JPH10294505A - Magnetoresistive sensor - Google Patents
Magnetoresistive sensorInfo
- Publication number
- JPH10294505A JPH10294505A JP9104231A JP10423197A JPH10294505A JP H10294505 A JPH10294505 A JP H10294505A JP 9104231 A JP9104231 A JP 9104231A JP 10423197 A JP10423197 A JP 10423197A JP H10294505 A JPH10294505 A JP H10294505A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ferromagnetic film
- ferromagnetic
- magnetoresistive sensor
- magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 96
- 230000005291 magnetic effect Effects 0.000 claims abstract description 48
- 230000005415 magnetization Effects 0.000 claims abstract description 34
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 32
- 239000000956 alloy Substances 0.000 claims abstract description 32
- 239000007769 metal material Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910003271 Ni-Fe Inorganic materials 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 229910020598 Co Fe Inorganic materials 0.000 claims description 4
- 229910002519 Co-Fe Inorganic materials 0.000 claims description 4
- 229910017061 Fe Co Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 238000000034 method Methods 0.000 claims 3
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 56
- 239000010408 film Substances 0.000 description 120
- 229910000575 Ir alloy Inorganic materials 0.000 description 10
- 230000005290 antiferromagnetic effect Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000005330 Barkhausen effect Effects 0.000 description 1
- 229910020641 Co Zr Inorganic materials 0.000 description 1
- 229910020707 Co—Pt Inorganic materials 0.000 description 1
- 229910020520 Co—Zr Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Measuring Magnetic Variables (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
(57)【要約】
【課題】出力波形の線形性,対称性が良く、高感度の磁
気抵抗センサを提供する。
【解決手段】非磁性導電膜13を介して強磁性膜14と
強磁性膜12が積層されており、強磁性膜14の磁化の
方向は固定されており、強磁性膜12の磁化は外部磁界
により回転する。強磁性膜12として、異方性磁気抵抗
効果による抵抗変化量が小さい、Fe,Co,Niまた
はこれらのうち一つ以上の元素を含む磁性金属材料にI
rを添加した合金を用いる。
(57) [Problem] To provide a high-sensitivity magnetoresistive sensor having good linearity and symmetry of an output waveform. A ferromagnetic film and a ferromagnetic film are stacked with a non-magnetic conductive film interposed therebetween, the direction of magnetization of the ferromagnetic film is fixed, and the magnetization of the ferromagnetic film is controlled by an external magnetic field. To rotate. For the ferromagnetic film 12, Fe, Co, Ni, or a magnetic metal material containing at least one of these elements, which has a small resistance change due to the anisotropic magnetoresistance effect, may be used.
An alloy to which r is added is used.
Description
【0001】[0001]
【発明の属する技術分野】本発明は磁気的に記録された
情報を再生する磁気トランスデューサに係り、特に線形
性に優れ、感度が高い磁気抵抗センサに関する。The present invention relates to a magnetic transducer for reproducing magnetically recorded information, and more particularly to a magnetoresistive sensor having excellent linearity and high sensitivity.
【0002】[0002]
【従来の技術】磁気ディスク装置のダウンサイジング化
に伴い、面記録密度が急速に向上し、高密度に記録され
た情報をも読出すことができる磁気抵抗センサ、つまり
磁気抵抗効果型ヘッド(MRヘッド)が実用化されてい
る。現在使われているMRヘッドは、1975年出版の
アイイーイーイー トランザクション オン マグネテ
ィクス MAG−11巻の1039ページに詳細に説明
されている異方性磁気抵抗効果に基づき作動するもので
あり、その電気抵抗は、磁気抵抗センサ積層膜内の磁化
の方向と信号検出電流の方向のなす角度θの余弦の2
乗,cos2θで変化することが知られている。2. Description of the Related Art Along with downsizing of a magnetic disk drive, the areal recording density is rapidly improved, and a magnetoresistive sensor capable of reading out information recorded at a high density, that is, a magnetoresistive head (MR). Head) has been put to practical use. Currently used MR heads operate based on the anisotropic magnetoresistive effect described in detail on page 1039 of IEE Transaction on Magnetics MAG-11, published in 1975. The resistance is the cosine of the angle θ between the direction of the magnetization in the magnetoresistive sensor laminated film and the direction of the signal detection current.
It is known that it changes with the power and cos 2 θ.
【0003】数Gb/in2 以上の面記録密度になる
と、異方性磁気抵抗効果を用いた磁気抵抗センサでは感
度不足が予想されるため、1989年出版のフィジカル
レビュー ビー 39巻の4828ページに紹介され
ているような、非磁性導電膜を介して積層された2層の
強磁性膜の互いの磁化の方向のなす角度によって電気抵
抗が変化する巨大磁気抵抗効果を用いた磁気抵抗センサ
の研究開発が盛んに行われている。At an areal recording density of several Gb / in 2 or more, the sensitivity of a magnetoresistive sensor using the anisotropic magnetoresistance effect is expected to be insufficient, so see Physical Review Bee, Vol. 39, 1989, p. Research on a giant magnetoresistive sensor using the giant magnetoresistive effect in which the electrical resistance changes depending on the angle between the directions of magnetization of two ferromagnetic films stacked via a nonmagnetic conductive film as introduced Development is active.
【0004】巨大磁気抵抗効果を用いた磁気抵抗センサ
の一つとして、特開平4−358310 号公報には、スピンバ
ルブ構造と呼ばれる構造が開示されている。これは、反
強磁性膜によって磁化が特定の方向に固定された第一の
強磁性膜と、第一の強磁性膜と非磁性導電膜を介して積
層された第二の強磁性膜で構成されており、第一の強磁
性膜の磁化と第二の強磁性膜の磁化の相対的に角度によ
って電気抵抗が変化する。As one of the magnetoresistive sensors using the giant magnetoresistive effect, Japanese Patent Laid-Open No. 4-358310 discloses a structure called a spin valve structure. It consists of a first ferromagnetic film whose magnetization is fixed in a specific direction by an antiferromagnetic film, and a second ferromagnetic film laminated with the first ferromagnetic film and a non-magnetic conductive film. The electric resistance changes depending on the relative angle between the magnetization of the first ferromagnetic film and the magnetization of the second ferromagnetic film.
【0005】ダイジェスト オブ インターマグ96
AA−02 には、スピンバルブ構造の磁気抵抗センサ
が、記録密度5Gb/in2 の磁気ディスク装置の再生
ヘッドとして使用可能であることが記載されている。[0005] Digest of Intermag 96
AA-02 describes that a magnetoresistive sensor having a spin valve structure can be used as a reproducing head of a magnetic disk device having a recording density of 5 Gb / in 2 .
【0006】[0006]
【発明が解決しようとする課題】上記従来技術では、異
方性磁気抵抗効果を利用した磁気抵抗センサに比べ、出
力の大きな磁気抵抗センサを得ることができる。しか
し、磁気抵抗センサの感度を向上させるためには、出力
だけではなく、出力波形の線形性,対称性が良いことも
必要である。In the above prior art, a magnetoresistive sensor having a larger output can be obtained as compared with a magnetoresistive sensor utilizing the anisotropic magnetoresistive effect. However, in order to improve the sensitivity of the magnetoresistive sensor, not only the output but also the output waveform needs to have good linearity and symmetry.
【0007】従来技術の一つであるダイジェスト オブ
インターマグ96 AA−02で記載されている磁気
抵抗センサは、再生出力が巨大磁気抵抗効果を仮定した
シミュレーションに比べて小さくなっており、また、出
力波形がマイナス側に非対称になっている。第20回
日本応用磁気学会学術講演概要集の359ページでは、
これらの実測された再生特性について、異方性磁気抵抗
効果の影響を考慮に入れてシミュレーションにより解析
を行っている。その結果、異方性磁気抵抗効果の抵抗変
化量が巨大磁気抵抗効果の抵抗変化量に対して17%あ
るものとすると、実測の再生特性と良く一致し、また、
異方性磁気抵抗効果による抵抗変化量が17%という値
は、第二の強磁性膜の抵抗変化量の測定からも妥当な値
であると述べている。従って、異方性磁気抵抗効果の影
響によって、本来スピンバルブ構造の磁気抵抗センサが
持っている大きな再生出力と対称性の良い再生波形が損
なわれていることになる。[0007] The magnetoresistive sensor described in Digest of Intermag 96 AA-02, which is one of the prior arts, has a smaller reproduction output than a simulation assuming the giant magnetoresistance effect, and has a lower output. The waveform is asymmetric on the negative side. 20th
On page 359 of the Abstracts of the Japan Society of Applied Magnetics,
These measured reproduction characteristics are analyzed by simulation in consideration of the influence of the anisotropic magnetoresistance effect. As a result, assuming that the resistance change amount of the anisotropic magnetoresistance effect is 17% of the resistance change amount of the giant magnetoresistance effect, the measured readout characteristics match well, and
It is stated that a value of 17% in the resistance change due to the anisotropic magnetoresistance effect is an appropriate value from the measurement of the resistance change in the second ferromagnetic film. Therefore, a large reproduction output and a reproduction waveform having good symmetry originally possessed by the magnetoresistive sensor having the spin valve structure are impaired by the influence of the anisotropic magnetoresistance effect.
【0008】そこで、本発明の目的は、異方性磁気抵抗
効果の影響を極力小さくして、若しくは、無くして、再
生出力を向上させ、再生波形の対称性を改善して、高感
度の磁気抵抗センサを提供することにある。Accordingly, an object of the present invention is to reduce or eliminate the influence of the anisotropic magnetoresistance effect as much as possible, to improve the reproduction output, to improve the symmetry of the reproduction waveform, and to obtain a high-sensitivity magnetic field. It is to provide a resistance sensor.
【0009】[0009]
【課題を解決するための手段】上記目的は、巨大磁気抵
抗効果による抵抗変化量に対する異方性磁気抵抗効果に
よる抵抗変化量の比率を小さくすることにより達成され
る。The above object is achieved by reducing the ratio of the resistance change due to the anisotropic magnetoresistance effect to the resistance change due to the giant magnetoresistance effect.
【0010】磁気抵抗センサ積層膜と、磁気抵抗センサ
積層膜に信号検出電流を流すための電極と、磁気抵抗セ
ンサ積層膜の電気抵抗変化を検知する手段とを有する磁
気抵抗センサにおいて、磁気抵抗センサ積層膜が、非磁
性導電膜を介して第一の強磁性膜と第二の強磁性膜が積
層されており、前記第一の強磁性膜の磁化の方向は固定
されており、前記第二の強磁性膜の磁化は外部磁界によ
り回転し、前記第一の強磁性膜の磁化の方向と前記第二
の強磁性膜の磁化の方向の相対的な角度が変わることに
よって電気抵抗が変化する、スピンバルブ構造の磁気抵
抗センサ積層膜である場合、第二の強磁性膜を、異方性
磁気抵抗効果による抵抗変化量が小さい、Fe,Co,
Niまたはこれらのうち一つ以上の元素を含む磁性金属
材料にIrを添加した合金で構成する。A magnetoresistive sensor having a magnetoresistive sensor laminated film, an electrode for passing a signal detection current through the magnetoresistive sensor laminated film, and means for detecting a change in electric resistance of the magnetoresistive sensor laminated film. The laminated film has a first ferromagnetic film and a second ferromagnetic film laminated via a non-magnetic conductive film, the direction of magnetization of the first ferromagnetic film is fixed, The magnetization of the ferromagnetic film is rotated by an external magnetic field, and the electrical resistance changes by changing the relative angle between the direction of the magnetization of the first ferromagnetic film and the direction of the magnetization of the second ferromagnetic film. In the case of a magnetoresistive sensor laminated film having a spin valve structure, the second ferromagnetic film is made of Fe, Co,
It is composed of Ni or an alloy obtained by adding Ir to a magnetic metal material containing at least one of these elements.
【0011】また、磁気抵抗センサ積層膜が、第一の非
磁性導電膜を介して第一の強磁性膜と第二の強磁性膜が
積層され、第二の非磁性導電膜を介して第二の強磁性膜
と第三の強磁性膜が積層されており、前記第一の強磁性
膜の磁化の方向及び前記第三の強磁性膜の磁化の方向は
固定されており、前記第二の強磁性膜の磁化は外部磁界
により回転し、前記第一の強磁性膜の磁化の方向と前記
第二の強磁性膜の磁化の方向の相対的な角度、及び前記
第二の強磁性膜の磁化の方向と前記第三の強磁性膜の磁
化の方向の相対的な角度が変わることによって電気抵抗
が変化する、デュアルスピンバルブ構造の磁気抵抗セン
サ積層膜である場合においても、第二の強磁性膜を、異
方性磁気抵抗効果による抵抗変化量が小さい、Fe,C
o,Niまたはこれらのうち一つ以上の元素を含む磁性
金属材料にIrを添加した合金で構成する。In addition, a first ferromagnetic film and a second ferromagnetic film are laminated on a magnetoresistive sensor laminated film via a first nonmagnetic conductive film, and a second ferromagnetic film is laminated via a second nonmagnetic conductive film. A second ferromagnetic film and a third ferromagnetic film are stacked, the direction of magnetization of the first ferromagnetic film and the direction of magnetization of the third ferromagnetic film are fixed, and the second The magnetization of the ferromagnetic film is rotated by an external magnetic field, and the relative angle between the direction of the magnetization of the first ferromagnetic film and the direction of the magnetization of the second ferromagnetic film; The electrical resistance changes by changing the relative angle between the direction of magnetization of the third ferromagnetic film and the direction of magnetization of the third ferromagnetic film. The ferromagnetic film is made of Fe, C having a small resistance change due to the anisotropic magnetoresistance effect.
It is composed of an alloy obtained by adding Ir to a magnetic metal material containing at least one of o, Ni or one of these elements.
【0012】[0012]
【発明の実施の形態】巨大磁気抵抗効果による抵抗変化
量に対する異方性磁気抵抗効果による抵抗変化量の比率
は、第二の強磁性膜の異方性磁気抵抗効果による比抵抗
変化量ΔρAMR を低減することによって、小さくするこ
とができる。そこで、第三元素の添加によるΔρAMR の
低減を検討した。ここで、巨大磁気抵抗効果を生じる磁
気センサ積層膜の第二の強磁性膜は、磁性原子によるス
ピン依存散乱により磁気抵抗変化が生じるため、非磁性
導電膜との界面において磁性原子が多いこと、また、軟
磁性が得られる結晶構造、例えば面心立方構造であるこ
とが望ましいため、添加元素は、少量の添加によりΔρ
AMR が低減するものが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The ratio of the resistance change due to the anisotropic magnetoresistance effect to the resistance change due to the giant magnetoresistance effect is represented by the specific resistance change Δρ AMR of the second ferromagnetic film due to the anisotropic magnetoresistance effect. Can be reduced. Therefore, reduction of Δρ AMR by adding a third element was studied. Here, the second ferromagnetic film of the magnetic sensor laminated film that causes the giant magnetoresistance effect has a large number of magnetic atoms at the interface with the nonmagnetic conductive film because the magnetoresistance changes due to spin-dependent scattering by magnetic atoms. Further, since it is desirable to have a crystal structure capable of obtaining soft magnetism, for example, a face-centered cubic structure, the added element is Δρ
Those that reduce AMR are preferred.
【0013】図1は、第二の強磁性膜として一般的に用
いられているNi81Fe19に、第三元素としてAl,Z
r,Nb,Pd,Irを添加した厚さ20nmの膜の室
温におけるΔρAMR の元素添加量依存性である。Al,
Pdを添加した場合は、20at.%添加してもΔρAMR
が0.2μΩ・cm以下にならず、ΔρAMR 低減の効果は
小さい。Zr,Nb,Irの場合には、これらに比べて
少量の添加によりΔρAMR を低減することができ、なか
でも特にIrは、約2at.% の添加によりΔρAMR がゼ
ロになり、添加の効果が著しいことが分かる。FIG. 1 shows Ni 81 Fe 19 generally used as a second ferromagnetic film, and Al and Z as third elements.
It is an element addition amount dependency of Δρ AMR at room temperature of a film having a thickness of 20 nm to which r, Nb, Pd, and Ir are added. Al,
When Pd is added, Δρ AMR even when 20 at.% Is added
Is not less than 0.2 μΩ · cm, and the effect of reducing Δρ AMR is small. In the case of Zr, Nb, and Ir, Δρ AMR can be reduced by adding a small amount compared to these. Above all, Ir has a Δρ AMR of zero by the addition of about 2 at. Is remarkable.
【0014】IrによるΔρAMR の著しい低減は、Ni
81Fe19だけではなく、Fe,Co,Niまたはこれら
のうち一つ以上の元素を含む磁性金属材料で見られる。The significant reduction of Δρ AMR by Ir is due to Ni
Not only 81 Fe 19, Fe, Co, seen in a magnetic metal material containing Ni or one or more elements of these.
【0015】次に、第二の強磁性膜として、上記のよう
にΔρAMR の小さい強磁性膜を用いた、スピンバルブ構
造の磁気抵抗センサについて説明する。Next, a magnetoresistive sensor having a spin-valve structure using a ferromagnetic film having a small Δρ AMR as described above as the second ferromagnetic film will be described.
【0016】図2は、本発明のスピンバルブ構造の磁気
抵抗センサの一実施例の断面図である。ガラス,セラミ
クスからなる非磁性基板10の上に、例えばTaからな
る下地層11を形成し、強磁性膜12としてNi−Fe
−Ir合金を、非磁性導電膜13として例えばCuを、
強磁性膜14として例えばCoを成膜する。強磁性膜1
2の膜厚は3〜15nm、非磁性導電膜13は1.5 〜
5nm、強磁性膜14は2〜5nmが好ましい。強磁性
膜14の磁化を固定するために、この上に反強磁性膜1
5、例えばFe−Mn合金を積層し、さらに、例えばT
aなどからなる保護膜16を成膜する。リソグラフィー
技術を用いて所定の形状のMR素子積層膜にパターニン
グした後、MR素子積層膜の両側に、バルクハウゼンノ
イズを抑制するために強磁性膜12に縦バイアス磁界を
印加する縦バイアス印加層17と、MR素子積層膜に信
号検出電流を流すための電極18を形成する。縦バイア
ス印加層17は、例えばCo−Pt合金,Co−Pt−
Cr合金などの永久磁石膜や、例えばNi−Fe合金と
Ni−Mn合金の積層膜のような強磁性/反強磁性積層
膜を用い、電極18は、例えばTa,Auなどを用い
る。素子作製後、素子高さ方向40に磁界を印加しなが
ら熱処理を行い、反強磁性膜15と強磁性膜14との間
に作用する交換結合により、強磁性膜14の磁化の方向
を固定する。その後、縦バイアス印加層17の着磁を行
うが、縦バイアス印加層17が永久磁石膜である場合に
は、室温でトラック幅方向50に磁界を印加することに
より着磁が完了するが、強磁性/反強磁性積層膜の場合
には、トラック幅方向50に磁界を印加しながら熱処理
を施す。FIG. 2 is a sectional view of an embodiment of a magnetoresistive sensor having a spin valve structure according to the present invention. An underlayer 11 made of, for example, Ta is formed on a nonmagnetic substrate 10 made of glass and ceramics, and Ni--Fe is used as a ferromagnetic film 12.
-Ir alloy, for example, Cu as the non-magnetic conductive film 13,
For example, Co is formed as the ferromagnetic film 14. Ferromagnetic film 1
2 has a thickness of 3 to 15 nm, and the nonmagnetic conductive film 13 has a thickness of 1.5 to 15 nm.
The thickness of the ferromagnetic film 14 is preferably 2 nm to 5 nm. In order to fix the magnetization of the ferromagnetic film 14, the antiferromagnetic film 1
5, for example, by laminating an Fe—Mn alloy,
A protective film 16 made of a or the like is formed. After patterning into a MR element laminated film of a predetermined shape using lithography technology, a longitudinal bias application layer 17 for applying a longitudinal bias magnetic field to the ferromagnetic film 12 to suppress Barkhausen noise is provided on both sides of the MR element laminated film. Then, an electrode 18 for passing a signal detection current through the MR element laminated film is formed. The vertical bias applying layer 17 is made of, for example, a Co-Pt alloy, Co-Pt-
A permanent magnet film such as a Cr alloy or a ferromagnetic / antiferromagnetic laminated film such as a laminated film of a Ni—Fe alloy and a Ni—Mn alloy is used, and the electrode 18 is made of, for example, Ta, Au, or the like. After the device is fabricated, heat treatment is performed while applying a magnetic field in the device height direction 40, and the direction of magnetization of the ferromagnetic film 14 is fixed by exchange coupling acting between the antiferromagnetic film 15 and the ferromagnetic film 14. . Thereafter, the longitudinal bias applying layer 17 is magnetized. When the longitudinal bias applying layer 17 is a permanent magnet film, the magnetization is completed by applying a magnetic field in the track width direction 50 at room temperature. In the case of a magnetic / anti-ferromagnetic multilayer film, heat treatment is performed while applying a magnetic field in the track width direction 50.
【0017】強磁性膜12として用いたNi−Fe−I
r合金は、本発明の特定の例であり、これに限定される
ものでなく、強磁性膜12は、Fe,Co,Niまたは
これらのうち一つ以上の元素を含む磁性金属材料にIr
を添加した合金を用いることができる。具体的には、N
i−Fe−Ir合金の他に、Co−Fe−Ir合金,N
i−Fe−Co−Ir合金などが挙げられる。また、本
実施例では強磁性膜12を1層の磁性膜で構成している
が、これらの合金と、Ni−Fe合金,Co−Fe合
金,Ni−Fe−Co合金などを積層あるいは多層にし
て用いてもよい。Ni—Fe—I used as the ferromagnetic film 12
The r alloy is a specific example of the present invention and is not limited thereto. The ferromagnetic film 12 may be made of Fe, Co, Ni, or a magnetic metal material containing at least one of these elements.
Can be used. Specifically, N
In addition to the i-Fe-Ir alloy, a Co-Fe-Ir alloy, N
i-Fe-Co-Ir alloy and the like. In this embodiment, the ferromagnetic film 12 is composed of a single magnetic film. However, these alloys and a Ni—Fe alloy, a Co—Fe alloy, a Ni—Fe—Co alloy, or the like are laminated or multilayered. May be used.
【0018】また、強磁性膜は良好な軟磁気特性を有す
ることが好ましく、そのため、本実施例では、Taの下
地膜の上に強磁性膜を成膜することにより、面心立方構
造の(111)面を膜面に平行に優先配向させて、良好
な軟磁気特性を得ている。Taの他にも、Zr,Hf、
または非晶質膜、例えばCo−Zr系合金,Co−Hf
系合金を下地膜として用いた場合に、良好な軟磁気特性
が得られる。Further, it is preferable that the ferromagnetic film has good soft magnetic characteristics. Therefore, in this embodiment, the ferromagnetic film is formed on the Ta base film so that the face-centered cubic structure ( The (111) plane is preferentially oriented parallel to the film surface, and good soft magnetic characteristics are obtained. In addition to Ta, Zr, Hf,
Alternatively, an amorphous film, for example, a Co—Zr alloy, Co—Hf
When a base alloy is used as a base film, good soft magnetic characteristics can be obtained.
【0019】なお、本実施例では、強磁性膜,非磁性導
電膜,強磁性膜,電極の順に作製しているが、非磁性導
電膜を介して二つの強磁性膜が積層されており、強磁性
膜が良好な軟磁気特性を示すのならば、必ずしもこの順
に作製する必要はない。In this embodiment, the ferromagnetic film, the non-magnetic conductive film, the ferromagnetic film, and the electrode are formed in this order. However, two ferromagnetic films are laminated via the non-magnetic conductive film. If the ferromagnetic film exhibits good soft magnetic characteristics, it is not always necessary to fabricate them in this order.
【0020】比較のため、強磁性膜12をNi−Fe合
金にした磁気抵抗センサも作製し、異方性磁気抵抗効果
の影響を調べた。なお、強磁性膜の膜厚は、Ni−Fe
−Ir合金,Ni−Fe合金ともに10nmとした。ま
ず、巨大磁気抵抗効果に異方性磁気抵抗効果が重畳する
ことを考慮して、ランダウ−リフシッツ−ギルバート方
程式を用いて、磁気抵抗効果曲線のシミュレーションを
行った。シミュレーションを行う前に、本実施例及び比
較例の膜構成における、巨大磁気抵抗効果に対する異方
性磁気抵抗効果の割合を測定し、その値を基に、素子高
さが1.2μm,トラック幅が1.4μm の素子につい
て、電流密度10MA/cm2 の条件で計算を行い、巨大
磁気抵抗効果の出力,異方性磁気抵抗効果の出力、及び
両者を足し合わせた素子全体の出力を求めた。For comparison, a magnetoresistive sensor in which the ferromagnetic film 12 was made of a Ni--Fe alloy was also manufactured, and the effect of the anisotropic magnetoresistance effect was examined. The thickness of the ferromagnetic film is Ni-Fe
The thickness of both the Ir alloy and the Ni-Fe alloy was 10 nm. First, in consideration of the superposition of the anisotropic magnetoresistance effect on the giant magnetoresistance effect, the simulation of the magnetoresistance effect curve was performed using the Landau-Lifshitz-Gilbert equation. Before the simulation, the ratio of the anisotropic magnetoresistive effect to the giant magnetoresistive effect in the film configurations of this embodiment and the comparative example was measured, and based on the value, the element height was 1.2 μm and the track width was 1.2 μm. Was calculated under the conditions of a current density of 10 MA / cm 2 for an element having a thickness of 1.4 μm, and the output of the giant magnetoresistance effect, the output of the anisotropic magnetoresistance effect, and the output of the entire element obtained by adding both were obtained. .
【0021】本実施例の磁気抵抗効果曲線を図3に、比
較例の磁気抵抗効果曲線を図4に示す。なお、図の縦軸
は、強磁性膜14の磁化が完全に固定されているときの
巨大磁気抵抗効果による出力を1.0 として規格化して
ある。図3で、巨大磁気抵抗効果による出力はSVであ
り、強磁性膜12の異方性磁気抵抗効果による出力はA
MRである。Ni−Fe−Ir合金の組成を調整するこ
とによって、異方性磁気抵抗効果による抵抗変化量をゼ
ロにすることが可能であり、この場合には、図3のよう
にAMRはゼロとなるので、巨大磁気抵抗効果の出力と
異方性磁気抵抗効果の出力を合わせた素子全体の出力S
V+AMRには、異方性磁気抵抗効果の影響が現われ
ず、巨大磁気抵抗効果による出力SVと等しくなる。一
方、図4の比較例の場合には、強磁性膜12がNi−F
e合金であるため、異方性磁気抵抗効果による出力電圧
が生じており、これにより、素子全体の出力SV+AM
Rは、巨大磁気抵抗効果による出力SVとは大きく異な
り、外部磁界0付近で凸になり、線形性が悪くなってい
る。外部磁界0近傍で、本実施例(図3)では、正負の
出力の対称性も線形性も良好であるが、比較例(図4)
では、線形性が悪く、磁気抵抗センサとして動作させた
場合には、負の出力の方が大きい非対称な出力波形にな
るものと考えられる。FIG. 3 shows a magnetoresistive effect curve of this embodiment, and FIG. 4 shows a magnetoresistive effect curve of a comparative example. The vertical axis of the figure is normalized by setting the output by the giant magnetoresistance effect when the magnetization of the ferromagnetic film 14 is completely fixed to 1.0. In FIG. 3, the output due to the giant magnetoresistance effect is SV, and the output due to the anisotropic magnetoresistance effect of the ferromagnetic film 12 is A.
MR. By adjusting the composition of the Ni—Fe—Ir alloy, the amount of resistance change due to the anisotropic magnetoresistance effect can be made zero. In this case, the AMR becomes zero as shown in FIG. , The output S of the entire device, combining the output of the giant magnetoresistance effect and the output of the anisotropic magnetoresistance effect
V + AMR is not affected by the anisotropic magnetoresistance effect and is equal to the output SV due to the giant magnetoresistance effect. On the other hand, in the case of the comparative example of FIG.
Since the alloy is an e-alloy, an output voltage is generated due to the anisotropic magnetoresistance effect.
R is significantly different from the output SV due to the giant magnetoresistance effect, becomes convex near the external magnetic field 0, and has poor linearity. In the present embodiment (FIG. 3) near the external magnetic field 0, both the symmetry and the linearity of the positive and negative outputs are good, but the comparative example (FIG. 4)
Therefore, it is considered that the linearity is poor, and when operated as a magnetoresistive sensor, a negative output has a larger asymmetric output waveform.
【0022】図5及び図6は、それぞれ本実施例及び比
較例の磁気抵抗センサの磁気抵抗効果曲線の実測例であ
る。素子高さは1.2μm、トラック幅は1.4μmであ
り、電流密度は10MA/cm2 である。これらと、図3
及び図4のSV+AMRと比較すると、磁気抵抗効果曲
線の形状がよく一致しており、強磁性膜に異方性磁気抵
抗効果による抵抗変化量が小さいNi−Fe−Ir合金
を用いることにより、異方性磁気抵抗効果の影響を著し
く小さくできること、若しくは、なくすことができるこ
とが確認できた。FIGS. 5 and 6 show actual measurement examples of the magnetoresistive effect curves of the magnetoresistive sensors of the present embodiment and the comparative example, respectively. The element height is 1.2 μm, the track width is 1.4 μm, and the current density is 10 MA / cm 2 . These and FIG.
4 and the SV + AMR shown in FIG. 4, the shape of the magnetoresistive effect curve is in good agreement, and by using a Ni—Fe—Ir alloy having a small resistance change due to the anisotropic magnetoresistive effect for the ferromagnetic film, the difference is obtained. It was confirmed that the effect of the anisotropic magnetoresistance effect can be significantly reduced or eliminated.
【0023】図7は、本発明のデュアルスピンバルブ構
造の磁気抵抗センサの一実施例の断面図である。ガラ
ス,セラミクスからなる非磁性基板10の上に、例えば
Pt−Mn合金,Pd−Pt−Mn合金,NiO酸化
物,NiO酸化物とCoO酸化物の積層体などからなる
反強磁性膜25を形成し、強磁性膜24として例えばC
oを、さらに、非磁性導電膜23として例えばCuを積
層する。その上に、強磁性膜22としてNi−Fe−I
r合金を成膜し、さらに、非磁性導電膜33として例え
ばCuを、強磁性膜34として例えばCoを、強磁性膜
34の磁化を固定するための反強磁性膜35を積層し、
最上層には保護膜36を設ける。強磁性膜22の膜厚は
3〜15nm、非磁性導電膜23及び非磁性導電膜33
は1.5 〜5nm、強磁性膜24及び強磁性膜34は2
〜5nmが好ましい。この後に続く、MR素子積層膜の
パターニング以降の工程は、スピンバルブ構造の磁気抵
抗センサの場合と同様に行う。FIG. 7 is a sectional view of an embodiment of a magnetoresistive sensor having a dual spin valve structure according to the present invention. An antiferromagnetic film 25 made of, for example, a Pt-Mn alloy, a Pd-Pt-Mn alloy, NiO oxide, a laminate of NiO oxide and CoO oxide, etc. is formed on the nonmagnetic substrate 10 made of glass or ceramics. Then, as the ferromagnetic film 24, for example, C
Further, for example, Cu is laminated as the nonmagnetic conductive film 23. On top of that, Ni-Fe-I
a non-magnetic conductive film 33, for example, Cu, a ferromagnetic film 34, for example, Co, and an antiferromagnetic film 35 for fixing the magnetization of the ferromagnetic film 34.
A protective film 36 is provided on the uppermost layer. The thickness of the ferromagnetic film 22 is 3 to 15 nm, and the nonmagnetic conductive film 23 and the nonmagnetic conductive film 33 are provided.
Is 1.5 to 5 nm, and the ferromagnetic films 24 and 34 are 2
55 nm is preferred. Subsequent steps after the patterning of the MR element laminated film are performed in the same manner as in the case of the magnetoresistive sensor having the spin valve structure.
【0024】強磁性膜22は、Ni−Fe−Ir合金の
他に、Co−Fe−Ir合金,Ni−Fe−Co−Ir
合金などを用いることができ、また、これらの合金と、
Ni−Fe合金,Co−Fe合金,Ni−Fe−Co合
金などの積層膜あるいは多層膜を用いてもよい。The ferromagnetic film 22 is made of a Ni--Fe--Ir alloy, a Co--Fe--Ir alloy, a Ni--Fe--Co--Ir alloy.
Alloys and the like, and these alloys,
A stacked film or a multilayer film of a Ni—Fe alloy, a Co—Fe alloy, a Ni—Fe—Co alloy, or the like may be used.
【0025】本実施例の場合、強磁性膜22は非磁性導
電膜23上に形成される。ここで、強磁性膜22は、結
晶構造が面心立方格子である場合に良好な軟磁気特性を
示すため、非磁性導電膜23が、その結晶構造が面心立
方格子である金属膜であることが好ましく、さらに、上
で述べた強磁性膜22の材料と格子定数の近いCu膜で
あることが望ましい。In this embodiment, the ferromagnetic film 22 is formed on the non-magnetic conductive film 23. Here, since the ferromagnetic film 22 exhibits good soft magnetic properties when the crystal structure is a face-centered cubic lattice, the nonmagnetic conductive film 23 is a metal film whose crystal structure is a face-centered cubic lattice. It is preferable that the material be a Cu film having a lattice constant close to that of the material of the ferromagnetic film 22 described above.
【0026】デュアルスピンバルブ構造の磁気抵抗セン
サでも、スピンバルブ構造の磁気抵抗センサと同様に、
強磁性膜に、異方性磁気抵抗効果による抵抗変化量の小
さい上記の材料を用いることにより、磁気抵抗センサの
出力波形における異方性磁気抵抗効果の影響を著しく小
さくすること、若しくは、なくすことができる。In the magnetoresistive sensor having the dual spin valve structure, similarly to the magnetoresistive sensor having the spin valve structure,
By using the above-mentioned material having a small resistance change due to the anisotropic magnetoresistance effect for the ferromagnetic film, the influence of the anisotropic magnetoresistance effect on the output waveform of the magnetoresistance sensor is significantly reduced or eliminated. Can be.
【0027】以上の実施例では、非磁性基板10上に直
接磁気抵抗センサを形成した場合について説明したが、
磁気抵抗センサの分解能を向上させるために、例えばア
ルミナ等からなる絶縁膜を介して素子の上下にシールド
層を設けたり、また、記録媒体に情報を記録するため
に、素子の上側又は下側のどちらかに誘導型ヘッドを設
けたりすることも、もちろん可能である。このようにし
ても、本発明の磁気抵抗センサの基本的な特性は変わる
ものではない。In the above embodiment, the case where the magnetoresistive sensor is formed directly on the non-magnetic substrate 10 has been described.
In order to improve the resolution of the magnetoresistive sensor, for example, shield layers are provided above and below the element via an insulating film made of, for example, alumina, or, in order to record information on a recording medium, the upper or lower side of the element. Of course, it is also possible to provide an inductive head on either side. This does not change the basic characteristics of the magnetoresistive sensor of the present invention.
【0028】[0028]
【発明の効果】本発明によれば、スピンバルブ構造及び
デュアルスピンバルブ構造の磁気抵抗センサで、異方性
磁気抵抗効果の影響を著しく小さくすること、若しく
は、なくすことができるため、出力波形の線形性,対称
性が良く,高感度の磁気抵抗センサを提供することがで
きる。According to the present invention, the effects of the anisotropic magnetoresistive effect can be significantly reduced or eliminated in the magnetoresistive sensor having the spin valve structure and the dual spin valve structure. A highly sensitive magnetoresistive sensor having good linearity and symmetry can be provided.
【図1】Ni81Fe19に第三元素を添加した厚さ20n
mの薄膜の異方性磁気抵抗効果による比抵抗変化量の元
素添加量依存性を示す特性図。FIG. 1 Ni 81 Fe 19 with a third element added to a thickness of 20 n
FIG. 9 is a characteristic diagram showing the dependence of the amount of change in specific resistance due to the anisotropic magnetoresistance effect on the element addition amount of a thin film of m.
【図2】本発明のスピンバルブ構造の磁気抵抗センサの
一実施例を示すための断面図。FIG. 2 is a sectional view showing an embodiment of a magnetoresistive sensor having a spin valve structure according to the present invention.
【図3】本発明のスピンバルブ構造の磁気抵抗センサの
磁気抵抗効果曲線をシミュレーションにより計算した結
果を示す特性図。FIG. 3 is a characteristic diagram showing a result of calculating a magnetoresistance effect curve of a magnetoresistance sensor having a spin valve structure according to the present invention by simulation.
【図4】従来のスピンバルブ構造の磁気抵抗センサの磁
気抵抗効果曲線をシミュレーションにより計算した結果
を示す特性図。FIG. 4 is a characteristic diagram showing a result of calculating a magnetoresistance effect curve of a conventional magnetoresistance sensor having a spin valve structure by simulation.
【図5】本発明のスピンバルブ構造の磁気抵抗センサの
磁気抵抗効果曲線の測定結果を示す特性図。FIG. 5 is a characteristic diagram showing a measurement result of a magnetoresistive effect curve of a magnetoresistive sensor having a spin valve structure according to the present invention.
【図6】従来のスピンバルブ構造の磁気抵抗センサの磁
気抵抗効果曲線の測定結果を示す特性図。FIG. 6 is a characteristic diagram showing a measurement result of a magnetoresistive effect curve of a conventional magnetoresistive sensor having a spin valve structure.
【図7】本発明のデュアルスピンバルブ構造の磁気抵抗
センサの一実施例を示すための断面図。FIG. 7 is a sectional view showing an embodiment of a magnetoresistive sensor having a dual spin valve structure according to the present invention.
10…基板、11…下地層、12,14,22,24,
34…強磁性膜、13,23,33…非磁性導電膜、1
5,25,35…反強磁性膜、16,36…保護膜、1
7…縦バイアス印加層、18…電極、40…素子高さ方
向、50…トラック幅方向。10: substrate, 11: base layer, 12, 14, 22, 24,
34: ferromagnetic film, 13, 23, 33: non-magnetic conductive film, 1
5, 25, 35: antiferromagnetic film, 16, 36: protective film, 1
7: vertical bias application layer, 18: electrode, 40: element height direction, 50: track width direction.
Claims (8)
二の強磁性膜が積層されており、前記第一の強磁性膜の
磁化の方向は固定されており、前記第二の強磁性膜の磁
化は外部磁界により回転し、前記第一の強磁性膜の磁化
の方向と前記第二の強磁性膜の磁化の方向の相対的な角
度が変わることによって電気抵抗が変化する磁気抵抗セ
ンサ積層膜と、前記磁気抵抗センサ積層膜に信号検出電
流を流すための電極と、前記磁気抵抗センサ積層膜の電
気抵抗変化を検知する手段を有する磁気抵抗センサにお
いて、 前記第二の強磁性膜が、Fe,Co,Niまたはこれら
のうち一つ以上の元素を含む磁性金属材料に、Irを添
加した合金からなることを特徴とする磁気抵抗センサ。A first ferromagnetic film and a second ferromagnetic film are stacked with a non-magnetic conductive film interposed therebetween, and the direction of magnetization of the first ferromagnetic film is fixed. The magnetization of the second ferromagnetic film is rotated by an external magnetic field, and the electrical resistance changes due to a change in the relative angle between the direction of the magnetization of the first ferromagnetic film and the direction of the magnetization of the second ferromagnetic film. A magnetoresistive sensor laminated film, an electrode for flowing a signal detection current through the magnetoresistive sensor laminated film, and a means for detecting a change in electric resistance of the magnetoresistive sensor laminated film; A magnetoresistive sensor, wherein the ferromagnetic film is made of Fe, Co, Ni, or a magnetic metal material containing one or more of these elements and an alloy obtained by adding Ir.
Co−Fe合金、またはNi−Fe−Co合金に、Ir
を添加した合金である請求項1に記載の磁気抵抗セン
サ。2. The method according to claim 1, wherein the second ferromagnetic film comprises a Ni—Fe alloy,
Ir-Co-Fe alloy or Ni-Fe-Co alloy
The magnetoresistive sensor according to claim 1, wherein the magnetoresistive sensor is an alloy to which is added.
されている請求項1または2に記載の磁気抵抗センサ。3. The magnetoresistive sensor according to claim 1, wherein said second ferromagnetic film is formed on an amorphous film.
f膜の上に形成されている請求項1または2に記載の磁
気抵抗センサ。4. The method according to claim 1, wherein said second ferromagnetic film is made of Ta, Zr or H.
3. The magnetoresistive sensor according to claim 1, which is formed on the f film.
膜と第二の強磁性膜が積層され、第二の非磁性導電膜を
介して第二の強磁性膜と第三の強磁性膜が積層されてお
り、前記第一の強磁性膜の磁化の方向及び前記第三の強
磁性膜の磁化の方向は固定されており、前記第二の強磁
性膜の磁化は外部磁界により回転し、前記第一の強磁性
膜の磁化の方向と前記第二の強磁性膜の磁化の方向の相
対的な角度、及び前記第二の強磁性膜の磁化の方向と前
記第三の強磁性膜の磁化の方向の相対的な角度が変わる
ことによって電気抵抗が変化する磁気抵抗センサ積層膜
と、前記磁気抵抗センサ積層膜に信号検出電流を流すた
めの電極と、前記磁気抵抗センサ積層膜の電気抵抗変化
を検知する手段を有する磁気抵抗センサにおいて、 前記第二の強磁性膜が、Fe,Co,Niまたはこれら
のうち一つ以上の元素を含む磁性金属材料に、Irを添
加した合金からなることを特徴とする磁気抵抗センサ。5. A first ferromagnetic film and a second ferromagnetic film are stacked via a first non-magnetic conductive film, and a second ferromagnetic film and a second ferromagnetic film are interposed via a second non-magnetic conductive film. Three ferromagnetic films are stacked, the direction of magnetization of the first ferromagnetic film and the direction of magnetization of the third ferromagnetic film are fixed, and the magnetization of the second ferromagnetic film is Rotated by an external magnetic field, the relative angle between the direction of magnetization of the first ferromagnetic film and the direction of magnetization of the second ferromagnetic film, and the direction of magnetization of the second ferromagnetic film and the A magnetoresistive sensor laminated film whose electric resistance changes by changing the relative angle of the magnetization direction of the three ferromagnetic films; an electrode for flowing a signal detection current through the magnetoresistive sensor laminated film; In a magnetoresistive sensor having means for detecting a change in electric resistance of a sensor laminated film, wherein the second ferromagnetic film is , Fe, Co, Ni or a magnetic metal material containing at least one of these elements, and an alloy obtained by adding Ir to the magnetic metal material.
Co−Fe合金、またはNi−Fe−Co合金に、Ir
を添加した合金である請求項5に記載の磁気抵抗セン
サ。6. The method according to claim 1, wherein the second ferromagnetic film is made of a Ni—Fe alloy,
Ir-Co-Fe alloy or Ni-Fe-Co alloy
The magnetoresistive sensor according to claim 5, which is an alloy to which is added.
る金属膜の上に形成されている請求項5または6に記載
の磁気抵抗センサ。7. The magnetoresistive sensor according to claim 5, wherein said second ferromagnetic film is formed on a metal film having a face-centered cubic lattice.
である請求項7に記載の磁気抵抗センサ。8. The magnetoresistive sensor according to claim 7, wherein the metal film having the face-centered cubic lattice is a Cu film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9104231A JPH10294505A (en) | 1997-04-22 | 1997-04-22 | Magnetoresistive sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9104231A JPH10294505A (en) | 1997-04-22 | 1997-04-22 | Magnetoresistive sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10294505A true JPH10294505A (en) | 1998-11-04 |
Family
ID=14375198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9104231A Pending JPH10294505A (en) | 1997-04-22 | 1997-04-22 | Magnetoresistive sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10294505A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8089723B2 (en) | 2006-10-11 | 2012-01-03 | Hitachi Global Storage Technologies Netherlands B.V. | Damping control in magnetic nano-elements using ultrathin damping layer |
-
1997
- 1997-04-22 JP JP9104231A patent/JPH10294505A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8089723B2 (en) | 2006-10-11 | 2012-01-03 | Hitachi Global Storage Technologies Netherlands B.V. | Damping control in magnetic nano-elements using ultrathin damping layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3291208B2 (en) | Magnetoresistive sensor, method of manufacturing the same, and magnetic head equipped with the sensor | |
JP4794109B2 (en) | Spin valve magnetoresistive read head and method of manufacturing the same | |
JP3462832B2 (en) | Magnetic resistance sensor, magnetic head and magnetic recording / reproducing apparatus using the same | |
US6906898B2 (en) | Differential detection read sensor, thin film head for perpendicular magnetic recording and perpendicular magnetic recording apparatus | |
JP3657916B2 (en) | Magnetoresistive head and perpendicular magnetic recording / reproducing apparatus | |
JP5448438B2 (en) | Magnetic read head | |
JP2009026400A (en) | Differential magnetoresistive head | |
CN1122498A (en) | Multilayer magnetoresistive detector | |
JP2002359412A (en) | Magnetoresistive effect element, magnetoresistive effect type magnetic sensor, magnetoresistive effect type magnetic head, and magnetic memory | |
US8203808B2 (en) | Magneto-resistance effect element including free layer having multilayer constitution including magnetic body mixed with element having 4F electrons | |
JP2856165B2 (en) | Magnetoresistive element and method of manufacturing the same | |
JP2001014616A (en) | Magnetic conversion element, thin-film magnetic head and their production | |
JP3706793B2 (en) | Spin valve thin film magnetic element, method of manufacturing the same, and thin film magnetic head including the spin valve thin film magnetic element | |
JP2007317824A (en) | Magnetoresistance effect element, its manufacturing method, thin film magnetic head, head jimbal assembly, head arm assembly, and magnetic disk drive | |
JP3618300B2 (en) | Spin valve sensor and disk drive device | |
JP2008047737A (en) | Magnetoresistance effect device, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk device | |
JP3212569B2 (en) | Dual spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing dual spin valve thin film magnetic element | |
JP3260741B1 (en) | Magnetoresistive device and its manufacturing method, thin-film magnetic head and its manufacturing method | |
US7782576B2 (en) | Exchange-coupling film incorporating stacked antiferromagnetic layer and pinned layer, and magnetoresistive element including the exchange-coupling film | |
JP2001307308A (en) | Magnetoresistive head and information reproducing apparatus | |
JP3541245B2 (en) | Magnetic head and magnetic storage device having the same | |
JPH10294505A (en) | Magnetoresistive sensor | |
JP2000276714A (en) | Spin valve sensor that fixes magnetization with current | |
JPH10294504A (en) | Magnetoresistive sensor | |
JPH10222817A (en) | Magnetoresistive sensor |