JPH10291885A - Method for producing oxide ceramic thin film - Google Patents
Method for producing oxide ceramic thin filmInfo
- Publication number
- JPH10291885A JPH10291885A JP9776097A JP9776097A JPH10291885A JP H10291885 A JPH10291885 A JP H10291885A JP 9776097 A JP9776097 A JP 9776097A JP 9776097 A JP9776097 A JP 9776097A JP H10291885 A JPH10291885 A JP H10291885A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- treatment
- thin film
- ceramic thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052574 oxide ceramic Inorganic materials 0.000 title claims abstract description 22
- 239000011224 oxide ceramic Substances 0.000 title claims abstract description 22
- 239000010409 thin film Substances 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000758 substrate Substances 0.000 claims abstract description 36
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 30
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 239000010408 film Substances 0.000 claims description 46
- 239000002243 precursor Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- 150000002736 metal compounds Chemical class 0.000 claims 1
- 238000002425 crystallisation Methods 0.000 abstract description 19
- 230000008025 crystallization Effects 0.000 abstract description 19
- 206010021143 Hypoxia Diseases 0.000 abstract description 7
- 238000007796 conventional method Methods 0.000 abstract description 5
- 238000010304 firing Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 25
- 239000000203 mixture Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 238000009832 plasma treatment Methods 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 6
- 229910003781 PbTiO3 Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910020698 PbZrO3 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 229940046892 lead acetate Drugs 0.000 description 3
- YOBOXHGSEJBUPB-MTOQALJVSA-N (z)-4-hydroxypent-3-en-2-one;zirconium Chemical compound [Zr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O YOBOXHGSEJBUPB-MTOQALJVSA-N 0.000 description 2
- 229910010252 TiO3 Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Formation Of Insulating Films (AREA)
Abstract
(57)【要約】
【課題】 酸化物セラミックス膜を作成する祭、酸素欠
損が起きる。従来これを補償する方法として酸素雰囲気
中での焼成や、結晶化後の酸素プラズマ後処理等がある
がいずれも不完全で十分に酸素欠損を補えないことが課
題であった。
【解決手段】 基板上に非晶質膜を形成した後、これを
オゾン処理してから結晶化させる。また、紫外線照射を
大気中等で行い、紫外線処理とオゾン処理を同時に行う
こととする。(57) [Abstract] [Problem] Oxygen deficiency occurs in a festival for forming an oxide ceramic film. Conventional methods of compensating for this include firing in an oxygen atmosphere and post-treatment of oxygen plasma after crystallization, but all have been incomplete and cannot sufficiently compensate for oxygen deficiency. SOLUTION: After forming an amorphous film on a substrate, the amorphous film is crystallized after ozone treatment. In addition, ultraviolet irradiation is performed in the air or the like, and ultraviolet treatment and ozone treatment are performed simultaneously.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、結晶性に由来する
物性(圧電性、焦電性、強誘電性等)を利用した薄膜デ
バイスの主たる構成要素である、酸化物セラミックス薄
膜を製造する方法に関し、得られた酸化物セラミックス
薄膜は広く電子デバイスに応用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide ceramic thin film which is a main component of a thin film device utilizing physical properties derived from crystallinity (piezoelectricity, pyroelectricity, ferroelectricity, etc.). The obtained oxide ceramics thin film is widely applied to electronic devices.
【0002】[0002]
【従来の技術】セラミックス薄膜材料の物性やそれを電
子デバイスの構成要素として組み込んだ際のデバイス特
性等は、セラミックス薄膜の構成元素の化学量論比に大
きく左右される。なかでも酸化物セラミックスの場合は
酸素の欠損(不足)を招きやすく、これが特性劣化の主
要因であることが多い。酸素欠損の多くは、結晶化工程
における高温処理が原因であり、これを防ぐ手段として
従来酸素雰囲気中での焼成や、結晶化後の大気圧下もし
くは酸素プラズマ処理が行われている。2. Description of the Related Art The physical properties of a ceramic thin film material and the device characteristics when it is incorporated as a component of an electronic device greatly depend on the stoichiometric ratio of the constituent elements of the ceramic thin film. Above all, oxide ceramics are liable to cause oxygen deficiency (insufficiency), and this is often the main cause of characteristic deterioration. Most of the oxygen vacancies are caused by high-temperature treatment in the crystallization step. As a means for preventing this, firing in an oxygen atmosphere or treatment under atmospheric pressure or oxygen plasma treatment after crystallization is conventionally performed.
【0003】[0003]
【発明が解決しようとする課題】しかし、前述の酸素雰
囲気中での焼成であると、酸素欠損を完全に補償し、対
象とするセラミックス材料の化学組成比に等しい、理論
上の化学両論比は達成できない。また、結晶化後の後処
理で酸素欠損を補おうとしても、不充分であったり、処
理そのものが結晶にダメージを与えてしまうという課題
を有していた。いずれにしてもセラミックス材料の化学
組成比を理論上の化学両論比に一致させることは困難で
あり、とりわけ酸化物セラミックスの場合は、酸素の欠
損を完全に補うことはできなかった。本発明者らは、鋭
意研究の結果、簡単な手段で酸素欠損のない、限りなく
理論化学両論比に近い組成を有する酸化物セラミックス
の製造方法を見いだすに至った。However, in the above-described firing in an oxygen atmosphere, the oxygen deficiency is completely compensated, and the theoretical stoichiometric ratio, which is equal to the chemical composition ratio of the target ceramic material, is as follows. I can't achieve it. Further, even if an attempt is made to compensate for oxygen deficiency by post-treatment after crystallization, there is a problem that the treatment is insufficient or the treatment itself damages the crystal. In any case, it is difficult to make the chemical composition ratio of the ceramic material match the theoretical stoichiometry, and especially in the case of oxide ceramics, oxygen deficiency could not be completely compensated. As a result of intensive studies, the present inventors have found a method for producing an oxide ceramic having a composition close to the theoretical stoichiometric ratio without oxygen deficiency by simple means.
【0004】[0004]
【課題を解決するための手段】本発明の酸化物セラミッ
クス薄膜の製造方法は、(1)基板上に非晶質状の前駆
体膜を形成する工程と、(2)該前駆体膜をオゾン雰囲
気中に曝す工程と、(3)これを結晶化させる工程とか
らなることを特徴とする。また、本発明の酸化物セラミ
ックス薄膜の製造方法は、(1)基板上に非晶質状の前
駆体膜を形成する工程と、(2)該前駆体膜をオゾン雰
囲気中に曝す工程(オゾン処理工程)と、(3)これを
結晶化させる工程とからなる酸化物セラミックス薄膜の
製造方法において、前記(1)〜(3)工程をn回(n
は2以上の整数)繰り返すことを特徴とする。また、本
発明の酸化物セラミックス薄膜の製造方法は、前記基板
上への非晶質状の前駆体膜形成が、有機金属化合物を原
料とするゾルを基板上に塗布乾燥することで達成される
ことを特徴とする。また、本発明の酸化物セラミックス
薄膜の製造方法は、前記オゾン処理が、大気中もしくは
酸素を含む雰囲気中で紫外線を照射することで達成され
ることを特徴とする。According to the present invention, there is provided a method for producing an oxide ceramic thin film, comprising the steps of (1) forming an amorphous precursor film on a substrate; It is characterized by comprising a step of exposing in an atmosphere and (3) a step of crystallizing the same. Further, the method for producing an oxide ceramic thin film of the present invention comprises the steps of (1) forming an amorphous precursor film on a substrate and (2) exposing the precursor film to an ozone atmosphere (ozone Processing step) and (3) a step of crystallizing the same, wherein the steps (1) to (3) are performed n times (n
Is an integer of 2 or more). In the method for producing an oxide ceramic thin film of the present invention, the formation of an amorphous precursor film on the substrate is achieved by applying a sol made of an organometallic compound on the substrate and drying the sol. It is characterized by the following. Further, the method for producing an oxide ceramic thin film of the present invention is characterized in that the ozone treatment is achieved by irradiating ultraviolet rays in the air or in an atmosphere containing oxygen.
【0005】[0005]
【発明の実施の形態】上述のように、基板上に形成され
た非晶質前駆体膜にオゾン処理を施すと、膜内で酸素原
子が化学的に結合し、その後の焼成等による結晶化工程
でこれら酸素が離脱することがなく、従って最終的に、
理論上の化学両論比にほぼ一致した酸化物セラミックス
膜が得られるのである。また、ゾルゲル法のように原料
を含有する溶液を基板上に(複数回)塗布するような工
程を有する製法の場合、塗布前の表面の塗れ性が成膜状
態の良否ひいては結晶化後のセラミックス膜の特性の良
否を左右することになる。本発明のように塗布前の表面
をオゾン処理すると表面塗れ性が大幅に向上し、更に表
面を清浄にする作用も有するので、特に多層塗り(多層
膜)の場合、非常に均一でフラットな良好なセラミック
ス薄膜が得られる。従って特性も優れたものとなる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, when an amorphous precursor film formed on a substrate is subjected to ozone treatment, oxygen atoms are chemically bonded in the film, and then crystallization is performed by firing or the like. In the process, these oxygens do not escape, so
Thus, an oxide ceramics film that almost matches the theoretical stoichiometric ratio can be obtained. In addition, in the case of a manufacturing method having a step of applying a solution containing a raw material onto a substrate (a plurality of times), such as a sol-gel method, the coatability of the surface before application is determined by the quality of the film formed and the ceramic after crystallization. The quality of the film will be affected. If the surface before coating is treated with ozone as in the present invention, the surface wettability is greatly improved and the surface is also cleaned. Therefore, particularly in the case of multilayer coating (multilayer film), it is very uniform and flat. A ceramic thin film can be obtained. Therefore, the characteristics are also excellent.
【0006】以上作用について述べたが、以下実施例に
基づき、本発明を更に詳細に説明する。Having described the operation, the present invention will be described in more detail with reference to the following examples.
【0007】(実施例1)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2ミクロン形成させたものを用意し、これを後に使
用する基板とした。(Example 1) A silicon wafer (4 inches in diameter, 250 μm in thickness) was prepared by forming Pt with a thickness of 0.2 μm on a silicon wafer by sputtering, and this was used as a substrate to be used later.
【0008】次に、酢酸鉛及びチタニウムテトライソプ
ロポキシドを所定濃度含有するゾル溶液1を調整した。
ゾル溶液1を先に用意した基板上にスピンコートし、1
80℃オーブンで10分間乾燥後、400℃オーブンで
30分間脱脂を行うことにより、厚さ約0.2μmの非
晶質膜が前記基板上に得られた。これを1立方メートル
(一辺が1mの立方体)のアクリル容器内に設置した
後、大気をコロナ放電させることによって発生したオゾ
ンをシリコンチューブで該アクリル容器内に導入し、1
分間オゾン処理を行った。基板を容器から取り出し、こ
れを急速昇温ランプアニール装置(RTA)により酸素
雰囲気中800℃で1分間焼成し、結晶化を行った。以
上により得られた結晶化膜をX線回折により分析を行っ
たところペロブスカイト型チタン酸鉛(PbTiO3)
(以下PTと表記)であることがわかった(試料1)。Next, a sol solution 1 containing predetermined concentrations of lead acetate and titanium tetraisopropoxide was prepared.
The sol solution 1 is spin-coated on the previously prepared substrate,
After drying in an 80 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes, whereby an amorphous film having a thickness of about 0.2 μm was obtained on the substrate. This was placed in an acrylic container of 1 cubic meter (1 m on each side), and then the ozone generated by corona discharge of the atmosphere was introduced into the acrylic container with a silicon tube.
Ozone treatment was performed for minutes. The substrate was taken out of the container and baked at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) to perform crystallization. The crystallized film thus obtained was analyzed by X-ray diffraction. As a result, perovskite-type lead titanate (PbTiO3) was analyzed.
(Hereinafter referred to as PT) (Sample 1).
【0009】一方、オゾン処理を行わず、他の工程は全
て上述の試料1作成と同様の方法で基板上にセラミック
ス薄膜を作った(3枚、比較例1〜3)。3枚いずれも
X線回折分析の結果ペロブスカイト型チタン酸鉛(Pb
TiO3)(以下PTと表記)であった。更に、比較例
2と比較例3については結晶化後の後処理を行った。比
較例2は後処理として大気圧下でのプラズマ処理を、比
較例3は後処理として0.01Torr酸素雰囲気下で
の酸素プラズマ処理を各々10分間行った。On the other hand, without performing the ozone treatment, ceramic thin films were formed on the substrate in the same manner as in the preparation of Sample 1 in all other steps (three sheets, Comparative Examples 1 to 3). As a result of X-ray diffraction analysis of all three sheets, perovskite-type lead titanate (Pb
TiO3) (hereinafter referred to as PT). Further, for Comparative Examples 2 and 3, post-treatment after crystallization was performed. In Comparative Example 2, a plasma treatment under atmospheric pressure was performed as post-treatment, and in Comparative Example 3, an oxygen plasma treatment in an oxygen atmosphere of 0.01 Torr was performed as a post-treatment for 10 minutes.
【0010】以上のようにして得られた試料1及び比較
例1〜3の化学組成比をEDXにより分析した。標準試
料として用意したバルクのPTの化学組成比を理論値と
仮定し、この値から見積もった各試料の分析結果を表1
に示す。The chemical composition ratios of the sample 1 obtained as described above and Comparative Examples 1 to 3 were analyzed by EDX. Assuming that the chemical composition ratio of the bulk PT prepared as a standard sample is a theoretical value, the analysis result of each sample estimated from this value is shown in Table 1.
Shown in
【0011】チタン酸鉛(PbTiO3)は、いわゆる
ABO3型酸化物であり、その化学式から明らかなよう
に、Pb:Ti:O=1:1:3の組成比(モル比)が
理論値である。表1より、本発明による試料1の各構成
元素の組成比は理論値にほぼ等しい。しかしながら従来
法の比較例1〜3は酸素が著しく不足していることがわ
かる。以上より、非晶質膜へのオゾン処理が結晶化後の
化学両論比の維持に非常に有効であることが判明した。[0011] Lead titanate (PbTiO3) is a so-called ABO3-type oxide. As is clear from its chemical formula, the compositional ratio (molar ratio) of Pb: Ti: O = 1: 1: 3 is a theoretical value. . From Table 1, the composition ratio of each constituent element of Sample 1 according to the present invention is almost equal to the theoretical value. However, it can be seen that Comparative Examples 1 to 3 of the conventional method are significantly lacking in oxygen. From the above, it was found that ozone treatment of an amorphous film was very effective in maintaining the stoichiometric ratio after crystallization.
【0012】本実施例では一例としてPT膜を対象とし
た比較実験結果を紹介したが、他の酸化物セラミックス
膜についても同様な結果が得られた。In this embodiment, the results of a comparative experiment for a PT film were introduced as an example, but similar results were obtained for other oxide ceramic films.
【0013】[0013]
【表1】 [Table 1]
【0014】(実施例2)シリコンウエハー(直径4イ
ンチ、厚み250ミクロン)上にスパッタによりPtを
厚み0.2μm形成させたものを用意し、これを後に使
用する基板とした。Example 2 A silicon wafer (diameter: 4 inches, thickness: 250 μm) was prepared by forming Pt by a thickness of 0.2 μm by sputtering, and this was used as a substrate to be used later.
【0015】この基板をRFスパッタ装置内にセット
し、Ar/O2混合ガス雰囲気下でPbTiO3酸化物タ
ーゲットにて基板表面にスパッタ膜を厚み0.2μm形
成した。得られた膜をX線回折で調べたところ結晶性ピ
ークは認められず非晶質膜であることがわかった。以上
により得られた基板をを1立方メートル(一辺が1mの
立方体)のアクリル容器内に設置した後、大気をコロナ
放電させることによって発生したオゾンをシリコンチュ
ーブで該アクリル容器内に導入し、1分間オゾン処理を
行った。基板を容器から取り出し、これを急速昇温ラン
プアニール装置(RTA)により酸素雰囲気中800℃
で1分間焼成し、結晶化を行った。以上により得られた
結晶化膜を再度X線回折により分析を行ったところペロ
ブスカイト型チタン酸鉛(PbTiO3)(以下PTと
表記)であることがわかった(試料1)。This substrate was set in an RF sputtering apparatus, and a sputtered film having a thickness of 0.2 μm was formed on the surface of the substrate with a PbTiO 3 oxide target in an Ar / O 2 mixed gas atmosphere. When the obtained film was examined by X-ray diffraction, no crystalline peak was observed and it was found that the film was an amorphous film. After placing the substrate obtained above in an acrylic container of 1 cubic meter (1 m on each side), the ozone generated by corona discharge of the atmosphere was introduced into the acrylic container with a silicon tube, and the mixture was placed for 1 minute. Ozone treatment was performed. The substrate is taken out of the container, and is heated at 800 ° C. in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA).
For 1 minute to perform crystallization. When the crystallized film obtained as described above was analyzed again by X-ray diffraction, it was found to be perovskite-type lead titanate (PbTiO3) (hereinafter referred to as PT) (Sample 1).
【0016】一方、オゾン処理を行わず、他の工程は全
て上述の試料1作成と同様の方法で基板上にセラミック
ス薄膜を作った(3枚、比較例1〜3)。3枚いずれも
X線回折分析の結果ペロブスカイト型チタン酸鉛(Pb
TiO3)(以下PTと表記)であった。更に、比較例
2と比較例3については結晶化後の後処理を行った。比
較例2は後処理として大気圧下でのプラズマ処理を、比
較例3は後処理として0.01Torr酸素雰囲気下で
の酸素プラズマ処理を各々10分間行った。On the other hand, a ceramic thin film was formed on a substrate in the same manner as in the preparation of Sample 1 except that the ozone treatment was not performed (three sheets, Comparative Examples 1 to 3). As a result of X-ray diffraction analysis of all three sheets, perovskite-type lead titanate (Pb
TiO3) (hereinafter referred to as PT). Further, for Comparative Examples 2 and 3, post-treatment after crystallization was performed. In Comparative Example 2, a plasma treatment under atmospheric pressure was performed as post-treatment, and in Comparative Example 3, an oxygen plasma treatment in an oxygen atmosphere of 0.01 Torr was performed as a post-treatment for 10 minutes.
【0017】以上のようにして得られた試料1及び比較
例1〜3の化学組成比をEDXにより分析した。標準試
料として用意したバルクのPTの化学組成比を理論値と
仮定し、この値から見積もった各試料の分析結果を表1
に示す。The chemical composition ratios of Sample 1 and Comparative Examples 1 to 3 obtained as described above were analyzed by EDX. Assuming that the chemical composition ratio of the bulk PT prepared as a standard sample is a theoretical value, the analysis result of each sample estimated from this value is shown in Table 1.
Shown in
【0018】チタン酸鉛(PbTiO3)は、いわゆる
ABO3型酸化物であり、その化学式から明らかなよう
に、Pb:Ti:O=1:1:3の組成比(モル比)が
理論値である。表1より、本発明による試料1の各構成
元素の組成比は理論値にほぼ等しい。しかしながら従来
法の比較例1〜3は酸素が著しく不足していることがわ
かる。以上より、スパッタにより製膜された非晶質膜へ
のオゾン処理が、結晶化後の化学両論比の維持に非常に
有効であることが判明した。Lead titanate (PbTiO3) is a so-called ABO3 type oxide. As is clear from its chemical formula, the composition ratio (molar ratio) of Pb: Ti: O = 1: 1: 3 is a theoretical value. . From Table 1, the composition ratio of each constituent element of Sample 1 according to the present invention is almost equal to the theoretical value. However, it can be seen that Comparative Examples 1 to 3 of the conventional method are significantly lacking in oxygen. From the above, it has been found that ozone treatment of an amorphous film formed by sputtering is very effective in maintaining the stoichiometric ratio after crystallization.
【0019】本実施例では一例としてPT膜を対象とし
た比較実験結果を紹介したが、他の酸化物セラミックス
膜についても同様な結果が得られた。In this embodiment, the results of a comparative experiment for a PT film were introduced as an example, but similar results were obtained for other oxide ceramic films.
【0020】[0020]
【表2】 [Table 2]
【0021】(実施例3)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2ミクロン形成させたものを用意し、これを後に使
用する基板とした。Example 3 A silicon wafer (diameter: 4 inches, thickness: 250 μm) was prepared by forming Pt to a thickness of 0.2 μm by sputtering and used as a substrate to be used later.
【0022】次に、酢酸鉛及びジルコニウムアセチルア
セトナートを所定濃度含有するゾル溶液1を調整した。
ゾル溶液1を先に用意した基板上にスピンコートし、1
80℃オーブンで10分間乾燥後、400℃オーブンで
30分間脱脂を行うことにより、厚さ約0.2μmの非
晶質膜が前記基板上に得られた。これを1立方メートル
(一辺が1mの立方体)のアクリル容器内に設置した
後、大気をコロナ放電させることによって発生したオゾ
ンをシリコンチューブで該アクリル容器内に導入し、1
分間オゾン処理を行った。以上の、スピンコートからオ
ゾン処理までの工程を更に4回繰り返すことで最終的に
は厚さ約1μmの非晶質膜が前記基板上に得られた。基
板を容器から取り出し、これを急速昇温ランプアニール
装置(RTA)により酸素雰囲気中800℃で1分間焼
成し、結晶化を行った。以上により得られた結晶化膜を
X線回折により分析を行ったところペロブスカイト型ジ
ルコン酸鉛(PbZrO3)(以下PZと表記)である
ことがわかった(試料1)。Next, a sol solution 1 containing a predetermined concentration of lead acetate and zirconium acetylacetonate was prepared.
The sol solution 1 is spin-coated on the previously prepared substrate,
After drying in an 80 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes, whereby an amorphous film having a thickness of about 0.2 μm was obtained on the substrate. This was placed in an acrylic container of 1 cubic meter (1 m on each side), and then the ozone generated by corona discharge of the atmosphere was introduced into the acrylic container with a silicon tube.
Ozone treatment was performed for minutes. By repeating the above steps from the spin coating to the ozone treatment four more times, an amorphous film having a thickness of about 1 μm was finally obtained on the substrate. The substrate was taken out of the container and baked at 800 ° C. for 1 minute in an oxygen atmosphere by a rapid temperature rising lamp annealing apparatus (RTA) to perform crystallization. When the crystallized film obtained as described above was analyzed by X-ray diffraction, it was found to be perovskite-type lead zirconate (PbZrO3) (hereinafter referred to as PZ) (sample 1).
【0023】一方、オゾン処理を行わず、他の工程は全
て上述の試料1作成と同様の方法で基板上にセラミック
ス薄膜を作った(3枚、比較例1〜3)。3枚いずれも
X線回折分析の結果ペロブスカイト型ジルコン酸鉛(P
bZrO3)(以下PZと表記)であった。更に、比較
例2と比較例3については結晶化後の後処理を行った。
比較例2は後処理として大気圧下でのプラズマ処理を、
比較例3は後処理として0.01Torr酸素雰囲気下
での酸素プラズマ処理を各々10分間行った。On the other hand, a ceramic thin film was formed on a substrate in the same manner as in the preparation of Sample 1 except that ozone treatment was not performed (three sheets, Comparative Examples 1 to 3). The results of the X-ray diffraction analysis of all three sheets showed that the perovskite lead zirconate (P
bZrO3) (hereinafter referred to as PZ). Further, for Comparative Examples 2 and 3, post-treatment after crystallization was performed.
Comparative Example 2 performed plasma treatment under atmospheric pressure as a post-treatment,
In Comparative Example 3, oxygen plasma treatment was performed for 10 minutes in an oxygen atmosphere of 0.01 Torr as a post-treatment.
【0024】以上のようにして得られた試料1及び比較
例1〜3の化学組成比をEDXにより分析した。標準試
料として用意したバルクのPTの化学組成比を理論値と
仮定し、この値から見積もった各試料の分析結果を表1
に示す。The chemical composition ratios of Sample 1 and Comparative Examples 1 to 3 obtained as described above were analyzed by EDX. Assuming that the chemical composition ratio of the bulk PT prepared as a standard sample is a theoretical value, the analysis result of each sample estimated from this value is shown in Table 1.
Shown in
【0025】ジルコン酸鉛(PbZrO3)は、いわゆ
るABO3型酸化物であり、その化学式から明らかなよ
うに、Pb:Zr:O=1:1:3の組成比(モル比)
が理論値である。表1より、本発明による試料1の各構
成元素の組成比は理論値にほぼ等しい。しかしながら従
来法の比較例1〜3は酸素が著しく不足していることが
わかる。以上より、非晶質膜へのオゾン処理が結晶化後
の化学両論比の維持に非常に有効であることが判明し
た。Lead zirconate (PbZrO3) is a so-called ABO3 type oxide, and as is clear from its chemical formula, the composition ratio (molar ratio) of Pb: Zr: O = 1: 1: 3.
Is the theoretical value. From Table 1, the composition ratio of each constituent element of Sample 1 according to the present invention is almost equal to the theoretical value. However, it can be seen that Comparative Examples 1 to 3 of the conventional method are significantly lacking in oxygen. From the above, it was found that ozone treatment of an amorphous film was very effective in maintaining the stoichiometric ratio after crystallization.
【0026】本実施例では一例としてPZ膜を対象とし
た比較実験結果を紹介したが、他の酸化物セラミックス
膜についても同様な結果が得られた。In this embodiment, the results of a comparative experiment for a PZ film were introduced as an example, but similar results were obtained for other oxide ceramic films.
【0027】[0027]
【表3】 [Table 3]
【0028】(実施例4)シリコンウエハー(直径4イ
ンチ、厚み250μm)上にスパッタによりPtを厚み
0.2ミクロン形成させたものを用意し、これを後に使
用する基板とした。Example 4 A silicon wafer (4 inches in diameter, 250 μm in thickness) having Pt formed thereon to a thickness of 0.2 μm on a silicon wafer was prepared and used as a substrate to be used later.
【0029】次に、酢酸鉛及びジルコニウムアセチルア
セトナートを所定濃度含有するゾル溶液1を調整した。
ゾル溶液1を先に用意した基板上にスピンコートし、1
80℃オーブンで10分間乾燥後、400℃オーブンで
30分間脱脂を行うことにより、厚さ約0.2μmの非
晶質膜が前記基板上に得られた。これを大気雰囲気中に
てXe紫外線ランプで30秒間処理を行った。この時、
基板上の非晶質膜に対して、紫外線処理とオソン処理を
同時に行ったことになる。以上の、スピンコートからX
e紫外線ランプ処理(同時にオゾン処理)までの工程を
更に4回繰り返すことで最終的には厚さ約1μmの非晶
質膜が前記基板上に得られた。基板を容器から取り出
し、これを急速昇温ランプアニール装置(RTA)によ
り酸素雰囲気中700℃で1分間焼成し、結晶化を行っ
た。以上により得られた結晶化膜をX線回折により分析
を行ったところペロブスカイト型ジルコン酸鉛(PbZ
rO3)(以下PZと表記)であることがわかった(試
料1)。Next, a sol solution 1 containing predetermined concentrations of lead acetate and zirconium acetylacetonate was prepared.
The sol solution 1 is spin-coated on the previously prepared substrate,
After drying in an 80 ° C. oven for 10 minutes, degreasing was performed in a 400 ° C. oven for 30 minutes, whereby an amorphous film having a thickness of about 0.2 μm was obtained on the substrate. This was treated in an air atmosphere with a Xe ultraviolet lamp for 30 seconds. At this time,
This means that the amorphous film on the substrate was subjected to the ultraviolet treatment and the ozon treatment at the same time. From the above spin coating to X
e By repeating the process up to ultraviolet lamp treatment (simultaneously with ozone treatment) four more times, an amorphous film having a thickness of about 1 μm was finally obtained on the substrate. The substrate was taken out of the container and baked at 700 ° C. for 1 minute in an oxygen atmosphere using a rapid temperature rising lamp annealing apparatus (RTA) to crystallize. The crystallized film obtained as described above was analyzed by X-ray diffraction. As a result, perovskite-type lead zirconate (PbZ
rO3) (hereinafter referred to as PZ) (Sample 1).
【0030】一方、Xe紫外線ランプではなく、先の実
施例1〜3で用いたオゾン処理を行い、他の工程は全て
上述の試料1作成と同様の方法で基板上にセラミックス
薄膜を作った(比較例1)。得られた膜はX線回折分析
の結果ペロブスカイト型ジルコン酸鉛(PbZrO3)
(以下PZと表記)が得られていることがわかった。し
かしながら、比較例1については回折ピークの半値幅が
広く試料1に比べ結晶性が幾分劣る(表4)。これは、
結晶化前の紫外線処理が、その後の結晶化温度の低温下
に有効であることを示している。このことは、化学量論
比にも反映されている。表4より、Pb量に着目する
と、比較例1は試料1に比べPb量が若干不足してい
る。これはPbが結晶化過程で十分結晶格子に組み込ま
れる以前に蒸発してしまったためと考えられる。よっ
て、紫外線処理を兼ねたオゾン処理が最終的に得られる
酸化物セラミックス薄膜の化学量論比を維持するのに非
常に有効であることが判明した。On the other hand, instead of the Xe ultraviolet lamp, the ozone treatment used in Examples 1 to 3 was performed, and in all other steps, a ceramic thin film was formed on the substrate in the same manner as in the preparation of Sample 1 described above ( Comparative example 1). The obtained film was subjected to X-ray diffraction analysis. As a result, perovskite-type lead zirconate (PbZrO3) was obtained.
(Hereinafter referred to as PZ). However, in Comparative Example 1, the half width of the diffraction peak was wide and the crystallinity was somewhat inferior to that of Sample 1 (Table 4). this is,
This indicates that the ultraviolet treatment before crystallization is effective at a low crystallization temperature thereafter. This is reflected in the stoichiometric ratio. From Table 4, focusing on the Pb amount, Comparative Example 1 is slightly insufficient in Pb amount as compared with Sample 1. This is probably because Pb evaporated before being sufficiently incorporated into the crystal lattice during the crystallization process. Therefore, it has been found that the ozone treatment also serving as the ultraviolet treatment is very effective in maintaining the stoichiometric ratio of the oxide ceramic thin film finally obtained.
【0031】本実施例では一例としてPZ膜を対象とし
た比較実験結果を紹介したが、他の酸化物セラミックス
膜についても同様な結果が得られた。In this embodiment, the results of a comparative experiment for a PZ film were introduced as an example, but similar results were obtained for other oxide ceramic films.
【0032】[0032]
【表4】 [Table 4]
【0033】[0033]
【発明の効果】 以上のように、酸化物セラミックス膜
を作成するとき、非晶質膜を結晶化させる前にオゾン処
理を行うことで、最終的に得られるセラミックス膜の化
学量論比が理論値に近いものとなる。オゾンと同時に紫
外線処理を併用すれば、更に効果が大きい場合もある。
とりわけ酸素については従来の方法であると大量の欠損
は避けられなかったが、本発明でこの課題は解決するこ
とができた。As described above, when an oxide ceramic film is formed, by performing ozone treatment before crystallization of the amorphous film, the stoichiometric ratio of the finally obtained ceramic film is theoretically reduced. It will be close to the value. If an ultraviolet treatment is used together with ozone, the effect may be even greater.
In particular, a large amount of oxygen was unavoidable with the conventional method for oxygen, but the present invention has solved this problem.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 41/187 H01L 41/18 101C 41/24 101B 41/22 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 41/187 H01L 41/18 101C 41/24 101B 41/22 A
Claims (4)
成する工程と、(2)該前駆体膜をオゾン雰囲気中に曝
す工程と、(3)これを結晶化させる工程とからなるこ
とを特徴とする酸化物セラミックス薄膜の製造方法。1. A step of forming an amorphous precursor film on a substrate, a step of exposing the precursor film to an ozone atmosphere, and a step of crystallizing the precursor film. A method for producing an oxide ceramic thin film, comprising:
成する工程と、(2)該前駆体膜をオゾン雰囲気中に曝
す工程(オゾン処理工程)と、(3)これを結晶化させ
る工程とからなる酸化物セラミックス薄膜の製造方法に
おいて、前記(1)〜(3)工程をn回(nは2以上の
整数)繰り返すことを特徴とする酸化物セラミックス薄
膜の製造方法。(2) a step of forming an amorphous precursor film on a substrate; (2) a step of exposing the precursor film to an ozone atmosphere (an ozone treatment step); A method for producing an oxide ceramic thin film, comprising: a step of crystallizing the oxide ceramic thin film, wherein the steps (1) to (3) are repeated n times (n is an integer of 2 or more). .
有機金属化合物を原料とするゾルを基板上に塗布乾燥す
ることで達成されることを特徴とする請求項1もしくは
請求項2記載の酸化物セラミックス薄膜の製造方法。3. The formation of an amorphous precursor film on a substrate,
3. The method for producing an oxide ceramic thin film according to claim 1, wherein the method is achieved by applying and drying a sol made of an organic metal compound as a raw material on a substrate.
外線を照射することで基板上の非晶質状前駆体膜をオゾ
ン処理することを特徴とする請求項1から3いずれか記
載の酸化物セラミックス薄膜の製造方法。4. The oxide according to claim 1, wherein the amorphous precursor film on the substrate is subjected to ozone treatment by irradiating ultraviolet rays in the air or in an atmosphere containing oxygen. Manufacturing method of ceramic thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9776097A JPH10291885A (en) | 1997-04-15 | 1997-04-15 | Method for producing oxide ceramic thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9776097A JPH10291885A (en) | 1997-04-15 | 1997-04-15 | Method for producing oxide ceramic thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10291885A true JPH10291885A (en) | 1998-11-04 |
Family
ID=14200841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9776097A Withdrawn JPH10291885A (en) | 1997-04-15 | 1997-04-15 | Method for producing oxide ceramic thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10291885A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316817A (en) * | 2000-05-01 | 2001-11-16 | Korea Advanced Inst Of Science & Technol | Crystallization method of lithium transition metal oxide thin film by plasma treatment |
JP2002075989A (en) * | 2000-06-30 | 2002-03-15 | Hynix Semiconductor Inc | Method for producing zirconium oxide film |
JP2004356558A (en) * | 2003-05-30 | 2004-12-16 | Toshio Goto | Coating device and coating method |
JP2009074178A (en) * | 2001-10-02 | 2009-04-09 | National Institute Of Advanced Industrial & Technology | Method for producing metal oxide thin film |
JP2015146319A (en) * | 2010-04-16 | 2015-08-13 | 株式会社半導体エネルギー研究所 | power storage device |
-
1997
- 1997-04-15 JP JP9776097A patent/JPH10291885A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316817A (en) * | 2000-05-01 | 2001-11-16 | Korea Advanced Inst Of Science & Technol | Crystallization method of lithium transition metal oxide thin film by plasma treatment |
JP2002075989A (en) * | 2000-06-30 | 2002-03-15 | Hynix Semiconductor Inc | Method for producing zirconium oxide film |
JP2009074178A (en) * | 2001-10-02 | 2009-04-09 | National Institute Of Advanced Industrial & Technology | Method for producing metal oxide thin film |
JP2004356558A (en) * | 2003-05-30 | 2004-12-16 | Toshio Goto | Coating device and coating method |
JP2015146319A (en) * | 2010-04-16 | 2015-08-13 | 株式会社半導体エネルギー研究所 | power storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100313425B1 (en) | Chemical Vapor Deposition Method for Fabricating Layered Superlattice Materials | |
EP0687750B1 (en) | Method for manufacturing thin film of composite metal-oxide dielectric | |
US8956689B2 (en) | Method for producing ferroelectric thin film | |
US8951603B2 (en) | Method for producing ferroelectric thin film | |
JP4067563B2 (en) | UV irradiation process for manufacturing electronic devices with low leakage current and low polarization fatigue | |
JPH07202295A (en) | Ferroelectric crystal thin film coated substrate, method for manufacturing the same, and ferroelectric thin film device using the ferroelectric crystal thin film coated substrate | |
JPH06350154A (en) | Piezoelectric thin film element | |
CN1531036A (en) | Method for producing ceramic membrane and pressurized heat treatment apparatus used for the method | |
US6455106B1 (en) | Method of forming oxide-ceramics film | |
JPH07330426A (en) | Perovskite-containing composite material, manufacturing method thereof, electronic component and module | |
JPH10291885A (en) | Method for producing oxide ceramic thin film | |
JP2007184622A (en) | Manufacturing method of high capacitance thin film capacitor | |
JP3164849B2 (en) | Method for producing lead zirconate titanate thin film | |
KR20010074743A (en) | Low temperature process for fabricating layered superlattice materials and making electronic devices including same | |
JPH0451407A (en) | Manufacture of ferroelectric thin film | |
JPH0632613A (en) | Production of double oxide thin film | |
JP2004152922A (en) | Method of forming ferroelectric film | |
JP2002324924A (en) | Method of manufacturing piezoelectric element | |
JP3026871B2 (en) | Method for producing potassium niobate tantalate thin film | |
JPH10287983A (en) | Method for producing titanium-containing ceramic thin film | |
JPH10219460A (en) | Ceramic thin film and method for producing the same | |
JPH08181289A (en) | Composite structure of ferroelectric thin film and substrate | |
WO2017002738A1 (en) | Ferroelectric ceramic and method for producing same | |
JPH10291887A (en) | Manufacturing method of ceramic thin film | |
US6327135B1 (en) | Thin film capacitors on gallium arsenide substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |