ素子の設定駆動電圧との関係を示すグラフであ
る。FIG. 9 is a graph showing a relationship between an outside air temperature and a set drive voltage of a Peltier element set according to the outside air temperature.
【図10】ペルチェ素子駆動状態とそのときの庫内温度
の変化を示すグラフである。FIG. 10 is a graph showing a Peltier element driving state and a change in the internal temperature at that time.
【図11】図1の冷蔵庫の制御回路のブロック図であ
る。FIG. 11 is a block diagram of a control circuit of the refrigerator in FIG. 1;
1 冷蔵庫本体 4 前扉 10 放熱用熱交換器 13a 放熱用ファン 13b 冷却用ファン 14a 第1の循環ポンプ 14b 第2の循環ポンプ 17 庫内室 20 冷却用熱交換器 25 ペルチェ素子 26a 第1の熱交換部 26b 第2の熱交換部 51 制御装置 57、58、71 カウンタ 59、60 タイマ S1からS4 センサ A 放熱系 B 吸熱系 DESCRIPTION OF SYMBOLS 1 Refrigerator main body 4 Front door 10 Heat dissipation heat exchanger 13a Heat dissipation fan 13b Cooling fan 14a First circulation pump 14b Second circulation pump 17 Interior chamber 20 Cooling heat exchanger 25 Peltier element 26a First heat Exchange unit 26b Second heat exchange unit 51 Controller 57, 58, 71 Counter 59, 60 Timer S1 to S4 Sensor A Heat dissipation system B Heat absorption system
───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 宗万 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 桑島 勝之 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 (72)発明者 荒川 敏和 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Muneda Maeda 4-5-2-5 Takaida Hondori, Higashi Osaka City, Osaka Prefecture Inside Matsushita Refrigerating Machinery Co., Ltd. Matsushita Refrigerating Machinery Co., Ltd. (72) Inventor Toshikazu Arakawa 4-2-5 Takaida Hondori, Higashi Osaka City, Osaka Prefecture
Claims (13)
交換部と前記の熱電部材の冷却面に熱結合した第2の熱
交換部とを形成した熱電熱交換ブロックを備え、第1の
循環ポンプと放熱用熱交換器と前記熱電熱交換ブロック
の第1の熱交換部とで第1の循環経路をなして、その内
部に液体を充填して放熱系を形成し、第2の循環ポンプ
と冷却用熱交換器と前記熱電熱交換ブロックの第2の熱
交換部とで第2の循環経路をなして、その内部に液体を
充填して吸熱系を形成し、吸熱系の冷却用熱交換器と冷
蔵庫本体の庫内空気との熱交換で冷蔵庫本体の庫内を冷
却するとともに、放熱系の放熱用熱交換器を外部空気と
熱交換して放熱するように構成し、 外気温度を検出する外気温度センサと、庫内温度を検出
する庫内温度センサとを備え、熱電部材への駆動電圧
を、外気温度に応じたハイレベルとローレベルとに設定
し、また庫内温度に応じてそれらハイレベルとローレベ
ルとを切換えるように構成したことを特徴とする熱電モ
ジュール式電気冷蔵庫。A thermoelectric heat exchange block having a first heat exchange portion thermally coupled to a heat radiating surface of the thermoelectric member and a second heat exchange portion thermally coupled to a cooling surface of the thermoelectric member; A first heat exchange section of the circulating pump, the heat-exchanging heat exchanger, and the first heat-exchanging section of the thermoelectric heat-exchange block, and a liquid being filled therein to form a heat-dissipating system; A circulation pump, a cooling heat exchanger, and a second heat exchange section of the thermoelectric heat exchange block form a second circulation path, and a liquid is filled therein to form a heat absorption system. The heat exchange between the cooling heat exchanger and the air inside the refrigerator main body cools the inside of the refrigerator main body, and the heat radiation heat exchanger of the heat radiation system is configured to exchange heat with external air to radiate heat, An external air temperature sensor for detecting an external air temperature and an internal temperature sensor for detecting an internal temperature; A thermoelectric module-type electric power source, wherein the drive voltage to the thermoelectric module is set to a high level and a low level according to the outside air temperature, and the high level and the low level are switched according to the internal temperature. refrigerator.
定時間以内であると、外気温度に基づくハイレベルとロ
ーレベルとの値を低くする請求項1に記載の熱電モジュ
ール式電気冷蔵庫。2. The thermoelectric module-type electric refrigerator according to claim 1, wherein the value of the high level and the value of the low level based on the outside air temperature are reduced when the continuation time of the operation in the high level drive is within a predetermined time.
定時間以上であると、外気温度に基づくハイレベルとロ
ーレベルとの値を高くする請求項1に記載の熱電モジュ
ール式電気冷蔵庫。3. The thermoelectric module-type electric refrigerator according to claim 1, wherein the value of the high level and the value of the low level based on the outside air temperature are increased when the continuation time of the operation in the high level drive is equal to or longer than a predetermined time.
定時間以内であると、外気温度に基づくハイレベルとロ
ーレベルとの値を高くする請求項1に記載の熱電モジュ
ール式電気冷蔵庫。4. The thermoelectric module-type electric refrigerator according to claim 1, wherein when the continuation time of the operation in the low-level drive is within a predetermined time, the values of the high level and the low level based on the outside air temperature are increased.
定時間以上であると、外気温度に基づくハイレベルとロ
ーレベルとの値を低くする請求項1に記載の熱電モジュ
ール式電気冷蔵庫。5. The thermoelectric module-type electric refrigerator according to claim 1, wherein a value of the high level and a value of the low level based on the outside air temperature are reduced when a continuation time of the operation in the low level drive is equal to or longer than a predetermined time.
間停止する請求項1に記載の熱電モジュール式電気冷蔵
庫。6. The thermoelectric module-type electric refrigerator according to claim 1, wherein the driving of the thermoelectric member is stopped for a predetermined time every predetermined time.
出する冷却側温度センサを備え、検出温度が所定温度以
上になったとき熱電部材の駆動停止を終了し駆動を再開
する請求項6に記載の熱電モジュール式電気冷蔵庫。7. A cooling-side temperature sensor for detecting a cooling-system-side temperature of the thermoelectric heat exchange block, wherein when the detected temperature exceeds a predetermined temperature, the driving stop of the thermoelectric member is terminated and the driving is restarted. The described thermoelectric modular electric refrigerator.
る冷却用熱交換器温度センサを備え、検出温度が所定温
度以上になったとき熱電部材の駆動停止を終了し駆動を
再開する請求項6に記載の熱電モジュール式電気冷蔵
庫。8. A cooling heat exchanger temperature sensor for detecting a temperature of a cooling heat exchanger of an endothermic system, wherein when the detected temperature exceeds a predetermined temperature, the driving stop of the thermoelectric member is ended and the driving is restarted. A thermoelectric modular electric refrigerator according to claim 6.
開始から終了までの時間を設定する請求項6に記載の熱
電モジュール式電気冷蔵庫。9. The thermoelectric module type electric refrigerator according to claim 6, wherein a time period from the start to the end of the drive stop of the thermoelectric member is set according to the outside air temperature.
熱電部材の外気温度に基づく駆動電圧のハイレベル値を
高くする請求項1に記載の熱電モジュール式電気冷蔵
庫。10. When the internal temperature is equal to or higher than a predetermined temperature,
The thermoelectric module type electric refrigerator according to claim 1, wherein a high level value of a drive voltage based on an outside air temperature of the thermoelectric member is increased.
熱交換部と前記の熱電部材の冷却面に熱結合した第2の
熱交換部とを形成した熱電熱交換ブロックを備え、第1
の循環ポンプと放熱用熱交換器と前記熱電熱交換ブロッ
クの第1の熱交換部とで第1の循環経路をなして、その
内部に液体を充填して放熱系を形成し、第2の循環ポン
プと冷却用熱交換器と前記熱電熱交換ブロックの第2の
熱交換部とで第2の循環経路をなして、その内部に液体
を充填して吸熱系を形成し、吸熱系の冷却用熱交換器と
冷蔵庫本体の庫内空気との冷却用ファンによる強制熱交
換で冷蔵庫本体の庫内を冷却するとともに、放熱系の放
熱用熱交換器を外部空気と放熱用ファンにより強制熱交
換して放熱するように構成し、 外気温度を検出する外気温度センサと、庫内温度を検出
する庫内温度センサとを備え、外気温度に応じて熱電部
材への駆動電圧を設定し、庫内温度に応じて熱電部材の
駆動、駆動停止を制御するように構成したことを特徴と
する熱電モジュール式電気冷蔵庫。11. A thermoelectric heat exchange block having a first heat exchange portion thermally coupled to a heat dissipation surface of a thermoelectric member and a second heat exchange portion thermally coupled to a cooling surface of said thermoelectric member, 1
A first circulation path is formed by the circulation pump, the heat radiation heat exchanger, and the first heat exchange section of the thermoelectric heat exchange block, and a liquid is filled therein to form a heat radiation system; The circulation pump, the heat exchanger for cooling, and the second heat exchange part of the thermoelectric heat exchange block form a second circulation path, which is filled with liquid to form a heat absorbing system, and cools the heat absorbing system. The inside of the refrigerator body is cooled by forced heat exchange between the heat exchanger for cooling and the air inside the refrigerator body by the cooling fan, and the forced heat exchange of the radiating heat exchanger of the radiating system is performed by external air and the radiating fan. A heat sensor for detecting the outside air temperature and an inside temperature sensor for detecting the inside temperature, and setting a driving voltage to the thermoelectric member according to the outside air temperature. It is configured to control the drive and stop of the thermoelectric member according to the temperature A thermoelectric modular electric refrigerator, characterized in that:
以上であるとき、熱電部材の外気温度に基づく駆動電圧
を高くする請求項11に記載の熱電モジュール式電気冷
蔵庫。12. The thermoelectric module type electric refrigerator according to claim 11, wherein the drive voltage based on the outside air temperature of the thermoelectric member is increased when the driving time of the thermoelectric member is equal to or longer than a predetermined time.
熱電部材の外気温度に基づく駆動電圧を高くする請求項
11に記載の熱電モジュール式電気冷蔵庫。13. When the internal temperature is equal to or higher than a predetermined temperature,
The thermoelectric modular electric refrigerator according to claim 11, wherein the drive voltage based on the outside air temperature of the thermoelectric member is increased.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10600197A JPH10300305A (en) | 1997-04-23 | 1997-04-23 | Thermoelectric module type electric refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10600197A JPH10300305A (en) | 1997-04-23 | 1997-04-23 | Thermoelectric module type electric refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10300305A true JPH10300305A (en) | 1998-11-13 |
Family
ID=14422468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10600197A Pending JPH10300305A (en) | 1997-04-23 | 1997-04-23 | Thermoelectric module type electric refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10300305A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1903157A3 (en) * | 2006-09-19 | 2008-05-14 | Integrated Dynamics Engineering GmbH | Ambient noise shielding device |
KR20160055803A (en) * | 2013-09-16 | 2016-05-18 | 포노닉 디바이시즈, 인크. | Enhanced heat transport systems for cooling chambers and surfaces |
EP3379173A1 (en) * | 2017-03-21 | 2018-09-26 | LG Electronics Inc. | Refrigerator |
US20180274827A1 (en) * | 2017-03-21 | 2018-09-27 | Lg Electronics Inc. | Refrigerator |
EP3109574B1 (en) * | 2014-02-18 | 2020-11-25 | FUJIFILM Toyama Chemical Co., Ltd. | Temperature-regulated transport box |
EP3598042A4 (en) * | 2017-03-15 | 2021-04-07 | LG Electronics Inc. | Refrigerator |
WO2022131561A1 (en) * | 2020-12-14 | 2022-06-23 | 엘지전자 주식회사 | Refrigerator and control method thereof |
WO2022131560A1 (en) * | 2020-12-14 | 2022-06-23 | 엘지전자 주식회사 | Refrigerator and control method thereof |
WO2024147303A1 (en) * | 2023-01-05 | 2024-07-11 | パナソニックIpマネジメント株式会社 | Cooling device |
-
1997
- 1997-04-23 JP JP10600197A patent/JPH10300305A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10513846B2 (en) | 2006-09-19 | 2019-12-24 | Integrated Dynamics Engineering Gmbh | Environmental noise shielding apparatus |
JP2008147621A (en) * | 2006-09-19 | 2008-06-26 | Integrated Dynamics Engineering Gmbh | Environmental noise shielding apparatus |
EP1903157A3 (en) * | 2006-09-19 | 2008-05-14 | Integrated Dynamics Engineering GmbH | Ambient noise shielding device |
KR20160055803A (en) * | 2013-09-16 | 2016-05-18 | 포노닉 디바이시즈, 인크. | Enhanced heat transport systems for cooling chambers and surfaces |
JP2016532073A (en) * | 2013-09-16 | 2016-10-13 | フォノニック デバイセズ、インク | Improved heat transport system for refrigerators and cooling surfaces |
US10520230B2 (en) | 2013-09-16 | 2019-12-31 | Phononic, Inc. | Enhanced heat transport systems for cooling chambers and surfaces |
EP3109574B1 (en) * | 2014-02-18 | 2020-11-25 | FUJIFILM Toyama Chemical Co., Ltd. | Temperature-regulated transport box |
EP3598042A4 (en) * | 2017-03-15 | 2021-04-07 | LG Electronics Inc. | Refrigerator |
US11041663B2 (en) | 2017-03-15 | 2021-06-22 | Lg Electronics Inc. | Refrigerator |
US10859294B2 (en) | 2017-03-21 | 2020-12-08 | Lg Electronics Inc. | Refrigerator with thermoelectric module |
KR20180106766A (en) * | 2017-03-21 | 2018-10-01 | 엘지전자 주식회사 | Refrigerator |
US20180274827A1 (en) * | 2017-03-21 | 2018-09-27 | Lg Electronics Inc. | Refrigerator |
US10731900B2 (en) | 2017-03-21 | 2020-08-04 | Lg Electronics Inc. | Refrigerator |
US20180274826A1 (en) * | 2017-03-21 | 2018-09-27 | Lg Electronics Inc. | Refrigerator |
KR20180106765A (en) * | 2017-03-21 | 2018-10-01 | 엘지전자 주식회사 | Refrigerator |
EP3379173A1 (en) * | 2017-03-21 | 2018-09-26 | LG Electronics Inc. | Refrigerator |
CN108626932A (en) * | 2017-03-21 | 2018-10-09 | Lg电子株式会社 | Refrigerator |
CN108626932B (en) * | 2017-03-21 | 2021-06-29 | Lg电子株式会社 | Refrigerator with a door |
WO2022131561A1 (en) * | 2020-12-14 | 2022-06-23 | 엘지전자 주식회사 | Refrigerator and control method thereof |
WO2022131560A1 (en) * | 2020-12-14 | 2022-06-23 | 엘지전자 주식회사 | Refrigerator and control method thereof |
WO2024147303A1 (en) * | 2023-01-05 | 2024-07-11 | パナソニックIpマネジメント株式会社 | Cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5941085A (en) | Refrigerator having an apparatus for defrosting | |
JP4520287B2 (en) | refrigerator | |
JPH10300305A (en) | Thermoelectric module type electric refrigerator | |
JP2957415B2 (en) | Refrigerator refrigerator ice making unit | |
US3105364A (en) | Refrigerating apparatus with defrost means | |
CN220931453U (en) | Refrigerating appliance | |
KR100431480B1 (en) | Refrigerator | |
JPH10300306A (en) | Thermoelectric module type electric refrigerator | |
JP2001289550A (en) | Thermoelectric module type electric refrigerator | |
JP3920653B2 (en) | refrigerator | |
GB2456744A (en) | Auto-defrost refrigeration apparatus | |
JP4168727B2 (en) | refrigerator | |
KR100719246B1 (en) | Kimchi Refrigerator Door Cooling System and Door Cooling Control Method | |
JP2001272147A (en) | Refrigerator | |
JPH0334630Y2 (en) | ||
JP3751710B2 (en) | Thermoelectric modular electric refrigerator | |
US12038219B2 (en) | Refrigerator control method | |
CN218495423U (en) | Evaporator, refrigerating system and refrigerator | |
CN215638232U (en) | A two-stage cascade refrigerator | |
JP2004278890A (en) | Freezer refrigerator | |
JPS6146371Y2 (en) | ||
KR200152091Y1 (en) | Fixing temperature cooling air exit air curtain cooling air refrigerator | |
US20210207870A1 (en) | Entrance refrigerator and control method thereof | |
CN117146497A (en) | Cold accumulation device, refrigeration air supply system and refrigerator | |
JPH10267495A (en) | Cooling refrigerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A02 | Decision of refusal |
Effective date: 20070424 Free format text: JAPANESE INTERMEDIATE CODE: A02 |