[go: up one dir, main page]

JPH10290495A - Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system - Google Patents

Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system

Info

Publication number
JPH10290495A
JPH10290495A JP9097361A JP9736197A JPH10290495A JP H10290495 A JPH10290495 A JP H10290495A JP 9097361 A JP9097361 A JP 9097361A JP 9736197 A JP9736197 A JP 9736197A JP H10290495 A JPH10290495 A JP H10290495A
Authority
JP
Japan
Prior art keywords
sound wave
signal
transmitting
sound
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9097361A
Other languages
Japanese (ja)
Inventor
Atsuyuki Hirono
淳之 広野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP9097361A priority Critical patent/JPH10290495A/en
Publication of JPH10290495A publication Critical patent/JPH10290495A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To transmit or receive a sound signal without resonance and to attain electric control easily with less noise. SOLUTION: The sound signal transmitter is made up of a transmission element that is a magnetostriction element made of a super magnetostriction material, a drive coil 3a wound on the transmission element 1 is the lengthwise direction, a bias power supply 3b and a signal source 3c connected in series between both ends of the drive coil 3a. The transmission element 1 is made by using the magnetostriction element made of a super magnetostriction material whose displacement is larger than that of a piezoelectric element or the like, the transmission element 1 is driven without resonance and a sound signal is sent. Thus, the transmission element 1 is driven and the sound signal is sent with proper energy, and the mechanical resonance frequency does not exist in the audible range and the ultrasonic range by selecting properly the size of the transmission element 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音波によって対象
物の有無や位置あるいは速度等の各種の情報を得るため
のセンサ等に利用される音波信号送波方法及びその装置
並びに音波信号受波方法及びその装置並びにこれらを用
いた音波信号送受波処理システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for transmitting a sound wave signal used for a sensor for obtaining various kinds of information such as the presence or absence, position, and speed of an object by a sound wave, and a sound wave signal receiving method. And a device and a sound wave signal transmission / reception processing system using the same.

【0002】[0002]

【従来の技術】従来より、音波を気体、液体、固体等の
各種伝搬媒体中へ放射し、その伝搬状態を測定すること
によって被測定物体に関する情報を得るようにしたセン
サ等が種々提案されている(例えば、特開平7−218
477号公報、特開平4−313999号公報、特開平
4−313998号公報、特開平5−49649号公報
並びに特開平2−269914号公報等参照)。
2. Description of the Related Art Conventionally, various sensors have been proposed in which sound waves are radiated into various propagation media such as gas, liquid, and solid, and information on an object to be measured is obtained by measuring the propagation state. (For example, see JP-A-7-218)
477, JP-A-4-313999, JP-A-4-313998, JP-A-5-49649 and JP-A-2-269914.

【0003】例えば、被測定物体に対して音波を送波
し、被測定物体からの反射波を受波して、その送波の開
始から受波の開始までの遅れ時間を測定し、この送れ時
間に基づいて被測定物体までの距離を測定するセンサ
や、この応用として反射波の存非によって物体の有無を
検知するセンサ、その他、固体中に送波した音波が固体
中の傷で反射されることを利用して、固体中の傷を非破
壊で検査する探傷器や、物体の移動速度に応じて送波周
波数と受波周波数が変化すること(ドップラー効果)を
利用して、両者の周波数に基づいて物体の移動速度を計
測するセンサ、あるいは生体内部に送波されて反射率境
界で反射されてくる反射音波を受波することによって生
体の内部構造の障壁を計測し、その状態が検出できるセ
ンサ等がある。
For example, a sound wave is transmitted to an object to be measured, a reflected wave from the object to be measured is received, and a delay time from the start of the transmission to the start of the reception is measured. A sensor that measures the distance to the object to be measured based on time, a sensor that detects the presence or absence of an object based on the presence or absence of a reflected wave as this application, and other sound waves transmitted into a solid are reflected by a scratch in the solid Flaw detector that non-destructively inspects flaws in solids, and the fact that the transmission frequency and reception frequency change according to the speed of movement of an object (Doppler effect). A sensor that measures the moving speed of the object based on the frequency, or a barrier that measures the internal structure of the living body by receiving reflected sound waves transmitted inside the living body and reflected at the reflectance boundary, There are sensors that can be detected.

【0004】ところで、上記各種の従来センサにおける
音波信号は、圧電素子等によって振動板を機械的に共振
振動させることにより、音波伝搬媒体に振動を伝搬する
方法で送波されている。この場合、圧電素子等を駆動す
る電気信号は機械的な共振のきっかけを与えるための信
号に過ぎず、音波信号の送波並びに受波自体は機械的な
共振によって発生する大振幅をもって行われているか
ら、音波信号の送波並びに受波を制御している本質的な
部分は機械制御である。
By the way, the sound wave signals in the above-mentioned various conventional sensors are transmitted by a method in which vibration is propagated to a sound wave propagation medium by mechanically vibrating a vibration plate with a piezoelectric element or the like. In this case, the electric signal for driving the piezoelectric element or the like is merely a signal for giving a trigger for mechanical resonance, and the transmission and reception of the sound wave signal are performed with a large amplitude generated by mechanical resonance. Therefore, the essential part controlling the transmission and reception of the sound wave signal is mechanical control.

【0005】上述のような共振方式で音波信号を送波す
る回路構成には、例えば図14又は図15に示すような
ものがある。図14に示すものでは、発振回路24から
出力される固定周波数の信号に基づいて送波回路22が
送波素子20を駆動し、音波信号を伝搬媒体中に送波す
るとともに、対象物で反射されてくる反射信号(音波信
号)を受波素子21にて受波し、受波回路23において
電気信号に変換して、後処理回路25で種々の信号処理
により対象物の存非や移動速度等が求められる。なお、
図15に示すものは、送波素子と受波素子とを1つの送
受波素子26で兼用したものであって、切替回路27に
よって送波回路22並びに受波回路23に切り替えて接
続されるようになっている。
[0005] As a circuit configuration for transmitting a sound wave signal by the above-described resonance system, there is, for example, one shown in FIG. 14 or FIG. 14, the transmitting circuit 22 drives the transmitting element 20 based on a signal of a fixed frequency output from the oscillation circuit 24, and transmits a sound wave signal into a propagation medium and reflects the sound signal on an object. The reflected signal (sound wave signal) received is received by the wave receiving element 21, converted into an electric signal by the wave receiving circuit 23, and subjected to various signal processings by the post-processing circuit 25, and the presence or absence and moving speed of the object. Etc. are required. In addition,
FIG. 15 shows an example in which a wave transmitting element and a wave receiving element are shared by one wave transmitting / receiving element 26, and the switching circuit 27 switches and connects the wave transmitting circuit 22 and the wave receiving circuit 23. It has become.

【0006】図16(a)は、従来より送波素子あるい
は受波素子として頻繁に利用されている圧電型の超音波
振動子の構造を示している。有底筒状に形成されたアル
ミケース30の底部は薄肉になっており(厚み=約0.
65〔mm〕)、薄板状の圧電セラミック31(厚み=
約0.25〔mm〕)が接着固定されている。この圧電
セラミック31に外部から電圧を印加するための端子3
2が基板33に突設され、リード線34によって圧電セ
ラミック31に接続されている。また、35はリード線
34を保持する保持部材、36はアルミケース30内部
の振動を緩和するための部材(綿)である。なお、アル
ミケース30の開口部に基板33が配設され、端子32
をアルミケース30の外へ突出させた状態でエポキシ系
接着剤37によって封止されている。而して、同図
(b)に示すように電圧Vを印加すれば、圧電セラミッ
ク31が横方向に振動し、その振動がアルミケース30
の底部を縦方向の振動に変換されて音波(超音波)が送
波されるのである。このときの共振周波数は、後述する
周波数定数とアルミケース30等の寸法で決まり、40
〔kHz〕程度のものが一般的である。
FIG. 16A shows the structure of a piezoelectric ultrasonic transducer which has been frequently used as a transmitting element or a receiving element. The bottom of the aluminum case 30 formed into a bottomed cylindrical shape is thin (thickness = about 0.1 mm).
65 [mm]), a thin plate-shaped piezoelectric ceramic 31 (thickness =
(Approximately 0.25 [mm]) is adhered and fixed. Terminal 3 for applying a voltage to the piezoelectric ceramic 31 from outside
2 protrudes from the substrate 33 and is connected to the piezoelectric ceramic 31 by a lead wire 34. Reference numeral 35 denotes a holding member for holding the lead wire 34, and reference numeral 36 denotes a member (cotton) for reducing vibration inside the aluminum case 30. A board 33 is provided in the opening of the aluminum case 30 and a terminal 32 is provided.
Are sealed with an epoxy adhesive 37 in a state where they protrude out of the aluminum case 30. When a voltage V is applied as shown in FIG. 3B, the piezoelectric ceramic 31 vibrates in the horizontal direction, and the vibration is
Is converted into a vertical vibration and a sound wave (ultrasonic wave) is transmitted. The resonance frequency at this time is determined by a frequency constant described later and the dimensions of the aluminum case 30 and the like.
A frequency of about [kHz] is generally used.

【0007】これ以外にも印加磁界による歪み(磁歪)
によってケース等を振動させて音波を発するものもあ
る。一般に音波発生によく用いられる材料としては、磁
歪材料であるフェライトやニッケル等、あるいは電歪材
料である圧電セラミック(PZT=ジルコンチタン酸鉛
等)や圧電ゴム(PVDF=ポリフッ化ビニルデン)等
がある。しかし、これらの材料で強制振動させて音波を
出すためには大きなエネルギが必要であることから、供
給エネルギを節約するために、上記のように機械的な共
振を利用して振動振幅量を稼いでいる。なお、振動振幅
量が送波音波の音圧に相当し、また受波時の出力電圧に
大きく影響する。
[0007] In addition, distortion due to an applied magnetic field (magnetostriction)
In some cases, a case or the like is vibrated to emit a sound wave. In general, materials often used for sound wave generation include ferrite and nickel as magnetostrictive materials, and piezoelectric ceramics (PZT = lead zircon titanate) and piezoelectric rubber (PVDF = polyvinyldene fluoride) as electrostrictive materials. . However, since a large amount of energy is required to generate a sound wave by forcibly vibrating these materials, the amount of vibration amplitude is obtained by using mechanical resonance as described above in order to save supplied energy. In. Note that the amount of vibration amplitude corresponds to the sound pressure of the transmitted sound wave, and greatly affects the output voltage during reception.

【0008】上述のように、従来は電歪方式及び磁歪方
式とも機械的に共振するような構造が採用されている。
このような共振方式における音波の周波数は、その構造
寸法と材料内部の音響速度から決まる基本定在波によっ
て決定される。例えば、上記圧電セラミック31を利用
した超音波振動子の場合には、周波数定数が1600
〔mHz〕であることから、16〔mm〕の長さがあれ
ば、圧電セラミック31の厚み方向の振動が100〔k
Hz〕の共振周波数で共振することになる。なお、周波
数定数は圧電セラミック31の寸法と共振周波数の関係
を示す数値である。
As described above, conventionally, a structure that mechanically resonates in both the electrostrictive system and the magnetostrictive system has been adopted.
The frequency of the sound wave in such a resonance system is determined by a fundamental standing wave determined by its structural dimensions and the acoustic velocity inside the material. For example, in the case of an ultrasonic transducer using the piezoelectric ceramic 31, the frequency constant is 1600.
[MHz], if the length is 16 [mm], the vibration in the thickness direction of the piezoelectric ceramic 31 is 100 [k].
[Hz]. The frequency constant is a numerical value indicating the relationship between the size of the piezoelectric ceramic 31 and the resonance frequency.

【0009】また、共振を利用する場合に必要となるエ
ネルギは、非共振で振動させる場合の1/Qのエネルギ
でよい(Qは共振の鋭さを示すQファクタ)。つまり、
共振を利用した送波方法を採用することにより効率よく
音波を送波することができるものである。Qファクタは
その材料によって異なるが、圧電セラミックの場合には
約1000程度である。また、磁歪方式の場合も、素材
長を半波長として、材料内部における音波速度から計算
できる周波数が共振の基本周波数となる。なお、一般に
電歪方式及び磁歪方式の他、上記のような共振方式によ
る音波発生装置では送波素子として用いる以外に、同時
に受波素子としても用いることが可能である。なぜな
ら、機械的な共振周波数に等しい外部からの振動を印加
することによって、材料に電圧あるいは電流が発生する
からである。
Further, the energy required when utilizing resonance is 1 / Q energy when vibrating non-resonantly (Q is a Q factor indicating the sharpness of resonance). That is,
Sound waves can be transmitted efficiently by employing a transmission method utilizing resonance. The Q factor varies depending on the material, but is about 1000 in the case of piezoelectric ceramic. Also, in the case of the magnetostrictive system, the frequency that can be calculated from the speed of sound waves inside the material is the fundamental frequency of resonance, with the material length being half the wavelength. In general, in addition to the electrostrictive method and the magnetostrictive method, the sound wave generator using the above-described resonance method can be used as a wave receiving element in addition to the wave transmitting element. This is because a voltage or a current is generated in the material by applying an external vibration equal to the mechanical resonance frequency.

【0010】上述のように従来は共振方式で音波を送受
しているため、図17に示すように安定共振になるまで
素子の共振周波数に相当する周波数、例えば、共振周波
数40〔kHz〕に相当する周期25〔μs〕のパルス
信号を複数の周期に渡って連続的に素子に印加してい
る。これは専ら送波素子あるいは受波素子側の要求のみ
によるものである。さらに、送波の場合には送波用の電
気信号を停止しても、また受波の場合にはその音波を停
止しても、機械的な共振による振動が残り(これを「残
響」と呼ぶ。)、完全に停止するまでに相当の時間を要
している。したがって、音波を送波してから相当の時間
を待ってから、信号処理などの次の動作を実行するよう
になっている。
As described above, since the sound wave is conventionally transmitted and received by the resonance method, as shown in FIG. 17, a frequency corresponding to the resonance frequency of the element, for example, a resonance frequency of 40 [kHz] is obtained until a stable resonance is achieved as shown in FIG. A pulse signal having a period of 25 [μs] is continuously applied to the element over a plurality of periods. This is due solely to the requirements of the transmitting or receiving element. Furthermore, even if the transmission electric signal is stopped in the case of transmission, or if the sound wave is stopped in the case of reception, vibration due to mechanical resonance remains (this is referred to as "reverberation"). It takes considerable time to completely stop. Therefore, the next operation such as signal processing is executed after waiting a considerable time after transmitting the sound wave.

【0011】ところで、一般にドップラー効果とは、観
測者に対して移動する対象物で反射した音波の周波数
が、送波音波の周波数と異なる現象をいう。一方、上記
従来例における音波の送波並びに受波は機械的共振によ
り行われるため、送波素子に所定周波数の信号を印加し
て音波を送波しても、対象物によって反射される反射音
波の周波数が送波音波の周波数からシフトすることによ
り、受波素子では反射音波を受波することができない場
合がある。つまり、音波信号の周波数シフト量にもよる
が、受波素子にその共振周波数以外の周波数で音波が受
波され、その受波信号を電気信号に変換する効率が極端
に低下するのである。したがって、ドップラー効果を利
用して対象物の移動速度を測定する場合には、その測定
可能な速度範囲が受波素子の共振周波数によって大きく
限定され、又その測定精度も低いものである。
By the way, the Doppler effect generally refers to a phenomenon in which the frequency of a sound wave reflected by an object moving with respect to an observer is different from the frequency of a transmitted sound wave. On the other hand, since the transmission and reception of sound waves in the above-described conventional example are performed by mechanical resonance, even if a sound wave is transmitted by applying a signal of a predetermined frequency to the transmitting element, the reflected sound waves reflected by the object are reflected. Is shifted from the frequency of the transmitted sound wave, the receiving element may not be able to receive the reflected sound wave. That is, although depending on the frequency shift amount of the sound wave signal, the sound wave is received by the wave receiving element at a frequency other than its resonance frequency, and the efficiency of converting the received wave signal into an electric signal is extremely reduced. Therefore, when measuring the moving speed of the object using the Doppler effect, the measurable speed range is largely limited by the resonance frequency of the wave receiving element, and the measurement accuracy is low.

【0012】また、機械的な共振を利用した従来の送波
及び受波の方法では、例えば振幅変調された信号を送波
素子に印加しても、共振振動の振幅が印加した変調信号
の通りには変化しない。したがって、上記従来の共振方
式においては、送波素子から送波される音波信号を、送
波素子へ印加する電気信号によって制御することができ
ない。そのため、送波素子にアナログ変調した信号を印
加して送波すること、並びにアナログ変調のかかった音
波を受波素子で受波するという発想自体がなかった。
In the conventional method of transmitting and receiving waves utilizing mechanical resonance, even if a signal whose amplitude is modulated is applied to a transmitting element, for example, the amplitude of the resonance vibration is the same as that of the applied modulation signal. Does not change. Therefore, in the above-described conventional resonance method, the sound wave signal transmitted from the transmitting element cannot be controlled by the electric signal applied to the transmitting element. Therefore, there has been no idea of applying an analog-modulated signal to the transmitting element and transmitting the signal, and receiving the analog-modulated sound wave by the receiving element.

【0013】ところで、送波素子や受波素子の指向特性
を所望の特性にするには、従来の共振方式においては送
波素子や受波素子の送波面及び受波面の形状を変えると
いう方法があったが、構造自体を変更する必要があるこ
とから実際的な方法ではない。そこで従来は、図18に
示すように送波面及び受波面の前方にホーン38を配設
することで所望の指向特性を得るとともに、指向特性を
変更する場合にはその指向特性に合った形状のホーンに
取り替えるようにしていた。つまり、図19に示すよう
に送波面や受波面の前方にホーンを配線していない場合
には、広い空間に音波が広がる状態にあるから、この音
波の広がりをホーン38を用いて抑えることにより音波
送波方向を前面方向に集中させることができるのであ
る。
By the way, in order to make the directional characteristics of the transmitting element and the receiving element desired characteristics, in the conventional resonance method, there is a method of changing the shapes of the transmitting surface and the receiving surface of the transmitting element and the receiving element. However, it is not a practical method because the structure itself needs to be changed. Therefore, conventionally, a desired directional characteristic is obtained by arranging a horn 38 in front of the transmitting surface and the receiving surface as shown in FIG. 18, and when the directional characteristic is changed, a shape matching the directional characteristic is obtained. I was replacing it with a horn. That is, when the horn is not wired in front of the wave transmitting surface or the wave receiving surface as shown in FIG. 19, the sound wave is spread in a wide space. The direction of transmitting the sound wave can be concentrated in the front direction.

【0014】[0014]

【発明が解決しようとする課題】ところで、上記従来の
共振方式の場合には以下のような問題がある。まず、構
造上一義的に決まる共振周波数に略等しい周波数の音波
しか送波並びに受波することができないため、別の周波
数の音波を送波並びに受波するには素子自体の構造を変
更しなければならない。
However, in the case of the above-mentioned conventional resonance system, there are the following problems. First, since only sound waves having a frequency substantially equal to the resonance frequency uniquely determined by the structure can be transmitted and received, the structure of the element itself must be changed in order to transmit and receive sound waves of another frequency. Must.

【0015】また、図17(b)に示すように、機械的
な共振が安定域に達するまでに数ms程度の時間が必要
であり、しかも、音波を送波することを指令する信号を
停止しても、同図(c)に示すように残響によって実際
に音波が停止するまでに数ms程度の時間が必要である
ことなどから、音波の送波開始及び終了の時期を送波素
子に与える電気信号によっては、μsのオーダーで制御
することができないことになる。なお、送波素子と受波
素子を独立して持つシステム構成の場合には、お互いの
素子の共振周波数を合致させなければならない。例え
ば、素子単体の共振周波数を測定して物理的な構造を全
数調整しなければならず、部品単価上昇の原因となる。
さらに、温湿度によって素子を含めた寸法が変化し、そ
れが共振周波数に影響を及ぼし、共振周波数の変化によ
って素子の出力の大きさが変わることになる。そして、
共振方式であるから、環境変化すなわち周波数変化に対
する出力変化量は非常に大きい。
Further, as shown in FIG. 17B, a time of about several ms is required until mechanical resonance reaches a stable region, and a signal for instructing to transmit a sound wave is stopped. However, as shown in FIG. 3C, it takes several milliseconds for the sound wave to actually stop due to reverberation. Depending on the applied electric signal, it cannot be controlled on the order of μs. In the case of a system configuration having a transmitting element and a receiving element independently, the resonance frequencies of the elements must be matched. For example, the physical frequency must be adjusted by measuring the resonance frequency of a single element, which causes an increase in unit cost.
Furthermore, the dimensions including the element change due to the temperature and humidity, which affects the resonance frequency, and the change in the resonance frequency changes the magnitude of the output of the element. And
Because of the resonance system, the amount of output change with respect to environmental changes, that is, frequency changes, is very large.

【0016】さらに、送波及び受波音波の周波数が構造
で決まる共振周波数のみなので、他の音波発生装置で同
じ周波数の音波が発生した場合に、自装置による音波な
のか他の装置からの音波なのかを区別するために多くの
労力が必要となり、例えば、特開昭60−91281号
公報あるいは特開昭58−122482号公報に記載さ
れているような種々の工夫が試みられているが、何れも
完全な対策ができてはいない。
Further, since the frequency of the transmitted and received sound waves is only the resonance frequency determined by the structure, when a sound wave of the same frequency is generated by another sound wave generator, the sound wave is generated by the own apparatus or the sound wave from another apparatus. A great deal of effort is required to distinguish between them, and various attempts have been made, for example, as described in JP-A-60-91281 or JP-A-58-122482. Neither of them has taken complete measures.

【0017】一方、従来の共振方式で用いられている磁
歪材料や圧電材料等を非共振で駆動することで、上述の
ような共振方式の問題を回避することが考えられるが、
それには以下のような問題がある。例えば、図16に示
した圧電セラミック31の強制振動変位量がΔt=dV
(d:圧電定数=200×10-12 〔m/V〕)とすれ
ば、仮に1〔μm〕の変位を得るためには印加電圧に5
000〔V〕程が必要となって、従来装置に対して昇圧
回路を設けなければならなくなる(図20参照)。ま
た、希望する方向の振動が非共振になるように形状を設
定しても、材料の形状寸法と印加する信号電圧の周波数
によっては、希望しない方向へ共振振動する可能性があ
る。この振動による音波が、希望しない方向に漏れた場
合にはノイズ源となってしまう。従って、使用する広い
周波数帯域内においてすべての形状方向に共振しないよ
うにするには、素子自体の寸法設計が非常に複雑になる
という問題がある。
On the other hand, it is conceivable to avoid the above-mentioned problem of the resonance system by driving the magnetostrictive material, the piezoelectric material, and the like used in the conventional resonance system without resonance.
It has the following problems. For example, the forced vibration displacement of the piezoelectric ceramic 31 shown in FIG.
(D: piezoelectric constant = 200 × 10 −12 [m / V]), to obtain a displacement of 1 μm, the applied voltage must be 5 μm.
About 000 [V] is required, and a booster circuit must be provided for the conventional device (see FIG. 20). Further, even if the shape is set so that the vibration in the desired direction becomes non-resonant, resonance vibration may occur in an undesired direction depending on the shape and size of the material and the frequency of the applied signal voltage. If sound waves due to this vibration leak in an undesired direction, they become noise sources. Therefore, in order to prevent resonance in all shape directions within a wide frequency band to be used, there is a problem that the dimensional design of the element itself becomes very complicated.

【0018】また、一般に用いられている磁歪素子(フ
ェライト、ニッケルなど)の場合、図21に示すように
歪みを20〔ppm〕とすると1〔μm〕変位させるた
めには最小でも50〔mm〕の素材長が必要になる。し
かし、磁歪素子内の音波速度がフェライトの場合で約5
000〔m/s〕であり、素材長が音波の半波長と等し
くなる周波数が基本の共振周波数となることから、この
場合には、約50〔kHz〕となり可聴域を少し越えた
辺りに共振点が存在することになる。従って、従来の磁
歪素子を用いて非共振で音波を送波しようとすると、構
造的な共振周波数が送波音波の超音波領域に存在してし
まうという欠点がある。また、磁歪素子を磁界と歪みと
の関係が直線でない領域で使用することは、磁界を正弦
波状に変化させても音波の音圧が正弦波状には変化しな
いことになり、後段の信号処理が複雑になるという欠点
がある。しかしながら、磁歪素子を磁界と歪みとの関係
が直線となる部分で使用しようとすれば、その素材長が
さらに長くなるとともに構造的な共振周波数がさらに低
下してきて、不都合が生じるという問題がある。
In the case of a generally used magnetostrictive element (ferrite, nickel, etc.), as shown in FIG. 21, if the strain is 20 [ppm], at least 50 [mm] is required to displace 1 [μm]. Material length is required. However, when the sound velocity in the magnetostrictive element is ferrite, it is about 5
000 [m / s], and the frequency at which the material length is equal to the half-wavelength of the sound wave is the basic resonance frequency. In this case, the resonance frequency is about 50 [kHz], and the resonance slightly exceeds the audible range. There will be a point. Therefore, there is a drawback that when a conventional magnetostrictive element is used to transmit a sound wave in a non-resonant manner, a structural resonance frequency exists in the ultrasonic region of the transmitted sound wave. Also, using the magnetostrictive element in a region where the relationship between the magnetic field and the distortion is not linear means that the sound pressure of the sound wave does not change in a sinusoidal manner even if the magnetic field is changed in a sinusoidal manner. There is a disadvantage that it becomes complicated. However, if an attempt is made to use the magnetostrictive element in a portion where the relationship between the magnetic field and the strain is linear, there is a problem that the material length becomes longer and the structural resonance frequency further decreases, which causes inconvenience.

【0019】なお、上記の1〔μm〕の振動変位とは、
伝搬媒体が常温常湿の空気の場合に振動周波数40〔k
Hz〕で点音源で振動させたときに、距離30〔cm〕
で音圧が120〔dB〕(0〔dB〕=0.00002
〔Pa〕)となる振動振幅にほぼ相当し、従来より空中
超音波用として市販されている圧電セラミックを用いた
共振タイプの送波素子及び受波素子にほぼ匹敵する。
The above-mentioned vibration displacement of 1 [μm]
When the propagation medium is air at room temperature and humidity, the vibration frequency is 40 [k
Hz] when vibrating with a point sound source at a distance of 30 [cm].
And the sound pressure is 120 [dB] (0 [dB] = 0.00002)
[Pa]), which is almost equal to a resonance type transmitting element and receiving element using a piezoelectric ceramic which is conventionally marketed for aerial ultrasonic waves.

【0020】ところで、音波信号を送波してから反射し
てくる音波信号を受波するまでの時間遅れによって対象
物までの距離を測定する場合、送波素子−対象物−受波
素子の距離の基本式が距離L=VT(V:伝搬媒体中の
音速、T:送波開始から受波開始までの時間)で表され
るが、上述した安定共振までの時間及び音波停止命令後
の残響時間とを加えた時間に相当する距離においては、
同一素子を送波及び受波に兼用にした場合に測定不能と
なってしまう。なお、このような残響を低減する方法
が、特開平4−70585号公報や特開昭64−448
76号公報等で提案され、また上記のような近距離の測
定領域を改良する方法が、実開昭59−149071号
公報や実開昭63−168875号公報等で提案されて
いる。しかし、空気中で音波を送受波する場合にあっ
て、共振周波数40〔kHz〕の場合で種々対策を行っ
た結果でも上記30〔cm〕以内の領域はほぼ測定不能
領域になってしまう。
By the way, when measuring the distance to an object based on a time delay from the transmission of a sound wave signal to the reception of a reflected sound wave signal, the distance between the transmitting element, the object, and the receiving element is measured. Is expressed by the distance L = VT (V: sound velocity in the propagation medium, T: time from the start of transmission to the start of reception), but the time until the above-mentioned stable resonance and the reverberation after the sound wave stop command are given. At a distance equivalent to the time plus the time,
When the same element is used for both transmission and reception, measurement becomes impossible. A method for reducing such reverberation is disclosed in JP-A-4-70585 and JP-A-64-448.
No. 76, and the like, and a method for improving the short-range measurement area as described above are proposed in Japanese Utility Model Laid-Open Nos. 59-149071 and 63-168875. However, when sound waves are transmitted and received in the air, even when various measures are taken at a resonance frequency of 40 [kHz], the area within the above 30 [cm] is almost an unmeasurable area.

【0021】既に説明したように、従来は機械的共振に
よって単一周波数の音波を送波するのみであったため
に、音波に変調をかけるという発想自体がなかった。従
って、その信号処理方法は送波の開始から受波の開始ま
での遅れ時間を測定して、その送れ時間から距離を求め
る方法に終始している。一方、センサの用途では、音波
でなければ測定できない対象物がある。例えば、ガラス
や液体などのように光学的に透明な物体に関する情報を
得ようとする場合、一般によく用いられる光式のセンサ
では測定不能であり、このような分野では音波でのセン
シングは重要な方式となり得る。
As described above, since conventionally, only a single-frequency sound wave was transmitted by mechanical resonance, there was no idea of modulating the sound wave. Therefore, the signal processing method is based on the method of measuring the delay time from the start of transmission to the start of reception and calculating the distance from the transmission time. On the other hand, in the application of the sensor, there is an object which cannot be measured without a sound wave. For example, when trying to obtain information on an optically transparent object such as glass or a liquid, it is impossible to measure with a commonly used optical sensor, and sensing with sound waves is important in such a field. It can be a scheme.

【0022】また、従来は音波の指向特性を所望の特性
にしようとした場合に、図18に示したようなホーン3
8等の送波素子や受波素子以外の部材が必要になり、送
波装置あるいは受波装置が構造的に大きくなってしまう
という問題がある。さらに、指向特性を変更するために
は部材交換が必要となり煩わしいという問題もある。請
求項1〜12の発明は上記問題に鑑みて為されたもので
あり、その目的とするところは、非共振で音波信号の送
波あるいは受波が可能であり、ノイズが少なく、電気的
な制御が容易に行ない得る音波信号送波方法及びその装
置並びに音波信号受波方法及びその装置並びにこれらを
用いた音波信号送受波処理システムを提供することにあ
る。
Conventionally, when the directional characteristics of a sound wave are to be set to desired characteristics, a horn 3 as shown in FIG.
8 and other members other than the transmitting element and the receiving element are required, and there is a problem that the transmitting apparatus or the receiving apparatus becomes structurally large. Further, there is a problem that changing the directivity characteristics requires replacement of members, which is troublesome. The inventions of claims 1 to 12 have been made in view of the above problems, and an object of the invention is to enable transmission or reception of a sound wave signal without resonance, to reduce noise, and to reduce electrical noise. It is an object of the present invention to provide a sound wave signal transmitting method and apparatus which can be easily controlled, a sound wave signal receiving method and a sound wave signal transmitting / receiving processing system using them.

【0023】請求項13〜17の発明は上記問題に鑑み
て為されたものであり、その目的とするところは、音波
信号に変調をかけることで従来とは異なる信号処理方法
により対象物に関する情報を得ることができる音波信号
送波方法及びその装置並びに音波信号受波方法及びその
装置並びにこれらを用いた音波信号送受波処理システム
を提供することにある。
The inventions of claims 13 to 17 have been made in view of the above problems, and an object of the invention is to modulate a sound wave signal to obtain information on an object by a signal processing method different from the conventional method. A method and apparatus for transmitting a sound signal, a method and apparatus for receiving a sound signal, and a system for transmitting and receiving a sound signal using the same.

【0024】請求項18及び19の発明は上記問題に鑑
みて為されたものであり、その目的とするところは、指
向特性が容易に設定並びに変更可能な音波信号送波方法
及びその装置並びに音波信号受波方法及びその装置並び
にこれらを用いた音波信号送受波処理システムを提供す
ることにある。
The inventions of claims 18 and 19 have been made in view of the above problems, and an object of the invention is to provide a method and an apparatus for transmitting a sound wave signal in which the directional characteristics can be easily set and changed, and the sound wave. It is an object of the present invention to provide a signal receiving method, a device thereof, and a sound wave transmitting / receiving processing system using the same.

【0025】[0025]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、稀土類元素と鉄族元素の二元系
合金より成る超磁歪材料で形成される磁歪素子を送波素
子とし、該送波素子を非共振で駆動することで音波伝搬
媒体に圧力変化を生じさせて音波信号を送波することを
特徴とし、変位量の大きい超磁歪材料で形成される磁歪
素子を送波素子に用いることで、適度なエネルギ量で音
波信号を送波することができるとともに、送波素子の寸
法を適当な大きさにすれば、機械的な共振周波数が可聴
領域や超音波領域に存在しなくすることができる。その
結果、音波信号の送波を電気的に制御することが可能と
なり、音波信号の応答性が改善される。
According to a first aspect of the present invention, there is provided a magnetostrictive element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element. A magnetostrictive element formed of a giant magnetostrictive material having a large displacement amount, characterized in that a pressure change is generated in the acoustic wave propagation medium by driving the wave transmitting element in a non-resonant manner and a sound wave signal is transmitted. When used for a transmitting element, a sound wave signal can be transmitted with an appropriate amount of energy, and if the dimensions of the transmitting element are set to an appropriate size, the mechanical resonance frequency can be in the audible range or the ultrasonic range. Can be eliminated. As a result, the transmission of the sound wave signal can be electrically controlled, and the responsiveness of the sound wave signal is improved.

【0026】請求項2の発明は、上記目的を達成するた
めに、稀土類元素と鉄族元素の二元系合金より成る超磁
歪材料で形成される送波素子と、該送波素子を非共振で
駆動する駆動手段とを備え、前記駆動手段にて前記送波
素子を駆動し音波伝搬媒体に圧力変化を生じさせて音波
信号を送波することを特徴とし、変位量の大きい超磁歪
材料で形成される磁歪素子を送波素子に用いることで、
駆動手段にて適当なエネルギ量で駆動すれば音波信号を
送波することができるとともに、送波素子の寸法を適当
な大きさにすれば、機械的な共振周波数が可聴領域や超
音波領域に存在しなくすることができる。その結果、音
波信号の送波を駆動手段からの電気的な駆動信号によっ
て制御することが可能となり、音波信号の応答性が改善
される。
According to a second aspect of the present invention, there is provided a wave transmitting element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, A driving means for driving by resonance, wherein the driving means drives the wave transmitting element to generate a pressure change in a sound wave propagation medium to transmit a sound wave signal, and a giant magnetostrictive material having a large displacement amount. By using the magnetostrictive element formed by
If the driving means is driven with an appropriate amount of energy, the sound wave signal can be transmitted, and if the size of the transmitting element is set to an appropriate size, the mechanical resonance frequency becomes in the audible range or the ultrasonic range. Can be absent. As a result, the transmission of the sound wave signal can be controlled by the electric drive signal from the driving means, and the responsiveness of the sound wave signal is improved.

【0027】請求項3の発明は、上記目的を達成するた
めに、稀土類元素と鉄族元素の二元系合金より成る超磁
歪材料で形成される磁歪素子を受波素子とし、音波信号
による音波伝搬媒体の圧力変化を前記受波素子にて非共
振で検出し且つ電気信号に変換することを特徴とし、変
位量の大きい超磁歪材料で形成される磁歪素子を受波素
子に用いることで、受波した音波信号を適当なレベルの
電気信号に変換して出力することができるとともに、受
波素子の寸法を適当な大きさにすれば、機械的な共振周
波数が可聴領域や超音波領域に存在しなくすることがで
きる。その結果、音波信号の受波を電気的に制御するこ
とが可能となり、音波信号の応答性が改善される。
According to a third aspect of the present invention, in order to achieve the above object, a magnetostrictive element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element is used as a wave receiving element, It is characterized in that the pressure change of the sound wave propagation medium is detected non-resonantly by the wave receiving element and converted into an electric signal, and a magnetostrictive element formed of a giant magnetostrictive material having a large displacement amount is used as the wave receiving element. It is possible to convert a received sound wave signal into an electric signal of an appropriate level and output the same, and if the dimensions of the wave receiving element are set to an appropriate size, the mechanical resonance frequency can be in the audible range or the ultrasonic range. Can be eliminated. As a result, the reception of the sound wave signal can be electrically controlled, and the responsiveness of the sound wave signal is improved.

【0028】請求項4の発明は、上記目的を達成するた
めに、稀土類元素と鉄族元素の二元系合金より成る超磁
歪材料で形成される受波素子と、該受波素子にて非共振
で検出した音波信号による音波伝搬媒体の圧力変化を電
気信号に変換する信号変換手段とを備えたことを特徴と
し、変位量の大きい超磁歪材料で形成される磁歪素子を
受波素子に用いることで、受波素子で受波した音波信号
を信号変換手段にて適当なレベルの電気信号に変換して
出力することができるとともに、受波素子の寸法を適当
な大きさにすれば、機械的な共振周波数が可聴領域や超
音波領域に存在しなくすることができる。その結果、音
波信号の受波を電気的に制御することが可能となり、音
波信号の応答性が改善される。
According to a fourth aspect of the present invention, there is provided a wave receiving element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, and Signal converting means for converting a pressure change of a sound wave propagation medium due to a sound signal detected at a non-resonance into an electric signal, wherein a magnetostrictive element formed of a giant magnetostrictive material having a large displacement amount is used as a wave receiving element. By using, the sound wave signal received by the receiving element can be converted into an electric signal of an appropriate level by the signal converting means and output, and if the dimensions of the receiving element are made appropriate, The mechanical resonance frequency can be eliminated from the audible range and the ultrasonic range. As a result, the reception of the sound wave signal can be electrically controlled, and the responsiveness of the sound wave signal is improved.

【0029】請求項5の発明は、上記目的を達成するた
めに、稀土類元素と鉄族元素の二元系合金より成る超磁
歪材料で形成される送波素子、該送波素子を非共振で駆
動する駆動手段を具備する音波信号送波装置と、前記超
磁歪材料で形成されるとともに前記送波素子から送波さ
れて対象物で反射された音波信号による音波伝搬媒体の
圧力変化を非共振で検出する受波素子、該受波素子にて
検出した音波伝搬媒体の圧力変化を電気信号に変換する
信号変換手段を具備する音波信号受波装置と、少なくと
も前記音波信号受波装置が具備する信号変換手段で変換
された電気信号に基づいて前記対象物に関する情報を得
るための処理を行う信号処理手段とを備えたことを特徴
とし、音波信号送波装置並びに音波信号受波装置には変
位量の大きい超磁歪材料で形成される磁歪素子を送波素
子並びに受波素子に用いているから、音波信号の送波及
び受波を電気的に制御することができるとともに、音波
信号の応答性が改善される。
According to a fifth aspect of the present invention, there is provided a wave transmitting element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, and a non-resonant wave transmitting element. A sound wave signal transmitting device including a driving unit driven by a device, and a pressure change of a sound wave propagating medium due to a sound wave signal formed of the giant magnetostrictive material and transmitted from the wave transmitting element and reflected by an object. A sound receiving element including a wave receiving element that detects by resonance, a signal conversion unit that converts a pressure change of a sound wave propagation medium detected by the wave receiving element into an electric signal, and at least the sound wave signal receiving apparatus Signal processing means for performing processing for obtaining information on the object based on the electric signal converted by the signal conversion means to perform, the sound wave signal transmitting device and the sound wave signal receiving device Super magnet with large displacement Since the magnetostrictive element formed of a material is used for the wave transmitting device and wave receiving element, it is possible to electrically control the transmit and reception of the acoustic signal, the response of the acoustic signal is improved.

【0030】請求項6の発明は、請求項1〜5の何れか
の発明において、前記音波信号が可聴領域の音波から成
ることを特徴とする。請求項7の発明は、請求項1〜5
の何れかの発明において、前記音波信号が超音波領域の
音波から成ることを特徴とする。請求項8の発明は、請
求項1又は2又は5〜7の何れかの発明において、前記
駆動手段が、所定の周期的な波形を有する電気信号を前
記送波素子に与えて駆動することを特徴とする。
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the sound wave signal comprises a sound wave in an audible region. The invention of claim 7 is the invention of claims 1 to 5
In any one of the inventions, the sound wave signal comprises a sound wave in an ultrasonic region. The invention according to claim 8 is the invention according to any one of claims 1 or 2 or 5 to 7, wherein the driving unit supplies an electric signal having a predetermined periodic waveform to the transmitting element for driving. Features.

【0031】請求項9の発明は、請求項8の発明におい
て、前記駆動手段が、前記1周期分の電気信号を前記送
波素子に与えて駆動することを特徴とする。請求項10
の発明は、請求項3〜7の何れかの発明において、前記
信号変換手段が、前記受波素子で検出される所定の周期
的な波形を有する音波伝搬媒体の圧力変化を電気信号に
変換することを特徴とする。
According to a ninth aspect of the present invention, in the invention of the eighth aspect, the driving means drives the transmitting element by supplying the electric signal for one cycle to the transmitting element. Claim 10
According to a third aspect of the present invention, in any one of the third to seventh aspects of the present invention, the signal conversion unit converts a pressure change of a sound wave propagation medium having a predetermined periodic waveform detected by the wave receiving element into an electric signal. It is characterized by the following.

【0032】請求項11の発明は、請求項10の発明に
おいて、前記信号変換手段が、前記1周期分の波形を有
する音波伝搬媒体の圧力変化を電気信号に変換すること
を特徴とする。請求項12の発明は、請求項5〜11の
何れかの発明において、前記駆動手段にて所定の周期的
な波形を有する電気信号を前記送波素子に与えて駆動す
ることで前記送波装置から音波信号を送波し、移動又は
静止している前記対象物で反射した前記音波信号の反射
音波信号を前記受波装置にて電気信号に変換するととも
に、前記信号処理手段にて前記反射音波信号の周波数を
求め、前記送波装置から送波された音波信号の周波数と
前記反射音波信号の周波数とから前記対象物の移動速度
の情報を得ることを特徴とし、音波信号送波装置と音波
信号受波装置の間で送波素子並びに受波素子の特性を調
整する必要がなく、しかも温湿度等の環境変化に対して
受波する音波信号のレベル変動が抑えられ、従来の共振
方式に比べて精度良く対象物の移動速度の情報が得られ
る。
An eleventh aspect of the present invention is characterized in that, in the tenth aspect of the present invention, the signal converting means converts a pressure change of the sound wave propagation medium having the waveform for one cycle into an electric signal. According to a twelfth aspect of the present invention, in the invention according to any one of the fifth to eleventh aspects, the driving unit applies an electric signal having a predetermined periodic waveform to the transmitting element to drive the transmitting element. A sound wave signal is transmitted from the object, and the reflected sound wave signal of the sound wave signal reflected by the moving or stationary object is converted into an electric signal by the wave receiving device, and the reflected sound wave is converted by the signal processing unit. A signal frequency is obtained, and information on the moving speed of the object is obtained from the frequency of the sound wave signal transmitted from the wave transmitting device and the frequency of the reflected sound wave signal. There is no need to adjust the characteristics of the transmitting element and receiving element between the signal receiving devices, and the level fluctuation of the sound wave signal received in response to environmental changes such as temperature and humidity is suppressed. Object movement with higher accuracy Speed of information can be obtained.

【0033】請求項13の発明は、請求項5の発明にお
いて、前記駆動手段が搬送波を変調波でアナログ変調し
た電気信号を前記送波素子に与えて駆動することで前記
送波装置から音波信号を送波し、移動又は静止している
前記対象物で反射した前記音波信号の反射音波信号を前
記受波装置にて電気信号に変換するとともに、前記信号
処理手段にて前記反射音波信号の変調波成分から前記対
象物に関する情報を得ることを特徴とし、従来とは異な
る方式で対象物の情報を得ることができ、外部からの音
響雑音に影響されずに精度よく且つ速い応答で対象物の
情報が得られる。
According to a thirteenth aspect of the present invention, in the fifth aspect of the present invention, the driving means applies an electric signal obtained by analog-modulating a carrier wave with a modulating wave to the transmitting element to drive the transmitting element, so that the acoustic wave signal is transmitted from the transmitting apparatus. The reflected wave signal of the sound wave signal reflected by the moving or stationary object is converted into an electric signal by the wave receiving device, and the reflected wave signal is modulated by the signal processing unit. It is characterized by obtaining information about the object from the wave component, it is possible to obtain information of the object in a method different from the conventional, accurate and fast response of the object without being affected by external acoustic noise Information is obtained.

【0034】請求項14の発明は、請求項13の発明に
おいて、前記信号処理手段が、前記送波装置から送波さ
れた音波信号の変調成分と前記受波装置で受波された反
射音波信号の変調成分の同一位相における時間間隔を求
め、該時間間隔に音波信号の媒体伝搬速度を乗じて、移
動又は静止している前記対象物までの距離の情報を得る
ことを特徴とし、従来とは異なる方式で対象物までの距
離情報を得ることができ、外部からの音響雑音に影響さ
れずに精度よく且つ速い応答で対象物までの距離情報が
得られる。
According to a fourteenth aspect, in the thirteenth aspect, the signal processing means includes a modulating component of the sound wave signal transmitted from the wave transmitting device and a reflected sound wave signal received by the wave receiving device. The time interval in the same phase of the modulation component is obtained, multiplying the time interval by the medium propagation velocity of the sound signal, to obtain information on the distance to the moving or stationary object, The distance information to the object can be obtained by a different method, and the distance information to the object can be obtained accurately and quickly without being affected by external acoustic noise.

【0035】請求項15の発明は、請求項13の発明に
おいて、前記信号処理手段が、前記送波装置から送波さ
れた音波信号の変調成分と前記受波装置で受波された反
射音波信号の変調成分の同一位相における時間間隔を求
め、該時間間隔に音波信号の媒体伝搬速度を乗じて、移
動又は静止している前記対象物までの距離を算出すると
ともに、所定の時間差で複数回に渡って求めた前記各距
離の差を前記時間差で除して、前記対象物の移動速度の
情報を得ることを特徴とし、従来とは異なる方式で対象
物の移動速度の情報を得ることができ、外部からの音響
雑音に影響されずに精度よく且つ速い応答で対象物の移
動速度の情報が得られる。
According to a fifteenth aspect of the present invention, in the thirteenth aspect, the signal processing means includes a modulating component of the sound wave signal transmitted from the wave transmitting device and a reflected sound wave signal received by the wave receiving device. The time interval in the same phase of the modulation component is obtained, and the time interval is multiplied by the medium propagation velocity of the sound signal to calculate the distance to the moving or stationary object, and a plurality of times with a predetermined time difference. Dividing the difference between the distances obtained by the crossing by the time difference to obtain information on the moving speed of the object, it is possible to obtain information on the moving speed of the object by a method different from the conventional method. Thus, information on the moving speed of the target object can be obtained accurately and with a fast response without being affected by external acoustic noise.

【0036】請求項16の発明は、請求項13の発明に
おいて、前記信号処理手段が、前記送波装置から送波さ
れた音波信号の変調成分と前記受波装置で受波された反
射音波信号の変調成分の各周波数を求め、前記送波装置
から送波された音波信号の変調成分の周波数と前記反射
音波信号の変調成分の周波数とから前記対象物の移動速
度の情報を得ることを特徴とし、従来とは異なる方式で
対象物の移動速度の情報を得ることができ、外部からの
音響雑音に影響されずに精度よく且つ速い応答で対象物
の移動速度の情報が得られる。
According to a sixteenth aspect, in the thirteenth aspect, the signal processing means includes a modulating component of the sound wave signal transmitted from the wave transmitting device and a reflected sound wave signal received by the wave receiving device. The frequency of the modulation component of the sound wave signal transmitted from the transmitting device and the frequency of the modulation component of the reflected sound wave signal to obtain information on the moving speed of the object. Thus, the information on the moving speed of the object can be obtained by a method different from the conventional method, and the information on the moving speed of the object can be obtained accurately and quickly without being affected by external acoustic noise.

【0037】請求項17の発明は、請求項15又は16
の発明において、前記信号処理手段が、所定の時間差で
複数回に渡って求めた前記各移動速度の差を前記時間差
で除して前記対象物の移動加速度の情報を得ることを特
徴とし、従来とは異なる方式で対象物の移動加速度の情
報を得ることができ、外部からの音響雑音に影響されず
に精度よく且つ速い応答で対象物の移動加速度の情報が
得られる。
The invention of claim 17 is the invention of claim 15 or 16
In the invention, the signal processing means obtains information on the moving acceleration of the object by dividing the difference between the moving speeds obtained a plurality of times with a predetermined time difference by the time difference, The information on the moving acceleration of the object can be obtained by a method different from that of the first embodiment, and the information on the moving acceleration of the object can be obtained accurately and quickly without being affected by external acoustic noise.

【0038】請求項18の発明は、請求項1又は2又は
5〜17の何れかの発明において、前記送波素子から送
波する音波信号の波長と前記送波素子の音波信号送波面
の形状とから決まる指向特性より、所望の指向特性が得
られる周波数の正弦波信号を前記駆動手段から前記送波
素子に与えて駆動することを特徴とし、音波信号を送波
する際の指向特性が容易に設定並びに変更可能となる。
According to an eighteenth aspect of the present invention, in any one of the first or second or fifth to seventeenth aspects, the wavelength of the sound wave signal transmitted from the wave transmitting element and the shape of the sound wave transmitting surface of the sound wave transmitting element are formed. And a sine wave signal having a frequency at which a desired directional characteristic can be obtained is given from the driving means to the transmitting element to drive the directional characteristic. Can be set and changed.

【0039】請求項19の発明は、請求項3〜17の何
れかの発明において、前記受波素子について所望の指向
特性が得られるように音波信号の波長に対する前記受波
素子の音波信号受波面の形状を決定して成ることを特徴
とし、音波信号を受波する際の指向特性が容易に設定並
びに変更可能となる。
A nineteenth aspect of the present invention is the invention according to any one of the third to seventeenth aspects, wherein the sound wave receiving surface of the wave receiving element with respect to the wavelength of the sound wave signal so as to obtain a desired directional characteristic of the wave receiving element. Is determined, and the directional characteristics at the time of receiving a sound wave signal can be easily set and changed.

【0040】[0040]

【発明の実施の形態】以下、図面を参照して本発明を実
施形態により詳細に説明する。 (実施形態1)図1に示すように本実施形態における音
波信号送波装置は、超磁歪材料で形成される磁歪素子を
送波素子1とし、送波素子1の周囲に駆動コイル3aを
長手方向に沿って巻設し、この駆動コイル3aの両端に
バイアス電源3bと信号源3cとが直列接続されて構成
されている。また、図2に示すように音波信号受波装置
は、同じく超磁歪材料で形成される磁歪素子を受波素子
2とし、受波素子2の周囲に検出コイル4aを長手方向
に沿って巻設し、この駆動コイル4aの両端にバイアス
電源4bと検出トランス4cとが直列接続されて構成さ
れている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. (Embodiment 1) As shown in FIG. 1, a sound wave signal transmitting apparatus according to the present embodiment has a magnetostrictive element formed of a giant magnetostrictive material as a transmitting element 1, and a driving coil 3a extending longitudinally around the transmitting element 1. The driving coil 3a is configured such that a bias power source 3b and a signal source 3c are connected in series at both ends of the driving coil 3a. Further, as shown in FIG. 2, the acoustic wave signal receiving device is configured such that a magnetostrictive element also formed of a giant magnetostrictive material is used as the receiving element 2, and a detection coil 4a is wound around the receiving element 2 along the longitudinal direction. A bias power supply 4b and a detection transformer 4c are connected in series to both ends of the drive coil 4a.

【0041】送波素子1及び受波素子2を形成する超磁
歪材料は、Tb(テルビウム)、Sm(サマリウム)、
Dy(ジスプロシウム)等の稀土類元素と、Fe
(鉄)、Co(コバルト)、Ni(ニッケル)等の鉄族
元素の二元系合金より成るものであって、図4に示すよ
うな磁界−磁歪特性を有している(「工業材料」199
6年10月号(Vol.44,No.11)P.48〜53、日刊工
業新聞社発行を参照)。なお、このような超磁歪材料で
形成される磁歪素子の用途としては、通常低周波のアク
チュエータが主に想定されている。
The giant magnetostrictive materials forming the transmitting element 1 and the receiving element 2 are Tb (terbium), Sm (samarium),
Rare earth elements such as Dy (dysprosium) and Fe
It is made of a binary alloy of an iron group element such as (iron), Co (cobalt), Ni (nickel) and has a magnetic field-magnetostriction characteristic as shown in FIG. 199
October 2006 (Vol.44, No.11) 48-53, published by Nikkan Kogyo Shimbun). In addition, as an application of the magnetostrictive element formed of such a giant magnetostrictive material, a low-frequency actuator is generally mainly assumed.

【0042】一般に磁歪素子にはジュール効果とビラリ
効果がある。ジュール効果とは、磁歪素子に磁界Hを印
加したときに磁界Hの大きさに相当する寸法の変化(磁
歪Δl/l)が生じる現象をいう。そして、このジュー
ル効果を利用し、駆動コイル3aに流す電流量を変える
ことで磁歪素子(送波素子1)に印加される磁界Hの大
きさを変え、それによって送波素子1に磁歪Δl/lを
生じさせ、その磁歪が伝搬媒体である空気の圧力変化と
なって音波信号が送波される。つまり、図3に示すよう
にバイアス電源3cから駆動コイル3aにバイアス電流
DCを流すことによって送波素子1にバイアス磁界HDC
を印加し、そのバイアス電流IDCを中心にして、例えば
正弦波状の信号電流IACを信号源3cから駆動コイル3
aに流せば、送波素子1に印加される磁界HACも信号電
流IACに応じて正弦波状に変化する。その結果、送波素
子1には信号電流IACに応じた正弦波状に変化する変位
(磁歪)が生じ、その変位が空気中に伝搬されることで
正弦波状の音波信号が送波されるのである。
In general, a magnetostrictive element has a Joule effect and a billiard effect. The Joule effect refers to a phenomenon in which when a magnetic field H is applied to a magnetostrictive element, a change in size (magnetostriction Δl / l) corresponding to the magnitude of the magnetic field H occurs. Using the Joule effect, the magnitude of the magnetic field H applied to the magnetostrictive element (transmitting element 1) is changed by changing the amount of current flowing through the driving coil 3a, and thereby the magnetostriction Δl / 1 is generated, and the magnetostriction becomes a pressure change of air as a propagation medium, and a sound wave signal is transmitted. That is, as shown in FIG. 3, a bias magnetic field H DC is applied to the transmitting element 1 by flowing a bias current I DC from the bias power supply 3c to the drive coil 3a.
And, for example, a sinusoidal signal current I AC from the signal source 3 c to the drive coil 3 around the bias current I DC.
a, the magnetic field H AC applied to the transmitting element 1 also changes sinusoidally according to the signal current I AC . As a result, a displacement (magnetostriction) that changes sinusoidally in accordance with the signal current I AC occurs in the transmitting element 1, and the displacement is propagated in the air, so that a sinusoidal sound signal is transmitted. is there.

【0043】一方、ビラリ効果とは、力が加わることに
よって磁歪素子の寸法が変化すると、その寸法変化に比
例して磁歪素子の磁化量が変化する現象をいう。このよ
うに磁歪素子(受波素子2)の磁化量が変化すると、検
出コイル4aにはその変化量に応じた誘起電圧EACが発
生する。つまり、音波信号は伝搬媒体である空気の圧力
変化であるから、磁歪素子から成る受波素子2が音波信
号を受波するとき、その圧力変化によって受波素子2が
変位し、その磁化量が変化する。その結果、受波した音
波信号を受波素子2の磁化量の変化を介して検出コイル
4aに流れる信号電流IACに変換することができるので
ある。
On the other hand, the Villari effect is a phenomenon in which when the size of the magnetostrictive element changes due to the application of a force, the amount of magnetization of the magnetostrictive element changes in proportion to the change in the size. With such magnetization of the magnetostrictive element (wave receiving element 2) is changed, the detection coil 4a is induced voltage E AC is generated in accordance with the amount of change. That is, since the sound wave signal is a change in the pressure of air as a propagation medium, when the wave receiving element 2 composed of a magnetostrictive element receives a sound wave signal, the change in the pressure causes the wave receiving element 2 to be displaced, and the amount of magnetization is reduced. Change. As a result, it is possible to convert the signal current I AC flowing through the sound wave signal reception in the detection coil 4a through the change in the magnetization of wave receiving element 2.

【0044】ここで、送波素子1並びに受波素子2を形
成する磁歪素子における基礎関係式は下記の式のと
おりである。 S=sH・T十d・H … B=d・T十μT・H … 但し、S:磁歪、H:磁界強度、sH:ヤング率の逆
数、T:機械的応力、B:磁束密度、μT:透磁率であ
る。また、超磁歪材料は既に説明したように図4に示す
ような磁界−磁歪特性を有する。上記のように、バイア
ス電源3bあるいは永久磁石を用いて磁歪素子にバイア
ス磁界H1 を印加した状態で、駆動コイル3aに交流電
流(信号電流)IACを流すと、磁歪素子に交流磁界H2
が印加される。バイアス磁界H1 を印加した時の磁界−
磁歪特性の曲線の傾きをdとし、磁歪素子の長さをl=
2〔mm〕、H1 =250〔Oe〕、H2 =250〔O
e〕p- p 、機械的応力T=0とする。ここで、上記式
より磁歪素子に生じる磁歪はS=d・H2 であり、その
歪み量ΔlはΔl=l・Sで求まる。具体的には、図4
より傾きd=2×10-8〔m/A〕であるから、歪み量
Δl≒1〔μm〕となる。そして、交流磁界H2 の周波
数を例えば50〔kHz〕程度にすれば、50〔kH
z〕の超音波領域の音波が出力されることになる。つま
り、送波素子1から送波される音波信号の周波数は、従
来の共振方式のように送波素子1の構造的な要因で決ま
るものではなく、信号源3cから駆動コイル3aに流す
信号電流IACの周波数によって電気的に決定することが
できる。すなわち、信号電流IACの周波数を変えること
で任意の周波数の音波信号が送波可能であり、このこと
は上記原理から明らかである。
Here, the basic relational expression in the magnetostrictive element forming the transmitting element 1 and the receiving element 2 is as follows. S = sH · T10 d · H B = d · T10 μT · H where S: magnetostriction, H: magnetic field strength, sH: reciprocal of Young's modulus, T: mechanical stress, B: magnetic flux density, μT : Permeability. Also, the giant magnetostrictive material has a magnetic field-magnetostrictive characteristic as shown in FIG. As described above, while applying a bias magnetic field H 1 in the magnetostrictive element with the bias power supply 3b, or permanent magnets and supplies the alternating current (signal current) I AC to drive coils 3a, AC to the magnetostrictive element a magnetic field H 2
Is applied. Magnetic field upon application of a bias magnetic field H 1 -
The slope of the magnetostrictive characteristic curve is d, and the length of the magnetostrictive element is l =
2 [mm], H 1 = 250 [Oe], H 2 = 250 [O
e) Let p - p and mechanical stress T = 0. Here, from the above equation, the magnetostriction generated in the magnetostrictive element is S = d · H 2 , and the amount of distortion Δl is obtained by Δl = l · S. Specifically, FIG.
Since the inclination d is 2 × 10 −8 [m / A], the distortion amount Δl ≒ 1 [μm]. Then, if the frequency of the alternating magnetic field H 2, for example, in the extent 50 [kHz], 50 [kH
z] is output. That is, the frequency of the sound wave signal transmitted from the transmitting element 1 is not determined by the structural factors of the transmitting element 1 as in the conventional resonance system, but is a signal current flowing from the signal source 3c to the driving coil 3a. it can be electrically determined by the frequency of the I AC. That is, by changing the frequency of the signal current I AC , a sound wave signal of an arbitrary frequency can be transmitted, and this is clear from the above principle.

【0045】また、本実施形態における超磁歪材料内で
の音波速度は2500〔m/s〕であり、送波素子1の
長さ寸法を5〔mm〕としたときの送波素子1の機械的
共振周波数f0 は、波長が10〔mm〕であることか
ら、f0 =625〔kHz〕となる。現在、一般に用い
られている圧電セラミックを利用した超音波振動子の音
波周波数が40〔kHz〕程度であるのに比べて上記共
振周波数f0 は1桁大きくなっており、駆動コイル3a
に流す信号電流IACの周波数帯域を適当に選定すれば、
送波素子1が機械的な共振を伴わないように非共振で駆
動することができることは明らかである。
In this embodiment, the acoustic wave velocity in the giant magnetostrictive material is 2500 [m / s], and the mechanical characteristics of the transmitting element 1 when the length of the transmitting element 1 is 5 [mm]. Since the wavelength is 10 [mm], the theoretical resonance frequency f 0 is f 0 = 625 [kHz]. At present, the resonance frequency f 0 is one order of magnitude higher than the sound wave frequency of an ultrasonic vibrator using a piezoelectric ceramic which is currently generally used is about 40 [kHz].
If the frequency band of the signal current I AC flowing to the
Obviously, the transmitting element 1 can be driven non-resonantly without mechanical resonance.

【0046】一方、本実施形態における受波素子2で
は、以下のようにして音波信号の受波が可能となる。ま
ず、検出コイル4aの両端を短絡させた場合に上記式
から磁束密度B=0となるから、磁界H=−d・T/μ
0 となる。さらに、検出コイル4aに発生する電流I
と磁界Hとの間には、H=n・I(n=N/l、N:検
出コイル4aの総巻数)の関係が成立するから、電流I
=d/μT×l/N×Tとなる。ここで、μT=4π×
10-7×比透磁率、比透磁率=8である。従って、受波
素子2においても音波信号の周波数に依らずに受波でき
ることは、上記原理からも自明である。
On the other hand, the wave receiving element 2 of the present embodiment can receive a sound wave signal as follows. First, when the both ends of the detection coil 4a are short-circuited, the magnetic flux density B = 0 from the above equation, so that the magnetic field H = −d · T / μ
It becomes T 0 . Furthermore, the current I generated in the detection coil 4a
And the magnetic field H, a relationship of H = n · I (n = N / l, N: the total number of turns of the detection coil 4a) is established.
= D / μT × 1 / N × T. Here, μT = 4π ×
10 -7 × relative magnetic permeability, relative magnetic permeability = 8. Therefore, it is obvious from the above principle that the wave receiving element 2 can receive a wave regardless of the frequency of the sound wave signal.

【0047】上記送波素子1及び受波素子2を用いた音
波信号送受波処理システムの基本構成を図5に示す。駆
動コイル3aやバイアス電源3cを具備する送波回路3
に対し、連続発振回路5から連続的な信号電流が供給さ
れて送波素子1から音波信号が送波される。そして、送
波素子1から送波されて対象物に反射して戻る音波信号
を受波素子2で受波し、検出コイル4a等を具備する受
波回路4によって電気信号に変換されて信号処理回路6
に出力される。なお、連続発振回路5における発振周波
数は送波周波数設定部7により可変できるようになって
おり、送波周波数に関する情報が信号処理回路6にも与
えられている。
FIG. 5 shows the basic configuration of a sound wave signal transmission / reception processing system using the above-mentioned transmission element 1 and reception element 2. Wave transmitting circuit 3 including drive coil 3a and bias power supply 3c
On the other hand, a continuous signal current is supplied from the continuous oscillation circuit 5, and a sound wave signal is transmitted from the transmitting element 1. Then, the sound wave signal transmitted from the wave transmitting element 1 and reflected back to the object is received by the wave receiving element 2, and is converted into an electric signal by the wave receiving circuit 4 having the detection coil 4a and the like, and the signal is processed. Circuit 6
Is output to Note that the oscillation frequency in the continuous oscillation circuit 5 can be changed by the transmission frequency setting unit 7, and information on the transmission frequency is also given to the signal processing circuit 6.

【0048】信号処理回路6では、例えば送波素子1か
らの音波信号の送波開始時間と、受波素子2による反射
音波信号の受波開始時間との差を求め、その差を伝搬媒
体(例えば、空気)中における音波信号の伝搬速度に乗
じることで対象物までの距離を求める。なお、信号処理
回路6で求められる対象物に対する情報は、上記の距離
の情報には限定されず、適当な信号処理を行うことで、
例えば対象物の存非や対象物の移動速度あるいは移動加
速度などの種々の情報を得ることができる。
The signal processing circuit 6 obtains, for example, a difference between the transmission start time of the sound wave signal from the wave transmitting element 1 and the reception start time of the reflected sound wave signal by the wave receiving element 2, and determines the difference. For example, the distance to the object is obtained by multiplying the propagation speed of the sound wave signal in the air). Note that the information on the target object obtained by the signal processing circuit 6 is not limited to the information on the distance, and by performing appropriate signal processing,
For example, it is possible to obtain various information such as the existence or nonexistence of the object, the moving speed or the moving acceleration of the object.

【0049】上述のように本実施形態によれば、圧電素
子等に比べて変位量の大きい超磁歪材料から成る磁歪素
子を用いて送波素子1並びに受波素子2を形成し、送波
素子1を非共振で駆動して音波信号を送波するととも
に、受波素子2では非共振で音波信号を受波するように
したから、送波素子1を駆動して音波信号を送波するに
適度なエネルギ量で送波することができ、且つ送波素子
1の寸法を適当な大きさにすれば、機械的な共振周波数
が可聴領域や超音波領域に存在しなくなる。また、受波
素子2についても音波信号のエネルギ量がそれ程多くな
くとも、受波した音波信号を適当なレベルの電気信号に
変換して出力することができる。その結果、音波信号の
送波並びに受波を電気的に制御することが可能となり、
例えば駆動コイル3aに流す信号電流の周波数を変える
ことで任意の周波数の音波信号に容易に設定あるいは変
更することができ、また検出コイル4aにフィルタを接
続して、そのフィルタの通過帯域をボリュウム等で可変
するようにすれば、受波素子2で受波される音波信号の
周波数も容易に設定並びに変更が可能となる。このよう
に信号電流の調整等の電気的な制御によって任意の周波
数の音波信号を送波並びに受波できることから、従来の
共振方式の如く、送波素子1及び受波素子2の構造を調
整するような必要がなくなり、しかも、温湿度の変化に
対する送波素子1及び受波素子2の出力レベルの変化
が、従来の共振方式のものほど大きくなく、無視できる
ほどに小さいものとなる。
As described above, according to the present embodiment, the wave transmitting element 1 and the wave receiving element 2 are formed using a magnetostrictive element made of a giant magnetostrictive material having a larger displacement than a piezoelectric element or the like. 1 is driven non-resonantly to transmit a sound wave signal, and the wave receiving element 2 is configured to receive a sound wave signal non-resonantly. If the wave can be transmitted with an appropriate amount of energy and the size of the wave transmitting element 1 is made appropriate, the mechanical resonance frequency does not exist in the audible region or the ultrasonic region. In addition, even if the amount of energy of the sound wave signal is not so large, the wave receiving element 2 can convert the received sound wave signal into an electric signal of an appropriate level and output the electric signal. As a result, it becomes possible to electrically control the transmission and reception of the sound wave signal,
For example, by changing the frequency of the signal current flowing through the drive coil 3a, it is possible to easily set or change the sound signal to an arbitrary frequency. Also, a filter is connected to the detection coil 4a, and the pass band of the filter is set to volume or the like. In this case, the frequency of the sound wave signal received by the wave receiving element 2 can be easily set and changed. As described above, a sound wave signal of an arbitrary frequency can be transmitted and received by electrical control such as adjustment of a signal current, so that the structures of the transmitting element 1 and the receiving element 2 are adjusted as in a conventional resonance system. This is no longer necessary, and the change in the output level of the wave transmitting element 1 and the wave receiving element 2 with respect to the change in temperature and humidity is not so large as that of the conventional resonance system and is so small that it can be ignored.

【0050】ところで、送波素子1の送波面並びに受波
素子2の受波面を半径aの略円形としたとき、送波面及
び受波面の法線方向からの角度θで送波及び受波の方向
を規定し、音波速度をv0 、音波周波数をfa、音波信
号の波長λのときに、k=2π・fa/v0 =2π/λ
とすると、送波素子1及び受波素子2の指向特性Dは下
記式で表される(但し、J1(x)は1次のベッセル関
数)。なお、このことは音響工学の分野では自明のこと
であるから詳しい説明は省略する。
By the way, when the transmitting surface of the transmitting element 1 and the receiving surface of the receiving element 2 are substantially circular with a radius a, the transmitting and receiving angles are set at an angle θ from the normal direction of the transmitting and receiving surfaces. When the direction is defined, the sound velocity is v 0 , the sound frequency is fa, and the wavelength of the sound signal is λ, k = 2π · fa / v 0 = 2π / λ
Then, the directional characteristics D of the transmitting element 1 and the receiving element 2 are represented by the following equations (where J 1 (x) is a first-order Bessel function). Since this is obvious in the field of acoustic engineering, detailed description is omitted.

【0051】 D(θ)=|2J1(k ×a×sin (θ))/(k ×a×sin (θ))| … 上記式により、送波面及び受波面の半径aと音波信号
の波長λの種々の組み合わせについて求めた指向特性を
図6(a)〜(d)に示す。すなわち、同図(a)に示
すようにa/λ=0.2の場合には殆ど無指向となり、
同図(b)〜(d)に示すようにa/λの値が大きくな
るにつれて強い指向特性を示すようになる。音波信号を
送波する場合であれば、実際には駆動コイル3aに流す
信号電流の周波数を適当に設定することで音波信号の波
長λを変えて、所望の指向特性に容易に変更及び調整す
ることができる。
D (θ) = | 2J 1 (k × a × sin (θ)) / (k × a × sin (θ)) | By the above equation, the radius a of the transmitting and receiving surfaces and the sound signal 6A to 6D show the directional characteristics obtained for various combinations of the wavelength λ. That is, when a / λ = 0.2 as shown in FIG.
As shown in FIGS. 8B to 8D, the stronger the value of a / λ, the stronger the directivity characteristics. When transmitting a sound wave signal, the wavelength of the sound wave signal is actually changed by appropriately setting the frequency of the signal current flowing through the drive coil 3a to easily change and adjust to a desired directional characteristic. be able to.

【0052】(実施形態2)図7は本発明の実施形態2
における音波信号送受波処理システムのブロック図であ
る。但し、実施形態1と共通する構成については同一の
符号を付して説明は省略し、本実施形態の特徴となる構
成並びに動作についてのみ説明する。本実施形態は、三
角波、矩形波あるいは正弦波等の任意の波形の信号を1
周期だけ駆動コイル3aに出力することにより、単発の
パルス状の音波信号を出力する点に特徴がある。すなわ
ち、図7に示すように実施形態1の構成に対して連続発
振回路5の代わりに単発発振回路8を設け、送波開始指
示部9から信号出力の開始が指示された場合に、単発発
振回路8から送波回路3を介して、図8(a)に示すよ
うな矩形波の1周期分の駆動信号を駆動コイル3aに出
力することにより、同図(b)に示すような矩形波の1
周期分の音波信号を送波するのである。
(Embodiment 2) FIG. 7 shows Embodiment 2 of the present invention.
1 is a block diagram of a sound wave transmission / reception processing system in FIG. However, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Only the configuration and operation that characterize the present embodiment will be described. In the present embodiment, a signal having an arbitrary waveform such as a triangular wave,
It is characterized in that a single pulsed sound wave signal is output by outputting to the drive coil 3a only for a period. That is, as shown in FIG. 7, a single oscillation circuit 8 is provided in place of the continuous oscillation circuit 5 in the configuration of the first embodiment, and when the start of signal output is instructed from the transmission start instruction unit 9, the single oscillation circuit By outputting a drive signal for one cycle of the rectangular wave as shown in FIG. 8A to the drive coil 3a from the circuit 8 via the wave transmitting circuit 3, the rectangular wave as shown in FIG. Of 1
The sound wave signal for the period is transmitted.

【0053】本実施形態においても実施形態1と同様に
送波素子1を非共振で駆動して音波信号を送波している
ため、送波回路3から駆動信号が出力されると直ちに送
波素子1が応答して音波信号を送波する。従って、従来
の共振方式のように音波信号が安定するまで同じ波形の
駆動信号を複数回に渡って繰り返し入力する必要がな
い。つまり、従来の共振方式では共振周波数40〔kH
z〕に対してパルス幅が25〔μs〕の矩形波信号を何
パルスも連続して出力する必要があったが(図17
(a)参照)、本実施形態の場合には1周期分のパルス
信号を印加するのみで音波信号が送波できる。また、駆
動信号の入力を停止すると直ちに送波素子1からの音波
信号の送波も停止されることから、特に何らの手立てを
施さなくとも従来のような残響が生じず、しかも、最初
から音波信号が安定しているために従来のような待ち時
間がない。そのため、共振方式の送受波を行っていた従
来システムに比較して、システムの応答速度が速くなる
という利点がある。
In this embodiment as well, as in the first embodiment, the sound wave signal is transmitted by driving the wave transmitting element 1 non-resonantly. The element 1 transmits a sound wave signal in response. Therefore, there is no need to repeatedly input a drive signal having the same waveform a plurality of times until the sound wave signal is stabilized unlike the conventional resonance method. That is, in the conventional resonance method, the resonance frequency is 40 [kHz].
z], it was necessary to continuously output a number of pulses of a rectangular wave signal having a pulse width of 25 [μs] (FIG. 17).
(See (a)), in the case of the present embodiment, a sound wave signal can be transmitted only by applying a pulse signal for one cycle. In addition, immediately after the input of the driving signal is stopped, the transmission of the sound wave signal from the wave transmitting element 1 is also stopped. Therefore, the reverberation as in the related art does not occur even if no special measures are taken. Because the signal is stable, there is no conventional waiting time. Therefore, there is an advantage that the response speed of the system is faster than that of the conventional system that performs the transmission and reception of the resonance method.

【0054】一方、最初から安定した音波信号が送波さ
れ且つ残響も生じないため、受波素子2でも図8(c)
に示すように単発の音波信号を受波することができると
ともに、従来の共振方式に比較して対象物の移動速度や
存非等の検出可能距離(最近検出距離)を大きく縮める
ことができ、さらには送波素子1と受波素子2とを1つ
の素子で兼用した場合にあっても、送波の終了と同時に
直ちに受波が可能であるから、最近検出距離が大幅に短
くできるものである。
On the other hand, since a stable sound wave signal is transmitted from the beginning and reverberation does not occur, the receiving element 2 also has the configuration shown in FIG.
As shown in the figure, a single sound wave signal can be received, and a detectable distance (a recent detection distance) such as a moving speed of an object and presence or absence can be greatly reduced as compared with the conventional resonance method. Furthermore, even when the transmitting element 1 and the receiving element 2 are shared by one element, the receiving distance can be immediately obtained at the same time as the end of the transmitting operation. is there.

【0055】(実施形態3)図9は本発明の実施形態3
における音波信号送受波処理システムのブロック図であ
る。但し、実施形態1と共通する構成については同一の
符号を付して説明は省略する。本実施形態の信号処理回
路10では、送波及び受波する音波信号の周波数を測定
し、測定した周波数からドップラー効果を利用して対象
物の移動速度を求めており、周波数を測定するために周
波数カウンタあるいは周波数−電圧変換回路等を具備す
るとともに、移動速度を求める演算処理のためにDSP
(ディジタル・シグナル・プロセッサ)等の演算回路を
具備する。但し、送波される音波信号の周波数は敢えて
測定しなくても、送波周波数設定部7から与えられる周
波数データを用いればよい。
(Embodiment 3) FIG. 9 shows Embodiment 3 of the present invention.
1 is a block diagram of a sound wave transmission / reception processing system in FIG. However, components common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the signal processing circuit 10 of the present embodiment, the frequency of the sound wave signal to be transmitted and received is measured, and the moving speed of the target object is obtained from the measured frequency using the Doppler effect. A DSP equipped with a frequency counter or a frequency-voltage conversion circuit, etc.
(Digital signal processor) and the like. However, the frequency of the transmitted sound signal need not be measured, and the frequency data provided by the transmission frequency setting unit 7 may be used.

【0056】例えば、送波する音波信号の周波数(駆動
コイル3aに流す信号電流の周波数)をfa、伝搬媒体
中の音波信号の速度をv0 、受波した音波信号の周波数
(受波回路4から出力される信号の周波数)をfb、対
象物の移動速度v1 とすると、ドップラー効果による周
波数シフトは下記式で表される。なお、対象物の移動
速度v1 は対象物が受波素子2から遠ざかる向きを正、
近づく向きを負とする。
For example, the frequency of the transmitted sound signal (frequency of the signal current flowing through the drive coil 3a) is fa, the speed of the sound signal in the propagation medium is v 0 , and the frequency of the received sound signal (wave receiving circuit 4). the frequency) of the signal output fb, when the moving speed v 1 of the object from the frequency shift due to Doppler effect is represented by the following formula. The moving speed v 1 of the object is positive when the direction in which the object moves away from the wave receiving element 2 is positive.
The direction of approach is negative.

【0057】 fb=(v0 +v1 )/(v0 −v1 )×fa … 上記式より対象物の移動速度v1 は下記式で求ま
る。 v1 =(fb−fa)/(fa+fb)×v0 … なお、音波信号の送波方向あるいは受波方向並びに対象
物の移動方向の違いに対しては、上記式及びを僅か
に修正するのみで対応可能であり、詳しい説明は省略す
る。
Fb = (v 0 + v 1 ) / (v 0 −v 1 ) × fa From the above equation, the moving speed v 1 of the object can be obtained by the following equation. v 1 = (fb−fa) / (fa + fb) × v 0 ... The above formula and the above are only slightly corrected for the difference in the transmission direction or reception direction of the sound wave signal and the moving direction of the object. And a detailed description is omitted.

【0058】(実施形態4)図10は本発明の実施形態
4における音波信号送受波処理システムのブロック図で
ある。但し、実施形態1と共通する構成については同一
の符号を付して説明は省略する。本実施形態では、変調
された音波信号を送波するとともに受波した音波信号か
ら変調波成分を抽出するとともに、送波及び受波の変調
波成分から信号処理回路15によって対象物までの距離
を演算するようにしている。そのため、搬送波信号を発
生する搬送波発生回路12と、変調波信号を発生する変
調波発生回路13と、変調波発生回路13から入力され
る変調波信号によって搬送波発生回路12から入力され
る搬送波信号を変調し且つ送波回路3に出力する変調回
路11と、受波回路4からの出力信号より上記変調波信
号の成分(変調波成分)を抽出する変調波抽出回路14
とを備えている。但し、搬送波発生回路12並びに変調
波発生回路13の出力は変調波抽出回路14にも与えら
れており、これに基づいて変調波成分の抽出が行われ
る。なお、本実施形態では搬送波信号の周波数fc=5
0〔kHz〕、変調波信号の周波数fm=100〔H
z〕として、変調回路11において振幅変調をかけてい
る。
(Embodiment 4) FIG. 10 is a block diagram of a sound wave signal transmission / reception processing system according to Embodiment 4 of the present invention. However, components common to the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the present embodiment, the modulated sound wave signal is transmitted and the modulated wave component is extracted from the received sound wave signal, and the distance to the object is determined by the signal processing circuit 15 from the transmitted and received modulated wave components. We are trying to calculate. Therefore, a carrier wave generating circuit 12 for generating a carrier wave signal, a modulated wave generating circuit 13 for generating a modulated wave signal, and a carrier wave signal inputted from the carrier wave generating circuit 12 based on the modulated wave signal inputted from the modulated wave generating circuit 13 A modulation circuit 11 that modulates and outputs the modulated wave signal to the transmission circuit 3 and a modulation wave extraction circuit 14 that extracts the component of the modulation wave signal (modulation wave component) from the output signal from the reception circuit 4
And However, the outputs of the carrier wave generation circuit 12 and the modulation wave generation circuit 13 are also supplied to a modulation wave extraction circuit 14, and a modulation wave component is extracted based on the output. In the present embodiment, the carrier signal has a frequency fc = 5.
0 [kHz], frequency fm of the modulated wave signal = 100 [H
z], the modulation circuit 11 performs amplitude modulation.

【0059】図11では変調波発生回路13から出力さ
れる変調波信号と、受波素子2で受波された音波信号か
ら変調波抽出回路14にて抽出された変調波成分の信号
とを同じ時間軸上に表している。信号処理回路15で
は、両信号が同一位相となるときの時間間隔を測定す
る。例えば、各信号のゼロクロス毎にその時間を記録し
て、送波のゼロクロス時間と受波のゼロクロス時間との
差から上記時間間隔tを求める処理を信号処理回路15
で行う。伝搬媒体中の音波信号の速度をcとすれば、図
12に示すように対象物Aまでの距離LはL=ct/2
で求めることができる。例えば、常温での音速cはc=
340〔m/s〕であるから、変調波の周波数が100
〔Hz〕の場合に上記時間間隔t=2〔ms〕であった
とすれば、その時の対象物Aまでの距離LはL=0.3
4〔m〕となる。また、図13に示すように対象物Aま
で距離Lの測定を繰り返して行ない、その距離の差L2
−L1を測定の時間間隔T2 −T1 で除することによ
り、対象物Aの移動速度vがv=(L2 −L1 )/(T
2 −T1 )の式から求めることができる。さらに、求め
た移動速度vを時間微分することで対象物Aの移動加速
度も求めることができる。なお、本実施形態ではゼロク
ロスの時間間隔から対象物Aまでの距離を求めたが、そ
れ以外にも変調波の周波数を測定することにより、ドッ
プラー効果による周波数のシフト分から対象物Aの移動
速度を求めることも可能である。
In FIG. 11, the modulated wave signal output from the modulated wave generation circuit 13 and the signal of the modulated wave component extracted by the modulated wave extraction circuit 14 from the sound wave signal received by the receiving element 2 are the same. It is shown on the time axis. The signal processing circuit 15 measures a time interval when both signals have the same phase. For example, the signal processing circuit 15 records the time for each zero cross of each signal, and obtains the time interval t from the difference between the transmission zero cross time and the reception zero cross time.
Do with. Assuming that the speed of the sound wave signal in the propagation medium is c, the distance L to the object A is L = ct / 2 as shown in FIG.
Can be obtained by For example, the sound speed c at normal temperature is c =
340 [m / s], the frequency of the modulated wave is 100
If the time interval t = 2 [ms] in the case of [Hz], the distance L to the object A at that time is L = 0.3
4 [m]. Further, as shown in FIG. 13, the measurement of the distance L to the object A is repeatedly performed, and the difference L 2 in the distance is measured.
By dividing −L 1 by the measurement time interval T 2 −T 1 , the moving speed v of the object A becomes v = (L 2 −L 1 ) / (T
2 −T 1 ). Further, the moving acceleration of the object A can also be obtained by differentiating the obtained moving speed v with time. In the present embodiment, the distance from the zero-crossing time interval to the object A is obtained. However, by measuring the frequency of the modulated wave, the moving speed of the object A can be calculated from the frequency shift due to the Doppler effect. It is also possible to ask.

【0060】上述のように本実施形態によれば、従来と
は異なる方式で対象物Aまでの距離や移動速度の情報を
得ることができるとともに、外部からの音響雑音に影響
されずに精度よく且つ速い応答で対象物Aの距離や移動
速度の情報が得られる。
As described above, according to the present embodiment, information on the distance to the object A and the moving speed can be obtained by a method different from that of the related art, and can be accurately performed without being affected by external acoustic noise. In addition, information on the distance and the moving speed of the target A can be obtained with a fast response.

【0061】[0061]

【発明の効果】請求項1の発明は、稀土類元素と鉄族元
素の二元系合金より成る超磁歪材料で形成される磁歪素
子を送波素子とし、該送波素子を非共振で駆動すること
で音波伝搬媒体に圧力変化を生じさせて音波信号を送波
するので、変位量の大きい超磁歪材料で形成される磁歪
素子を送波素子に用いることで、適度なエネルギ量で音
波信号を送波することができるとともに、送波素子の寸
法を適当な大きさにすれば、機械的な共振周波数が可聴
領域や超音波領域に存在しなくすることができ、その結
果、音波信号の送波を電気的に制御することが可能とな
り、音波信号の応答性が改善されるという効果がある。
According to the first aspect of the present invention, a magnetostrictive element formed of a giant magnetostrictive material composed of a binary alloy of a rare earth element and an iron group element is used as a transmitting element, and the transmitting element is driven without resonance. This causes a pressure change in the sound wave propagation medium to transmit a sound wave signal, so that a magnetostrictive element formed of a giant magnetostrictive material having a large displacement amount is used for the wave transmitting element, so that the sound wave signal can be transmitted with an appropriate amount of energy. When the size of the transmitting element is appropriately sized, the mechanical resonance frequency can be prevented from being present in the audible region or the ultrasonic region, and as a result, the sound wave signal can be transmitted. It is possible to electrically control the transmission, and there is an effect that the response of the sound wave signal is improved.

【0062】請求項2の発明は、稀土類元素と鉄族元素
の二元系合金より成る超磁歪材料で形成される送波素子
と、該送波素子を非共振で駆動する駆動手段とを備え、
前記駆動手段にて前記送波素子を駆動し音波伝搬媒体に
圧力変化を生じさせて音波信号を送波するので、変位量
の大きい超磁歪材料で形成される磁歪素子を送波素子に
用いることで、駆動手段にて適当なエネルギ量で駆動す
れば音波信号を送波することができるとともに、送波素
子の寸法を適当な大きさにすれば、機械的な共振周波数
が可聴領域や超音波領域に存在しなくすることができ、
その結果、音波信号の送波を駆動手段からの電気的な駆
動信号によって制御することが可能となり、音波信号の
応答性が改善されるという効果がある。
According to a second aspect of the present invention, there is provided a transmitting element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, and a driving means for driving the transmitting element non-resonantly. Prepared,
Since the drive unit drives the wave transmitting element to generate a pressure change in the sound wave propagation medium to transmit the sound wave signal, a magnetostrictive element formed of a giant magnetostrictive material having a large displacement is used for the wave transmitting element. If the driving means is driven with an appropriate amount of energy, the sound wave signal can be transmitted. If the dimensions of the transmitting element are set to an appropriate size, the mechanical resonance frequency becomes audible or ultrasonic. Can no longer exist in the area,
As a result, the transmission of the sound wave signal can be controlled by the electric drive signal from the driving means, and the response of the sound wave signal is improved.

【0063】請求項3の発明は、稀土類元素と鉄族元素
の二元系合金より成る超磁歪材料で形成される磁歪素子
を受波素子とし、音波信号による音波伝搬媒体の圧力変
化を前記受波素子にて非共振で検出し且つ電気信号に変
換するので、変位量の大きい超磁歪材料で形成される磁
歪素子を受波素子に用いることで、受波した音波信号を
適当なレベルの電気信号に変換して出力することができ
るとともに、受波素子の寸法を適当な大きさにすれば、
機械的な共振周波数が可聴領域や超音波領域に存在しな
くすることができ、その結果、音波信号の受波を電気的
に制御することが可能となり、音波信号の応答性が改善
されるという効果がある。
According to a third aspect of the present invention, a magnetostrictive element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element is used as a wave receiving element, and the pressure change of a sound wave propagation medium caused by a sound wave signal is measured. Since the receiving element detects non-resonance and converts it into an electric signal, the magnetostrictive element formed of a giant magnetostrictive material having a large displacement is used for the receiving element, so that the received sound wave signal can be adjusted to an appropriate level. It can be converted to an electrical signal and output, and if the dimensions of the wave receiving element are made appropriate,
The mechanical resonance frequency can be eliminated from the audible range and the ultrasonic range. As a result, it is possible to electrically control the reception of the sound wave signal, and the responsiveness of the sound wave signal is improved. effective.

【0064】請求項4の発明は、稀土類元素と鉄族元素
の二元系合金より成る超磁歪材料で形成される受波素子
と、該受波素子にて非共振で検出した音波信号による音
波伝搬媒体の圧力変化を電気信号に変換する信号変換手
段とを備えたので、変位量の大きい超磁歪材料で形成さ
れる磁歪素子を受波素子に用いることで、受波素子で受
波した音波信号を信号変換手段にて適当なレベルの電気
信号に変換して出力することができるとともに、受波素
子の寸法を適当な大きさにすれば、機械的な共振周波数
が可聴領域や超音波領域に存在しなくすることができ、
その結果、音波信号の受波を電気的に制御することが可
能となり、音波信号の応答性が改善されるという効果が
ある。
According to a fourth aspect of the present invention, there is provided a wave receiving element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, and a sound wave signal detected non-resonantly by the wave receiving element. Signal conversion means for converting a change in pressure of the sound wave propagation medium into an electric signal, so that a magnetostrictive element formed of a giant magnetostrictive material having a large displacement amount is used as the wave receiving element, and the wave is received by the wave receiving element. The sound wave signal can be converted into an electric signal of an appropriate level by the signal conversion means and output, and if the dimensions of the wave receiving element are set to an appropriate size, the mechanical resonance frequency can be in the audible range or the ultrasonic wave. Can no longer exist in the area,
As a result, it is possible to electrically control the reception of the sound wave signal, and the response of the sound wave signal is improved.

【0065】請求項5の発明は、稀土類元素と鉄族元素
の二元系合金より成る超磁歪材料で形成される送波素
子、該送波素子を非共振で駆動する駆動手段を具備する
音波信号送波装置と、前記超磁歪材料で形成されるとと
もに前記送波素子から送波されて対象物で反射された音
波信号による音波伝搬媒体の圧力変化を非共振で検出す
る受波素子、該受波素子にて検出した音波伝搬媒体の圧
力変化を電気信号に変換する信号変換手段を具備する音
波信号受波装置と、少なくとも前記音波信号受波装置が
具備する信号変換手段で変換された電気信号に基づいて
前記対象物に関する情報を得るための処理を行う信号処
理手段とを備えたので、音波信号送波装置並びに音波信
号受波装置には変位量の大きい超磁歪材料で形成される
磁歪素子を送波素子並びに受波素子に用いているから、
音波信号の送波及び受波を電気的に制御することができ
るとともに、音波信号の応答性が改善されるという効果
がある。
According to a fifth aspect of the present invention, there is provided a wave transmitting element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element, and driving means for driving the wave transmitting element without resonance. A sound wave signal transmitting device, a wave receiving element that is formed of the giant magnetostrictive material and detects a non-resonant change in pressure of a sound wave propagation medium due to a sound wave signal transmitted from the wave transmitting element and reflected by an object, A sound signal receiving device including a signal converting device for converting a change in pressure of the sound wave propagation medium detected by the wave receiving element into an electric signal, and at least a signal converted by the signal converting device included in the sound signal receiving device. Signal processing means for performing a process for obtaining information on the object based on the electric signal, so that the sound wave signal transmitting device and the sound wave signal receiving device are formed of a giant magnetostrictive material having a large displacement. Magnetostrictive element to transmitting element Because it used the wave receiving element each time,
The transmission and reception of the sound wave signal can be electrically controlled, and the responsiveness of the sound wave signal is improved.

【0066】請求項12の発明は、前記駆動手段にて所
定の周期的な波形を有する電気信号を前記送波素子に与
えて駆動することで前記送波装置から音波信号を送波
し、移動又は静止している前記対象物で反射した前記音
波信号の反射音波信号を前記受波装置にて電気信号に変
換するとともに、前記信号処理手段にて前記反射音波信
号の周波数を求め、前記送波装置から送波された音波信
号の周波数と前記反射音波信号の周波数とから前記対象
物の移動速度の情報を得るので、音波信号送波装置と音
波信号受波装置の間で送波素子並びに受波素子の特性を
調整する必要がなく、しかも温湿度等の環境変化に対し
て受波する音波信号のレベル変動が抑えられ、従来の共
振方式に比べて精度良く対象物の移動速度の情報が得ら
れるという効果がある。
According to a twelfth aspect of the present invention, the driving unit transmits an electric signal having a predetermined periodic waveform to the transmitting element to drive the transmitting element, thereby transmitting an acoustic signal from the transmitting apparatus and moving the transmitting element. Or the reflected sound wave signal of the sound wave signal reflected by the stationary object is converted into an electric signal by the wave receiving device, and the frequency of the reflected sound wave signal is obtained by the signal processing means, Since information on the moving speed of the object is obtained from the frequency of the sound wave signal transmitted from the device and the frequency of the reflected sound wave signal, a transmitting element and a receiving device are provided between the sound wave signal transmitting device and the sound wave signal receiving device. There is no need to adjust the characteristics of the wave element, and the fluctuations in the level of the received sound wave signal due to environmental changes such as temperature and humidity are suppressed, and information on the moving speed of the object can be obtained more accurately than in the conventional resonance method. Has the effect of being obtained. .

【0067】請求項13の発明は、前記駆動手段が搬送
波を変調波でアナログ変調した電気信号を前記送波素子
に与えて駆動することで前記送波装置から音波信号を送
波し、移動又は静止している前記対象物で反射した前記
音波信号の反射音波信号を前記受波装置にて電気信号に
変換するとともに、前記信号処理手段にて前記反射音波
信号の変調波成分から前記対象物に関する情報を得るの
で、従来とは異なる方式で対象物の情報を得ることがで
き、外部からの音響雑音に影響されずに精度よく且つ速
い応答で対象物の情報が得られるという効果がある。
According to a thirteenth aspect of the present invention, the driving means transmits an acoustic signal from the transmitting device by applying an electric signal obtained by analogly modulating a carrier wave with a modulating wave to the transmitting element to drive the moving device. The reflected wave signal of the sound wave signal reflected by the stationary object is converted into an electric signal by the wave receiving device, and the signal processing means relates to the object from a modulated wave component of the reflected sound signal. Since the information is obtained, the information of the object can be obtained by a method different from the conventional method, and there is an effect that the information of the object can be obtained with high accuracy and fast response without being affected by external acoustic noise.

【0068】請求項14の発明は、前記信号処理手段
が、前記送波装置から送波された音波信号の変調成分と
前記受波装置で受波された反射音波信号の変調成分の同
一位相における時間間隔を求め、該時間間隔に音波信号
の媒体伝搬速度を乗じて、移動又は静止している前記対
象物までの距離の情報を得るので、従来とは異なる方式
で対象物までの距離情報を得ることができ、外部からの
音響雑音に影響されずに精度よく且つ速い応答で対象物
までの距離情報が得られるという効果がある。
[0068] According to a fourteenth aspect of the present invention, the signal processing means has the same phase of the modulation component of the sound wave signal transmitted from the wave transmitting device and the modulation component of the reflected sound wave signal received by the wave receiving device. The time interval is obtained, and the time interval is multiplied by the medium propagation velocity of the sound wave signal to obtain information on the distance to the moving or stationary object, so that the distance information to the object is obtained by a method different from the conventional method. Thus, there is an effect that distance information to an object can be obtained with high accuracy and a quick response without being affected by external acoustic noise.

【0069】請求項15の発明は、前記信号処理手段
が、前記送波装置から送波された音波信号の変調成分と
前記受波装置で受波された反射音波信号の変調成分の同
一位相における時間間隔を求め、該時間間隔に音波信号
の媒体伝搬速度を乗じて、移動又は静止している前記対
象物までの距離を算出するとともに、所定の時間差で複
数回に渡って求めた前記各距離の差を前記時間差で除し
て、前記対象物の移動速度の情報を得るので、従来とは
異なる方式で対象物の移動速度の情報を得ることがで
き、外部からの音響雑音に影響されずに精度よく且つ速
い応答で対象物の移動速度の情報が得られるという効果
がある。
According to a fifteenth aspect of the present invention, the signal processing means may be configured so that the modulated component of the sound wave signal transmitted from the transmitting device and the modulated component of the reflected sound signal received by the receiving device have the same phase. Obtain a time interval, multiply the time interval by the medium propagation velocity of the sound signal, calculate the distance to the moving or stationary object, and obtain each of the distances obtained a plurality of times with a predetermined time difference By dividing the difference by the time difference, the information on the moving speed of the object can be obtained, so that the information on the moving speed of the object can be obtained by a method different from the conventional method, without being affected by external acoustic noise. Thus, there is an effect that information on the moving speed of the target object can be obtained with high accuracy and fast response.

【0070】請求項16の発明は、前記信号処理手段
が、前記送波装置から送波された音波信号の変調成分と
前記受波装置で受波された反射音波信号の変調成分の各
周波数を求め、前記送波装置から送波された音波信号の
変調成分の周波数と前記反射音波信号の変調成分の周波
数とから前記対象物の移動速度の情報を得るので、従来
とは異なる方式で対象物の移動速度の情報を得ることが
でき、外部からの音響雑音に影響されずに精度よく且つ
速い応答で対象物の移動速度の情報が得られるという効
果がある。
According to a sixteenth aspect of the present invention, the signal processing means converts each frequency of the modulation component of the sound wave signal transmitted from the wave transmitting device and the frequency of the modulation component of the reflected sound wave signal received by the wave receiving device. The information on the moving speed of the object is obtained from the frequency of the modulation component of the sound wave signal transmitted from the transmission device and the frequency of the modulation component of the reflected sound signal. The information on the moving speed of the target object can be obtained with high accuracy and fast response without being affected by external acoustic noise.

【0071】請求項17の発明は、前記信号処理手段
が、所定の時間差で複数回に渡って求めた前記各移動速
度の差を前記時間差で除して前記対象物の移動加速度の
情報を得るので、従来とは異なる方式で対象物の移動加
速度の情報を得ることができ、外部からの音響雑音に影
響されずに精度よく且つ速い応答で対象物の移動加速度
の情報が得られるという効果がある。
According to a seventeenth aspect of the present invention, the signal processing means obtains information on the moving acceleration of the object by dividing the difference between the moving speeds obtained a plurality of times with a predetermined time difference by the time difference. Therefore, the information of the moving acceleration of the object can be obtained by a method different from the conventional method, and the effect that the information of the moving acceleration of the object can be obtained accurately and quickly without being affected by external acoustic noise can be obtained. is there.

【0072】請求項18の発明は、前記送波素子から送
波する音波信号の波長と前記送波素子の音波信号送波面
の形状とから決まる指向特性より、所望の指向特性が得
られる周波数の正弦波信号を前記駆動手段から前記送波
素子に与えて駆動するので、音波信号を送波する際の指
向特性が容易に設定並びに変更可能となるという効果が
ある。
According to the eighteenth aspect of the present invention, a frequency at which a desired directional characteristic can be obtained is obtained from a directional characteristic determined by a wavelength of a sound wave signal transmitted from the transmitting element and a shape of a sound wave transmitting surface of the transmitting element. Since the sine wave signal is supplied from the driving unit to the transmitting element and driven, there is an effect that the directivity characteristic when transmitting the sound wave signal can be easily set and changed.

【0073】請求項19の発明は、前記受波素子につい
て所望の指向特性が得られるように音波信号の波長に対
する前記受波素子の音波信号受波面の形状を決定して成
るので、音波信号を受波する際の指向特性が容易に設定
並びに変更可能となるという効果がある。
According to a nineteenth aspect of the present invention, the shape of the sound wave receiving surface of the wave receiving element with respect to the wavelength of the sound wave signal is determined so that desired directional characteristics of the wave receiving element can be obtained. There is an effect that the directional characteristics at the time of receiving waves can be easily set and changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態1における音波信号送波装置を示す回
路図である。
FIG. 1 is a circuit diagram showing a sound wave signal transmitting device according to a first embodiment.

【図2】同上における音波信号受波装置を示す回路図で
ある。
FIG. 2 is a circuit diagram showing the sound wave signal receiving device in the above.

【図3】同上における音波信号の送波及び受波の動作を
説明するための説明図である。
FIG. 3 is an explanatory diagram for explaining the operation of transmitting and receiving a sound wave signal in the above.

【図4】同上における送波素子及び受波素子の磁界−磁
歪特性を示す図である。
FIG. 4 is a diagram showing a magnetic field-magnetostriction characteristic of the transmitting element and the receiving element in the above.

【図5】同上のシステム構成を示すブロック図である。FIG. 5 is a block diagram showing a system configuration of the above.

【図6】(a)〜(d)は同上における送波素子及び受
波素子の指向特性を示す図である。
FIGS. 6A to 6D are diagrams showing directivity characteristics of a transmitting element and a receiving element in the above.

【図7】実施形態2のシステム構成を示すブロック図で
ある。
FIG. 7 is a block diagram illustrating a system configuration according to a second embodiment.

【図8】同上の動作を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining the operation of the above.

【図9】実施形態3のシステム構成を示すブロック図で
ある。
FIG. 9 is a block diagram illustrating a system configuration according to a third embodiment.

【図10】実施形態4のシステム構成を示すブロック図
である。
FIG. 10 is a block diagram illustrating a system configuration according to a fourth embodiment.

【図11】同上の動作を説明するための信号波形図であ
る。
FIG. 11 is a signal waveform diagram for explaining the above operation.

【図12】同上の動作を説明するための図である。FIG. 12 is a diagram for explaining the operation of the above.

【図13】同上の動作を説明するための図である。FIG. 13 is a diagram for explaining the operation of the above.

【図14】従来のシステム構成を示すブロック図であ
る。
FIG. 14 is a block diagram showing a conventional system configuration.

【図15】従来の他のシステム構成を示すブロック図で
ある。
FIG. 15 is a block diagram showing another conventional system configuration.

【図16】同上における圧電型の超音波振動子を示し、
(a)は側面断面図、(b)は概略回路図である。
FIG. 16 shows the piezoelectric ultrasonic vibrator in Embodiment 1;
(A) is a side sectional view, and (b) is a schematic circuit diagram.

【図17】同上の動作を説明するための波形図である。FIG. 17 is a waveform chart for explaining the above operation.

【図18】同上において所望の指向特性を得るための構
造を示す断面図である。
FIG. 18 is a cross-sectional view showing a structure for obtaining a desired directional characteristic in the above.

【図19】同上において所望の指向特性を得るための構
造を示す断面図である。
FIG. 19 is a cross-sectional view showing a structure for obtaining a desired directional characteristic in the above.

【図20】(a)(b)は同上における超音波振動子の
動作を説明するための説明図である。
20 (a) and (b) are explanatory diagrams for explaining the operation of the ultrasonic transducer in the above.

【図21】従来の磁歪材料における磁界−磁歪特性を示
す図である。
FIG. 21 is a diagram showing a magnetic field-magnetostriction characteristic of a conventional magnetostrictive material.

【符号の説明】[Explanation of symbols]

1 送波素子 2 受波素子 3 送波回路 3a 駆動コイル 3b バイアス電源 3c 信号源 4 送波回路 4a 検出コイル 4b バイアス電源 4c 検出トランス DESCRIPTION OF SYMBOLS 1 Transmitting element 2 Receiving element 3 Transmitting circuit 3a Drive coil 3b Bias power supply 3c Signal source 4 Transmitting circuit 4a Detection coil 4b Bias power supply 4c Detection transformer

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 稀土類元素と鉄族元素の二元系合金より
成る超磁歪材料で形成される磁歪素子を送波素子とし、
該送波素子を非共振で駆動することで音波伝搬媒体に圧
力変化を生じさせて音波信号を送波することを特徴とす
る音波信号送波方法。
A magnetostrictive element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element as a transmitting element;
A sound signal transmitting method, wherein the sound transmitting element is driven non-resonantly to generate a pressure change in a sound wave propagating medium to transmit a sound wave signal.
【請求項2】 稀土類元素と鉄族元素の二元系合金より
成る超磁歪材料で形成される送波素子と、該送波素子を
非共振で駆動する駆動手段とを備え、前記駆動手段にて
前記送波素子を駆動し音波伝搬媒体に圧力変化を生じさ
せて音波信号を送波することを特徴とする音波信号送波
装置。
2. A transmitting element comprising a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element, and driving means for driving the transmitting element non-resonantly, wherein the driving means A sound signal transmitting device that drives the wave transmitting element to generate a pressure change in a sound wave propagation medium to transmit a sound signal.
【請求項3】 稀土類元素と鉄族元素の二元系合金より
成る超磁歪材料で形成される磁歪素子を受波素子とし、
音波信号による音波伝搬媒体の圧力変化を前記受波素子
にて非共振で検出し且つ電気信号に変換することを特徴
とする音波信号受波方法。
3. A wave receiving element, comprising: a magnetostrictive element formed of a giant magnetostrictive material comprising a binary alloy of a rare earth element and an iron group element;
A sound wave signal receiving method, wherein a change in pressure of a sound wave propagation medium due to a sound wave signal is detected by the wave receiving element without resonance and converted into an electric signal.
【請求項4】 稀土類元素と鉄族元素の二元系合金より
成る超磁歪材料で形成される受波素子と、該受波素子に
て非共振で検出した音波信号による音波伝搬媒体の圧力
変化を電気信号に変換する信号変換手段とを備えたこと
を特徴とする音波信号受波装置。
4. A wave receiving element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element, and a pressure of a sound wave propagating medium by a sound wave signal detected non-resonantly by the wave receiving element. A sound wave signal receiving device comprising: signal conversion means for converting a change into an electric signal.
【請求項5】 稀土類元素と鉄族元素の二元系合金より
成る超磁歪材料で形成される送波素子、該送波素子を非
共振で駆動する駆動手段を具備する音波信号送波装置
と、前記超磁歪材料で形成されるとともに前記送波素子
から送波されて対象物で反射された音波信号による音波
伝搬媒体の圧力変化を非共振で検出する受波素子、該受
波素子にて検出した音波伝搬媒体の圧力変化を電気信号
に変換する信号変換手段を具備する音波信号受波装置
と、少なくとも前記音波信号受波装置が具備する信号変
換手段で変換された電気信号に基づいて前記対象物に関
する情報を得るための処理を行う信号処理手段とを備え
たことを特徴とする音波信号送受波処理システム。
5. A sound wave transmitting device comprising a wave transmitting element formed of a giant magnetostrictive material made of a binary alloy of a rare earth element and an iron group element, and a driving means for driving the wave transmitting element non-resonantly. And a non-resonant wave receiving element formed of the giant magnetostrictive material and detecting a pressure change of a sound wave propagation medium due to a sound wave signal transmitted from the wave transmitting element and reflected by an object, and the wave receiving element. Signal receiving device comprising a signal converting means for converting a pressure change of the detected sound wave propagating medium into an electric signal, based on at least the electric signal converted by the signal converting means provided in the sound signal receiving device. Signal processing means for performing processing for obtaining information on the object.
【請求項6】 前記音波信号が可聴領域の音波から成る
ことを特徴とする請求項1〜5の何れかに記載の音波信
号送波方法及びその装置並びに音波信号受波方法及びそ
の装置並びにこれらを用いた音波信号送受波処理システ
ム。
6. The sound wave signal transmitting method and device, the sound wave signal receiving method and device, and the sound wave signal transmitting method and device according to claim 1, wherein the sound wave signal comprises a sound wave in an audible region. Sound wave transmission / reception processing system using a computer.
【請求項7】 前記音波信号が超音波領域の音波から成
ることを特徴とする請求項1〜5の何れかに記載の音波
信号送波方法及びその装置並びに音波信号受波方法及び
その装置並びにこれらを用いた音波信号送受波処理シス
テム。
7. The sound wave signal transmitting method and apparatus, the sound wave signal receiving method and the apparatus, and the sound wave signal transmitting method according to claim 1, wherein the sound wave signal comprises a sound wave in an ultrasonic region. A sound wave transmission and reception processing system using these.
【請求項8】 前記駆動手段は、所定の周期的な波形を
有する電気信号を前記送波素子に与えて駆動することを
特徴とする請求項1又は2又は5〜7の何れかに記載の
音波信号送波方法及びその装置並びにこれらを用いた音
波信号送受波処理システム。
8. The apparatus according to claim 1, wherein the driving means drives the transmitting element by supplying an electric signal having a predetermined periodic waveform to the transmitting element. A method and apparatus for transmitting a sound wave signal and a sound wave transmission and reception processing system using the same.
【請求項9】 前記駆動手段は、前記1周期分の電気信
号を前記送波素子に与えて駆動することを特徴とする請
求項8記載の音波信号送波方法及びその装置並びにこれ
らを用いた音波信号送受波処理システム。
9. The sound wave signal transmitting method and apparatus according to claim 8, wherein said driving means supplies said one period of electric signal to said transmitting element to drive said transmitting element. Sound wave transmission and reception processing system.
【請求項10】 前記信号変換手段は、前記受波素子で
検出される所定の周期的な波形を有する音波伝搬媒体の
圧力変化を電気信号に変換することを特徴とする請求項
3〜7の何れかに記載の音波信号受波方法及びその装置
並びにこれらを用いた音波信号送受波処理システム。
10. The apparatus according to claim 3, wherein said signal converting means converts a pressure change of a sound wave propagation medium having a predetermined periodic waveform detected by said wave receiving element into an electric signal. A method and apparatus for receiving a sound wave signal according to any one of the preceding claims, and a sound wave transmission / reception processing system using the same.
【請求項11】 前記信号変換手段は、前記1周期分の
波形を有する音波伝搬媒体の圧力変化を電気信号に変換
することを特徴とする請求項10記載の音波信号受波方
法及びその装置並びにこれらを用いた音波信号送受波処
理システム。
11. The method and apparatus for receiving a sound wave signal according to claim 10, wherein said signal converting means converts a pressure change of the sound wave propagation medium having the waveform for one cycle into an electric signal. A sound wave transmission and reception processing system using these.
【請求項12】 前記駆動手段にて所定の周期的な波形
を有する電気信号を前記送波素子に与えて駆動すること
で前記送波装置から音波信号を送波し、移動又は静止し
ている前記対象物で反射した前記音波信号の反射音波信
号を前記受波装置にて電気信号に変換するとともに、前
記信号処理手段にて前記反射音波信号の周波数を求め、
前記送波装置から送波された音波信号の周波数と前記反
射音波信号の周波数とから前記対象物の移動速度の情報
を得ることを特徴とする請求項5〜11の何れかに記載
の音波信号送受波処理システム。
12. An acoustic signal is transmitted from the transmitting device by applying an electric signal having a predetermined periodic waveform to the transmitting device by the driving means to drive the transmitting device, and the moving device is stationary or moving. The reflected sound wave signal of the sound wave signal reflected by the object is converted into an electric signal by the wave receiving device, and the frequency of the reflected sound wave signal is obtained by the signal processing unit,
The sound wave signal according to any one of claims 5 to 11, wherein information on a moving speed of the object is obtained from a frequency of the sound wave signal transmitted from the wave transmitting device and a frequency of the reflected sound wave signal. Transmission and reception processing system.
【請求項13】 前記駆動手段が搬送波を変調波でアナ
ログ変調した電気信号を前記送波素子に与えて駆動する
ことで前記送波装置から音波信号を送波し、移動又は静
止している前記対象物で反射した前記音波信号の反射音
波信号を前記受波装置にて電気信号に変換するととも
に、前記信号処理手段にて前記反射音波信号の変調波成
分から前記対象物に関する情報を得ることを特徴とする
請求項5記載の音波信号送受波処理システム。
13. The transmitting device transmits an acoustic signal from the transmitting device by applying an electric signal obtained by analogly modulating a carrier with a modulating wave to the transmitting device, and the driving unit moves or stands still. The reflected wave signal of the sound wave signal reflected by the object is converted into an electric signal by the wave receiving device, and the signal processing means obtains information on the object from a modulated wave component of the reflected sound signal. The sound wave transmission / reception processing system according to claim 5, characterized in that:
【請求項14】 前記信号処理手段は、前記送波装置か
ら送波された音波信号の変調成分と前記受波装置で受波
された反射音波信号の変調成分の同一位相における時間
間隔を求め、該時間間隔に音波信号の媒体伝搬速度を乗
じて、移動又は静止している前記対象物までの距離の情
報を得ることを特徴とする請求項13記載の音波信号送
受波処理システム。
14. The signal processing means obtains a time interval in the same phase between a modulation component of a sound wave signal transmitted from the wave transmitting device and a modulation component of a reflected sound wave signal received by the wave receiving device, 14. The sound wave transmission / reception processing system according to claim 13, wherein the time interval is multiplied by a medium propagation speed of the sound wave signal to obtain information on a distance to the moving or stationary object.
【請求項15】 前記信号処理手段は、前記送波装置か
ら送波された音波信号の変調成分と前記受波装置で受波
された反射音波信号の変調成分の同一位相における時間
間隔を求め、該時間間隔に音波信号の媒体伝搬速度を乗
じて、移動又は静止している前記対象物までの距離を算
出するとともに、所定の時間差で複数回に渡って求めた
前記各距離の差を前記時間差で除して、前記対象物の移
動速度の情報を得ることを特徴とする請求項13記載の
音波信号送受波処理システム。
15. The signal processing means obtains a time interval in the same phase between a modulation component of a sound wave signal transmitted from the wave transmitting device and a modulation component of a reflected sound wave signal received by the wave receiving device, The time interval is multiplied by the medium propagation speed of the sound wave signal to calculate the distance to the moving or stationary object, and the difference between the distances obtained a plurality of times at a predetermined time difference is calculated as the time difference. 14. The sound wave signal transmission / reception processing system according to claim 13, wherein information on the moving speed of the object is obtained by dividing by the following formula.
【請求項16】 前記信号処理手段は、前記送波装置か
ら送波された音波信号の変調成分と前記受波装置で受波
された反射音波信号の変調成分の各周波数を求め、前記
送波装置から送波された音波信号の変調成分の周波数と
前記反射音波信号の変調成分の周波数とから前記対象物
の移動速度の情報を得ることを特徴とする請求項13記
載の音波信号送受波処理システム。
16. The signal processing means obtains each frequency of a modulation component of a sound wave signal transmitted from the wave transmitting device and a modulation component of a reflected sound wave signal received by the wave receiving device. 14. The sound wave signal transmission / reception process according to claim 13, wherein information on the moving speed of the object is obtained from the frequency of the modulation component of the sound wave signal transmitted from the apparatus and the frequency of the modulation component of the reflected sound wave signal. system.
【請求項17】 前記信号処理手段は、所定の時間差で
複数回に渡って求めた前記各移動速度の差を前記時間差
で除して前記対象物の移動加速度の情報を得ることを特
徴とする請求項15又は16記載の音波信号送受波処理
システム。
17. The information processing apparatus according to claim 17, wherein the signal processing unit divides the difference between the moving speeds obtained a plurality of times with a predetermined time difference by the time difference to obtain information on the moving acceleration of the object. The sound wave transmission and reception processing system according to claim 15.
【請求項18】 前記送波素子から送波する音波信号の
波長と前記送波素子の音波信号送波面の形状とから決ま
る指向特性より、所望の指向特性が得られる周波数の正
弦波信号を前記駆動手段から前記送波素子に与えて駆動
することを特徴とする請求項1又は2又は5〜17の何
れかに記載の音波信号送波方法及びその装置並びにこれ
らを用いた音波信号送受波処理システム。
18. A sine wave signal having a frequency at which a desired directional characteristic is obtained from a directional characteristic determined by a wavelength of a sound wave signal transmitted from the transmitting element and a shape of a sound wave transmitting surface of the transmitting element. 18. A method and apparatus for transmitting a sound wave signal according to claim 1, wherein said wave transmitting element is supplied from a driving means to said wave transmitting element, and a sound wave transmitting and receiving process using said apparatus. system.
【請求項19】 前記受波素子について所望の指向特性
が得られるように音波信号の波長に対する前記受波素子
の音波信号受波面の形状を決定して成ることを特徴とす
る請求項3〜17の何れかに記載の音波信号受波方法及
びその装置並びにこれらを用いた音波信号送受波処理シ
ステム。
19. The sound receiving element according to claim 3, wherein a shape of a sound wave receiving surface of the wave receiving element with respect to a wavelength of the sound wave signal is determined so as to obtain a desired directional characteristic of the wave receiving element. 7. A method and apparatus for receiving a sound wave signal according to any one of the above, and a sound wave transmission and reception processing system using the same.
JP9097361A 1997-04-15 1997-04-15 Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system Withdrawn JPH10290495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097361A JPH10290495A (en) 1997-04-15 1997-04-15 Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097361A JPH10290495A (en) 1997-04-15 1997-04-15 Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system

Publications (1)

Publication Number Publication Date
JPH10290495A true JPH10290495A (en) 1998-10-27

Family

ID=14190373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097361A Withdrawn JPH10290495A (en) 1997-04-15 1997-04-15 Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system

Country Status (1)

Country Link
JP (1) JPH10290495A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098579B2 (en) 2004-03-31 2006-08-29 Sanyo Electric Co., Ltd. Transmitting apparatus, sound sensor and autonomous traveling vehicle
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Pile body shape measuring method and apparatus
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
JP2017211320A (en) * 2016-05-26 2017-11-30 パナソニックIpマネジメント株式会社 Sensor device and lighting device
DE102022134772A1 (en) * 2022-12-23 2024-07-04 Flexim Flexible Industriemesstechnik Gmbh Ultrasonic transducer for transmitting and/or receiving ultrasonic signals

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098579B2 (en) 2004-03-31 2006-08-29 Sanyo Electric Co., Ltd. Transmitting apparatus, sound sensor and autonomous traveling vehicle
KR101126512B1 (en) * 2004-03-31 2012-04-12 산요덴키가부시키가이샤 Transmitting apparatus, acoustic wave sensor and autonomous travelling vehicle
JP2009092444A (en) * 2007-10-05 2009-04-30 Tokyo Soil Research Co Ltd Pile body shape measuring method and apparatus
JP2010117143A (en) * 2008-11-11 2010-05-27 Tokyo Soil Research Co Ltd Method and device for measuring shape of drilling hole
JP2017211320A (en) * 2016-05-26 2017-11-30 パナソニックIpマネジメント株式会社 Sensor device and lighting device
DE102022134772A1 (en) * 2022-12-23 2024-07-04 Flexim Flexible Industriemesstechnik Gmbh Ultrasonic transducer for transmitting and/or receiving ultrasonic signals

Similar Documents

Publication Publication Date Title
JP3810430B2 (en) Ultrasonic ranging device
Lee et al. Beam-focused shear-horizontal wave generation in a plate by a circular magnetostrictivepatch transducer employing a planar solenoid array
EP0204184B1 (en) Position detecting apparatus
CN102662003B (en) Omni-directional shear horizontal (SH) guided wave electromagnetic ultrasonic transducer
JPH0210970B2 (en)
US6924642B1 (en) Magnetorestrictive transducer for generating and measuring elastic waves, and apparatus for structural diagnosis using the same
JP2005080227A (en) Audio information providing method and directional audio information providing apparatus
EP3017284B1 (en) Solid borne sound wave phase delay comparison
JPS62211047A (en) Ultrasonic converter probe equipped with mechanically operable ultrasonic beam
CN104198594A (en) Multiple-main-frequency combined torsional-mode electromagnetic acoustic array sensor
CN107091880B (en) A kind of metal-base composites unsticking detection method
KR20090116041A (en) Pressure measuring device in the container part using magnetostrictive vibrator
JPH07218477A (en) Searching device
CN105022065A (en) Terminal and range finding method thereof
Jain et al. Measurement of temperature and liquid viscosity using wireless magneto-acoustic/magneto-optical sensors
JPH08334431A (en) Nondestructive inspection device
Cai et al. Increasing ranging accuracy of aluminum nitride PMUTs by circuit coupling
JPH10290495A (en) Sound signal transmission method, its equipment, sound signal reception method, its equipment and sound wave signal transmission/reception processing system
US7515019B2 (en) Non-contact position sensor with sonic waveguide
JP4465420B2 (en) Magnetostrictive ultrasonic element and nondestructive inspection method using the same
JP3324720B2 (en) Flow velocity measuring device
CN2168234Y (en) Electromagnetic supersonic thikness-determining instrument
JP3708226B2 (en) Flow velocity measuring device
JP2005249486A (en) Ultrasonic thickness measuring method and device
US6259245B1 (en) Electric-current sensing device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706