JPH10284547A - Pressure welding tool for lead material bonding for ic chip - Google Patents
Pressure welding tool for lead material bonding for ic chipInfo
- Publication number
- JPH10284547A JPH10284547A JP9093817A JP9381797A JPH10284547A JP H10284547 A JPH10284547 A JP H10284547A JP 9093817 A JP9093817 A JP 9093817A JP 9381797 A JP9381797 A JP 9381797A JP H10284547 A JPH10284547 A JP H10284547A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- welding tool
- substrate
- composition
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 title claims abstract description 31
- 238000003466 welding Methods 0.000 title claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 239000012071 phase Substances 0.000 claims abstract description 12
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 11
- 239000010432 diamond Substances 0.000 claims abstract description 11
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 6
- 239000012808 vapor phase Substances 0.000 claims abstract description 6
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000008021 deposition Effects 0.000 claims abstract description 3
- 238000005219 brazing Methods 0.000 claims description 28
- 238000005336 cracking Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 22
- 229910000990 Ni alloy Inorganic materials 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 229910000679 solder Inorganic materials 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 239000000843 powder Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910007568 Zn—Ag Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/50—Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、実用に際して、
残留応力の経時的蓄積がきわめて少なく、したがって大
型化しても残留応力が原因の基体割れやろう付け剥離の
発生のないICチップのリード材ボンディング用圧接工
具に関するものである。The present invention relates to
The present invention relates to a pressure welding tool for bonding a lead material of an IC chip, in which accumulation of residual stress with time is extremely small, and therefore, even when the size is increased, cracking of the base material or brazing peeling due to the residual stress does not occur.
【0002】[0002]
【従来の技術】従来、一般に、ICチップの製造に際し
て、例えば図1の概略説明図で示されるように、ICチ
ップの表面に、前記ICチップ表面の上方位置に横方向
所定間隔配置された多数のCu合金などのリード材の先
端部を、前記リード材と同じ配置でICチップ表面に形
成されたAu−In合金(はんだ材)などのバンプを介
して、内蔵したヒーターで500〜1000℃に加熱さ
れた圧接工具で圧下するすることにより接合(ボンディ
ング)することが行われている。また、ICチップのリ
ード材のボンディングに用いられる圧接工具としては、
例えば特許第2520971号明細書に記載されるよう
に、工具本体を、0.5〜5mmの厚さを有し、かつS
iC基焼結体やSi3 N4 基焼結体、さらにAlN基焼
結体などからなる基体の表面に、熱フィラメント法やマ
イクロ波プラズマCVD法、さらに高周波プラズマCV
D法などの気相合成法を用いて5〜300μmの平均層
厚の多結晶ダイヤモンド膜を形成したもので構成し、こ
の工具本体を、コバール合金やインバー合金、さらにW
C基超硬合金などからなるヒーター内蔵のシャンク部
に、各種のAg合金やCu合金などからなるろう材を用
いて接合した構造のものが知られている。2. Description of the Related Art Conventionally, in general, when manufacturing an IC chip, as shown in, for example, a schematic explanatory view of FIG. The tip of a lead material such as a Cu alloy is heated to 500 to 1000 ° C. by a built-in heater via a bump such as an Au-In alloy (solder material) formed on the surface of an IC chip in the same arrangement as the lead material. Bonding is performed by reducing the pressure with a heated pressure welding tool. In addition, as a pressure welding tool used for bonding a lead material of an IC chip,
For example, as described in Japanese Patent No. 2520971, a tool body has a thickness of 0.5 to 5 mm, and
A hot filament method, a microwave plasma CVD method, and a high-frequency plasma CV are applied to the surface of a substrate made of an iC-based sintered body, a Si 3 N 4 -based sintered body, or an AlN-based sintered body.
The tool body is formed by forming a polycrystalline diamond film having an average layer thickness of 5 to 300 μm by using a vapor phase synthesis method such as a method D. The tool body is made of a Kovar alloy, an Invar alloy, and a W
There is known a structure in which a brazing member made of various Ag alloys or Cu alloys is joined to a shank portion having a built-in heater made of a C-base cemented carbide or the like.
【0003】[0003]
【発明が解決しようとする課題】一方、近年の半導体装
置の高集積化はめざましく、これに伴い、ICチップは
大面積化し、したがってこれの製造に用いられる圧接工
具は大型化する傾向にあるが、上記の従来圧接工具はじ
め、その他多くの圧接工具においては、これを大型化す
ればするほど、その実用に際して、圧接工具を構成する
工具本体の基体に割れが発生し易くなるばかりでなく、
基体とシャンク部のろう付け部に剥離が発生し易くな
り、使用寿命の短命化が避けられないのが現状である。
これは作業態様、すなわち500〜1000℃に加熱し
た圧接工具を常温のリード材に圧接し、このリード材を
介してバンプを溶融温度に加熱してボンディングを行な
う工程の繰り返しに原因するものと考えられ、この場
合、圧接工具、特にこれを構成する基体は急激な加熱冷
却の繰り返しを受けることになるが、同時に発生した残
留応力が経時的に蓄積し、かつこの基体中の残留応力は
圧接工具が大型化するほど大きく、ついにはこの蓄積し
て大きくなった残留応力が基体割れやろう付け剥離を引
き起こすものと解される。On the other hand, in recent years, high integration of semiconductor devices has been remarkable, and as a result, the area of IC chips has increased, and the press-fitting tools used for manufacturing the same have tended to increase in size. In addition to the above-described conventional press-welding tools, in many other press-welding tools, the larger the size of the press-welding tool, the more likely it is that cracks will occur in the body of the tool body constituting the press-welding tool in practical use,
At present, peeling tends to occur at the brazing portion between the base and the shank portion, and shortening of service life is inevitable.
This is considered to be caused by the repetition of the working mode, that is, the step of pressing the welding tool heated to 500 to 1000 ° C. to the lead material at room temperature and heating the bumps to the melting temperature via this lead material to perform the bonding. In this case, the press-welding tool, especially the substrate constituting the same, is subjected to rapid repetition of heating and cooling. At the same time, the residual stress generated at the same time accumulates over time, and the residual stress in the substrate is reduced by the press-welding tool. It is understood that the larger the size, the larger the size of the residual stress, and finally, the accumulated and increased residual stress causes substrate cracking and brazing peeling.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、残留応力の発生が少なく、かつ
残留応力の経時的蓄積のない圧接工具を開発すべく研究
を行なった結果、圧接工具の基体を、分散相形成成分と
して、炭化タングステン(以下、WCで示す):90〜
98%を含有し、残りが結合相形成成分としてのCoと
不可避不純物からなる組成を有する超硬合金で構成し、
また、同ろう材を、Ag:5〜15%、P:1〜10%
を含有し、残りがCuと不可避不純物からなる組成を有
するCu合金で構成し、さらに、同シャンク部を、C
r:10〜25%、Fe:5〜15%を含有し、残りが
Niと不可避不純物からなる組成を有するNi合金(以
上重量%、以下%は重量%を示す)で構成すると、この
結果の圧接工具は、上記基体が残留応力の発生を抑制
し、かつ上記ろう材が残留応力の蓄積を抑制するように
作用するので、これを大型化しても、基体割れやろう付
け剥離の発生なく、上記シャンク部によって確保された
すぐれた耐熱性と相まって、著しく長期に亘っての使用
が可能となるという研究結果が得られたのである。Means for Solving the Problems Accordingly, the present inventors have
From the above-mentioned viewpoints, as a result of conducting research to develop a press-welding tool in which the generation of residual stress is small and the residual stress does not accumulate over time, the base of the press-welding tool is used as a dispersed phase forming component by using tungsten carbide ( Hereinafter, indicated by WC): 90 to
98%, the balance being a cemented carbide having a composition consisting of Co and inevitable impurities as a binder phase forming component,
In addition, the brazing material is made of Ag: 5 to 15%, P: 1 to 10%
And the remainder is made of a Cu alloy having a composition consisting of Cu and unavoidable impurities.
r: 10 to 25%, Fe: 5 to 15%, and the remainder is composed of a Ni alloy having a composition of Ni and unavoidable impurities (more than% by weight, the following% indicates% by weight). The press-welding tool has a structure in which the base suppresses the generation of residual stress, and the brazing material acts to suppress the accumulation of residual stress. Research results have shown that, in combination with the excellent heat resistance provided by the shank portion, use over an extremely long period is possible.
【0005】この発明は、上記の研究結果に基づいてな
されたものであって、基体の表面に多結晶ダイヤモンド
膜を気相合成析出してなる工具本体を、ろう材を用いて
ヒーター内蔵のシャンク部に接合した構造の圧接工具に
おいて、上記工具本体の基体を、分散相形成成分とし
て、炭化タングステン:90〜98%、を含有し、残り
が結合相形成成分としてのCoと不可避不純物からなる
組成を有する超硬合金で構成し、 また、上記ろう材を、 Ag:5〜15%、 P :1〜10%、を含有し、残りがCuと不可避不純
物からなる組成を有するCu合金で構成し、さらに、上
記シャンク部を、 Cr:10〜25%、 Fe:5〜15%、 を含有し、残りがNiと不可避不純物からなる組成を有
するNi合金で構成してなる、基体割れやろう付け剥離
の発生のないICチップのリード材ボンディング用圧接
工具に特徴を有するものである。The present invention has been made on the basis of the above-mentioned research results. A tool body formed by vapor-phase synthesis deposition of a polycrystalline diamond film on the surface of a substrate is provided by using a brazing material and a shank having a built-in heater. In the press-welding tool having a structure joined to the part, the base of the tool main body contains 90 to 98% of tungsten carbide as a dispersed phase forming component, and the balance is composed of Co as a bonding phase forming component and unavoidable impurities. The brazing material is made of a Cu alloy containing Ag: 5 to 15%, P: 1 to 10%, and the rest having a composition of Cu and unavoidable impurities. Further, the above-mentioned shank portion is composed of a Ni alloy containing Cr: 10 to 25% and Fe: 5 to 15%, and the remainder is composed of a Ni alloy having a composition consisting of Ni and unavoidable impurities. The present invention is characterized by a pressure welding tool for bonding lead material of an IC chip which does not cause delamination.
【0006】なお、この発明の圧接工具において、通常
の気相合成法によって基体表面に形成される多結晶ダイ
ヤモンド膜の厚さは、前記基体の厚さを2〜5mmとし
た状態で、平均層厚で30〜100μmとするのが望ま
しく、また前記多結晶ダイヤモンド膜の形成に際して
は、その前処理として、前記基体に、(a)表面部の結
合相形成成分除去のための表面エッチング処理、(b)
表面傷付け処理、(c)70〜150気圧のAr雰囲気
中、1300〜1550℃の温度に所定時間保持の条件
での表面部WC粒の粗大化熱処理、以上(a)〜(c)
のうちの少なくともいずれかの表面処理を施して、多結
晶ダイヤモンド膜の密着性向上を図るのがよい。In the pressure welding tool of the present invention, the thickness of the polycrystalline diamond film formed on the surface of the substrate by the ordinary vapor phase synthesis method is such that the thickness of the substrate is 2 to 5 mm, It is preferable that the thickness is 30 to 100 μm. When forming the polycrystalline diamond film, as a pretreatment, the substrate is subjected to (a) surface etching treatment for removing a bonding phase forming component on the surface, b)
Surface treatment, (c) heat treatment for coarsening surface WC grains at a temperature of 1300 to 1550 ° C. for a predetermined period of time in an Ar atmosphere of 70 to 150 atm, and above (a) to (c)
The surface treatment is preferably performed to improve the adhesion of the polycrystalline diamond film.
【0007】つぎに、この発明の圧接工具を構成する基
体、ろう材、およびシャンク部の組成を上記の通りに定
めた理由を説明する。 (1)基体 基体を構成する超硬合金のWCは良好な熱伝導性を有
し、かつ残留応力の発生を抑制する作用があるが、その
割合が90%未満では、前記作用に所望の効果が得られ
ず、さらに結合相形成成分の割合が相対的に多くなり過
ぎて変形し易くなり、一方その割合が98%を越えると
結合相形成成分の割合が相対的に少なくなり過ぎて焼結
性が低下し、所望の強度を確保することができなくなる
ことから、その割合を90〜98%と定めた。Next, the reason why the compositions of the base, the brazing material and the shank constituting the press-welding tool of the present invention are determined as described above will be described. (1) Substrate The WC of the cemented carbide constituting the substrate has a good thermal conductivity and an action of suppressing the generation of residual stress. However, if the ratio is less than 90%, the desired effect on the action is obtained. Cannot be obtained, and the ratio of the binder phase forming component becomes relatively large, and the material tends to be deformed. On the other hand, if the ratio exceeds 98%, the ratio of the binder phase forming component becomes relatively small, resulting in sintering. The ratio is determined to be 90 to 98% since the desired strength cannot be ensured due to a decrease in the property.
【0008】(2)ろう材 (a) Ag Ag成分には、ろう材の融点を下げ、もって流動性を増
して少量のろう材で満足なろう付けを可能ならしめる作
用があるほか、ろう材の主成分であるCu成分との共存
において、残留応力を吸収し、もって残留応力の経時的
蓄積を抑制すると共に、加熱されたシャンク部から基体
への熱伝達を促進する作用があるが、その含有量が5%
未満では前記作用に所望の効果が得られず、一方その含
有量が15%を越えると、ろう付け部の強度が低下する
ようになることから、その含有量を1〜15%、望まし
くは7〜13%と定めた。(2) Brazing filler metal (a) Ag The Ag component has a function of lowering the melting point of the brazing filler metal, thereby increasing its fluidity and enabling satisfactory brazing with a small amount of brazing filler metal. In the coexistence with the Cu component, which is the main component of, there is an effect of absorbing the residual stress, thereby suppressing the accumulation of the residual stress with time, and promoting heat transfer from the heated shank portion to the base. Content is 5%
If the content is less than 15%, the desired effect cannot be obtained. On the other hand, if the content exceeds 15%, the strength of the brazed portion decreases, so that the content is 1 to 15%, preferably 7%. 1313%.
【0009】(b) P P成分には、ろう材の融点を下げると共に、これ自体の
強度を向上させ、もってろう付け部の強度を向上させる
作用があるが、その含有量が1%未満では前記作用に所
望の効果が得られず、一方その含有量が10%を越える
と、ろう付け部が急激に脆化するようになることから、
その含有量を1〜10%、望ましくは3〜8%と定め
た。(B) The PP component has the effect of lowering the melting point of the brazing material and improving its own strength, thereby improving the strength of the brazed portion. If the desired effect cannot be obtained in the above-mentioned action, and if the content exceeds 10%, the brazed portion rapidly becomes brittle,
The content was determined to be 1 to 10%, preferably 3 to 8%.
【0010】(3)シャンク部 シャンク部には、内蔵するヒーターによって自身を50
0〜1000℃に加熱し、これにろう付けされた工具本
体の温度を同じ温度に保持する役割があるので、すぐれ
た耐熱性と耐酸化性を具備することが求められる。した
がって、シャンク部を構成するNi合金のCr成分は、
耐熱性および耐酸化性を向上させる成分として含有する
が、その割合が10%未満では、所望の耐熱性および耐
酸化性を確保することができず、一方その割合が25%
を越えると、強度が低下するようになることから、その
割合を10〜25%と定めた。また、同じくFe成分に
は、強度を向上させる作用があるが、その割合が5%未
満では、所望の強度を確保することができず、一方その
割合が15%を越えると、耐熱性および耐酸化性に低下
傾向が現れるようになることから、その割合を5〜15
%と定めた。(3) Shank section The shank section has its own 50 heaters by a built-in heater.
It is required to have excellent heat resistance and oxidation resistance because it has a role of heating to 0 to 1000 ° C. and maintaining the temperature of the brazed tool body at the same temperature. Therefore, the Cr component of the Ni alloy constituting the shank portion is:
Although it is contained as a component for improving heat resistance and oxidation resistance, if the proportion is less than 10%, desired heat resistance and oxidation resistance cannot be secured, while the proportion is 25%.
, The strength is reduced, so the ratio is set to 10 to 25%. Similarly, the Fe component has the effect of improving the strength. However, if the proportion is less than 5%, the desired strength cannot be ensured. On the other hand, if the proportion exceeds 15%, the heat resistance and the acid resistance are reduced. Since the tendency to decrease in chemical properties appears, the proportion is 5 to 15
%.
【0011】[0011]
【発明の実施の形態】この発明の圧接工具を実施例によ
り具体的に説明する。まず、基体を製造する目的で、原
料粉末として、0.5〜3μmの範囲内の平均粒径を有
する細粒WC粉末、3〜10μmの範囲内の平均粒径を
有する粗粒WC粉末、および平均粒径:1.2μmCo
粉末を用意し、これら原料粉末をそれぞれ表1に示され
る配合組成に配合し、ボールミルで72時間湿式混合
し、乾燥した後、1ton/cm2 の圧力で圧粉体にプ
レス成形し、この圧粉体を1×10-3torrの真空
中、1450〜1550℃の範囲内の所定の温度に1時
間保持の条件で焼結し、この結果の超硬合金を機械加工
にて長さ:12mm×幅:4mm×厚さ:2.5mmの
寸法とすることにより超硬基体を製造し、ついで前記超
硬基体の表面に、(a)5%硝酸水溶液中に5分間浸漬
の表面エッチング処理(以下、表面処理aと云う)、
(b)平均粒径:10μmのダイヤモンドパウダーを分
散含有させたアルコール中での10分間の超音波表面傷
付け処理(以下、表面処理bと云う)、(c)100気
圧のAr雰囲気中、1480℃に1時間保持の表面部W
C粒の粗大化熱処理(以下、表面処理cと云う)、以上
表面処理a〜cのうちの少なくともいずれかの表面処理
を表1に示される組み合わせで施した後、気相合成法の
1種である通常のマイクロ波プラズマCVD装置に装入
し、 反応ガス組成:CH4 (流量:10cc/min)+H
2 (流量:500cc/min)、 雰囲気圧力:50torr、 マイクロ波出力:2kw、 基体温度:900℃、 の条件で気相合成を行い、上記基体のそれぞれの表面に
同じく表1に示される平均層厚の多結晶ダイヤモンド膜
を形成することにより工具本体A〜Gをそれぞれ製造し
た。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The press-contact tool of the present invention will be specifically described with reference to embodiments. First, for the purpose of producing a substrate, as raw material powder, fine WC powder having an average particle size in the range of 0.5 to 3 μm, coarse WC powder having an average particle size in the range of 3 to 10 μm, and Average particle size: 1.2 μmCo
Powders are prepared, and each of these raw material powders is blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 1 ton / cm 2. The powder is sintered in a vacuum of 1 × 10 −3 torr at a predetermined temperature in the range of 1450 to 1550 ° C. for 1 hour, and the resulting cemented carbide is machined to a length of 12 mm. × Width: 4 mm × Thickness: 2.5 mm to produce a cemented carbide substrate, and then the surface of the cemented carbide substrate is subjected to (a) a surface etching treatment by immersion in a 5% nitric acid aqueous solution for 5 minutes ( Hereinafter, referred to as surface treatment a).
(B) Ultrasonic surface scratching treatment (hereinafter, referred to as surface treatment b) for 10 minutes in alcohol containing diamond powder having a mean particle size of 10 μm dispersed therein, (c) 1480 ° C. in an Ar atmosphere at 100 atm. 1 hour holding surface W
After subjecting the C grains to coarsening heat treatment (hereinafter referred to as surface treatment c) and at least one of the surface treatments a to c in combination shown in Table 1, one of the gas phase synthesis methods The reaction gas composition: CH 4 (flow rate: 10 cc / min) + H
2 (flow rate: 500 cc / min), atmospheric pressure: 50 torr, microwave output: 2 kw, substrate temperature: 900 ° C., and vapor phase synthesis was carried out under the following conditions. Tool bodies A to G were manufactured by forming a thick polycrystalline diamond film.
【0012】また、黒鉛るつぼで、それぞれ表2に示さ
れる組成のAg合金溶湯を調整し、インゴットに鋳造
し、これを熱間圧延にて厚さ:0.2mmの熱延板と
し、この熱延板に冷間圧延を施して厚さ:0.05mm
のろう材a〜gをそれぞれ製造した。In a graphite crucible, Ag alloy melts having the compositions shown in Table 2 were prepared, cast into ingots, and hot-rolled into hot-rolled sheets having a thickness of 0.2 mm. Cold rolled on the rolled sheet, thickness: 0.05mm
The brazing materials a to g were respectively manufactured.
【0013】さらに、同じく黒鉛るつぼで、それぞれ表
3に示される組成のNi合金溶湯を調整し、これを精密
鋳造(ロストワックス法)した後、機械加工することに
より上記基体の表面寸法と同じ寸法のろう付け面をもっ
たシャンク部ア〜オをそれぞれ製造した。Further, in the same graphite crucible, a Ni alloy melt having the composition shown in Table 3 is prepared, precision cast (lost wax method), and then machined to obtain the same size as the surface size of the substrate. The shank parts A to O having the brazing surfaces of No. 1 to No. 3 were manufactured.
【0014】ついで、上記の工具本体、ろう材、および
シャンク部を、表5に示される組み合わせでセットし、
Ar雰囲気中、850〜950℃の範囲内の所定温度に
10分間保持の条件で工具本体をろう材を介してびシャ
ンク部にろう付け接合することにより本発明圧接工具1
〜7をそれぞれ製造した。Next, the above-mentioned tool body, brazing material, and shank portion are set in combinations shown in Table 5,
The press-welding tool 1 of the present invention is obtained by brazing the tool main body to the shank portion via a brazing material under a condition of holding at a predetermined temperature in the range of 850 to 950 ° C. for 10 minutes in an Ar atmosphere.
To 7 were each manufactured.
【0015】また、比較の目的で、工具本体として、い
ずれも多結晶ダイヤモンド膜の平均層厚が50μmであ
るが、基体が、それぞれSi3 N4 −5%Y2 O3 −3
%Al2 O3 からなる組成を有するSi3 N4 基焼結体
(以下、工具本体Hと云う)、AlN−3%Y2 O3 −
2%CaOからなる組成を有するAlN基焼結体(以
下、工具本体Iと云う)、およびSiC−2%B4 Cか
らなる組成を有するSiC基焼結体(以下、工具本体J
と云う)、また、シャンク部としてFe−19.7%N
i−19.3%Co−0.95%Mnからなる組成を有
するFe−Ni−Co合金のシャンク部(以下、シャン
ク部カと云う)、並びにろう材として、Cu−32%Z
n−30%Agからなる組成を有するCu−Zn−Ag
合金のろう材(以下、ろう材gと云う)を用いる以外は
同一の条件で比較圧接工具1〜3をそれぞれ製造した。For the purpose of comparison, the tool body has a polycrystalline diamond film having an average layer thickness of 50 μm in all cases, but the substrate is made of Si 3 N 4 -5% Y 2 O 3 -3.
% Al 2 Si 3 N 4 groups sintered body having a composition consisting of O 3 (hereinafter referred to as tool body H), AlN-3% Y 2 O 3 -
AlN-based sintered body having a composition of 2% CaO (hereinafter, referred to as tool body I) and SiC-based sintered body having a composition of SiC-2% B 4 C (hereinafter, tool body J)
And a shank portion of Fe-19.7% N
i-19.3% Co-0.95% Mn The shank portion (hereinafter referred to as shank portion) of a Fe-Ni-Co alloy having a composition of Mn and Cu-32% Z as a brazing material.
Cu-Zn-Ag having a composition consisting of n-30% Ag
Comparative welding tools 1 to 3 were manufactured under the same conditions except that an alloy brazing material (hereinafter, referred to as brazing material g) was used.
【0016】この結果得られた本発明圧接工具1〜7お
よび比較圧接工具1〜3について、多結晶ダイヤモンド
膜の先端面を縦:15mm×横:5mmに加工し、かつ
同表面粗さをRmax で0.8μmに研磨した状態で、以
下に示す条件で加速耐久試験を行った。すなわち、加速
耐久試験は、図1のICチップおよびリード材に代っ
て、無酸素銅およびAl合金(Si:2%含有)からな
り、いずれも表面:20mm×10mm、厚さ:10m
mの寸法をもち、表面に1個の表面寸法が0.5mm×
0.5mmにして、高さが3mmの突起が10個づつ長
さ方向に沿って2列配列配置された水冷ボックスを用
い、この水冷ボックスの突起配設面に対して、上記各種
の圧接工具を、600℃に加熱した状態で、10kgの
荷重で1サイクルを8秒とし、このうちの3秒を圧接時
間とした条件で行い、使用寿命に至るまでのサイクル数
を測定した。これらの測定結果を表4に示した。With respect to the press-welded tools 1 to 7 of the present invention and the comparative press-welded tools 1 to 3 obtained as described above, the front end face of the polycrystalline diamond film was machined to a length of 15 mm × width: 5 mm and the surface roughness was set to Rmax. Then, an accelerated durability test was performed under the following conditions in a state of polishing to 0.8 μm. That is, in the accelerated durability test, oxygen-free copper and an Al alloy (containing 2% of Si) were used instead of the IC chip and the lead material shown in FIG. 1, and both had a surface of 20 mm × 10 mm and a thickness of 10 m.
m dimension, one surface dimension is 0.5mm x
Using a water-cooled box in which 0.5 mm is provided and two protrusions each having a height of 3 mm are arranged in two rows along the length direction by 10 pieces, and the above various press-welding tools are provided on the surface of the water-cooled box on which the protrusions are provided. While heating at 600 ° C., one cycle was performed for 8 seconds with a load of 10 kg, and 3 seconds of the cycle was used as a press contact time, and the number of cycles until the service life was reached was measured. Table 4 shows the results of these measurements.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【表2】 [Table 2]
【0019】[0019]
【表3】 [Table 3]
【0020】[0020]
【表4】 [Table 4]
【0021】[0021]
【発明の効果】表4に示される結果から、本発明圧接工
具1〜7は、上記の通りの工具本体、ろう材、およびシ
ャンク部の組み合わせによって残留応力の発生が抑制さ
れ、かつ残留応力の経時的蓄積が阻止されることから、
基体割れやろう付け剥離の発生なく、すぐれた耐久性を
長期に亘って発揮するのに対して、比較圧接工具1〜3
においては、いずれも基体割れまたはろう付け剥離が原
因で比較的短時間で使用寿命に至ることが明らかであ
る。上述のように、この発明の圧接工具は、これを大型
化しても基体割れやろう付け剥離の発生なく、長期に亘
っての使用を可能とするので、半導体装置の高集積化に
十分満足に対応するものである。According to the results shown in Table 4, in the press-welding tools 1 to 7 of the present invention, the generation of residual stress is suppressed by the combination of the tool body, the brazing material, and the shank as described above, and the residual stress is reduced. Because accumulation over time is prevented,
While excellent durability is exhibited over a long period of time without occurrence of substrate cracking or brazing peeling, the comparative pressure welding tools 1 to 3
It is evident that in any case, the service life can be reached in a relatively short time due to cracking of the substrate or delamination. As described above, the press-welding tool of the present invention can be used for a long period of time without causing cracks in the substrate or peeling off by brazing even if the tool is enlarged, so that it is sufficiently satisfactory for high integration of semiconductor devices. Corresponding.
【図1】圧接工具の使用態様を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a use mode of a pressure welding tool.
フロントページの続き (51)Int.Cl.6 識別記号 FI C30B 29/04 C30B 29/04 A H01L 21/603 H01L 21/603 C Continued on the front page (51) Int.Cl. 6 Identification code FI C30B 29/04 C30B 29/04 A H01L 21/603 H01L 21/603 C
Claims (1)
相合成析出してなる工具本体を、ろう材を用いてヒータ
ー内蔵のシャンク部に接合した構造の圧接工具におい
て、 上記工具本体の基体を、 分散相形成成分として、炭化タングステン:90〜98
重量%、を含有し、残りが結合相形成成分としてのCo
と不可避不純物からなる組成を有する超硬合金で構成
し、 また、上記ろう材を、 Ag:5〜15重量%、 P :1〜10重量%、を含有し、残りがCuと不可避
不純物からなる組成を有するCu合金で構成し、さら
に、上記シャンク部を、 Cr:10〜25重量%、 Fe:5〜15重量%、を含有し、残りがNiと不可避
不純物からなる組成を有するNi合金で構成したことを
特徴とする基体割れやろう付け剥離の発生のないICチ
ップのリード材ボンディング用圧接工具。1. A press-welding tool having a structure in which a tool body formed by vapor-phase synthetic deposition of a polycrystalline diamond film on a surface of a base is joined to a shank portion with a built-in heater using a brazing material. Tungsten carbide as a dispersed phase forming component: 90 to 98
Wt%, the balance being Co as the binder phase forming component.
And a cemented carbide having a composition consisting of unavoidable impurities. The brazing material contains Ag: 5 to 15% by weight, P: 1 to 10% by weight, and the remainder consists of Cu and unavoidable impurities. The shank portion is composed of a Cu alloy having a composition of 10 to 25% by weight of Cr, 5 to 15% by weight of Fe, and a balance of Ni and unavoidable impurities. A pressure welding tool for bonding a lead material of an IC chip, wherein the tool is free from cracking of a base and brazing peeling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9093817A JPH10284547A (en) | 1997-04-11 | 1997-04-11 | Pressure welding tool for lead material bonding for ic chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9093817A JPH10284547A (en) | 1997-04-11 | 1997-04-11 | Pressure welding tool for lead material bonding for ic chip |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10284547A true JPH10284547A (en) | 1998-10-23 |
Family
ID=14092959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9093817A Withdrawn JPH10284547A (en) | 1997-04-11 | 1997-04-11 | Pressure welding tool for lead material bonding for ic chip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10284547A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323372B1 (en) * | 2000-01-31 | 2012-12-04 | Smith International, Inc. | Low coefficient of thermal expansion cermet compositions |
-
1997
- 1997-04-11 JP JP9093817A patent/JPH10284547A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323372B1 (en) * | 2000-01-31 | 2012-12-04 | Smith International, Inc. | Low coefficient of thermal expansion cermet compositions |
US8956438B2 (en) | 2000-01-31 | 2015-02-17 | Smith International, Inc. | Low coefficient of thermal expansion cermet compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129738B2 (en) | Ceramic circuit board | |
EP1201623A2 (en) | Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the same | |
CN113348046B (en) | Method for producing copper-ceramic joined body, method for producing insulated circuit board, copper-ceramic joined body, and insulated circuit board | |
KR20020024534A (en) | Silicon nitride powder, sintered silicon nitride, sintered silicon nitride substrate, and circuit board and thermoelectric element module comprising such sintered silicon nitride substrate | |
WO1996029736A1 (en) | Silicon nitride circuit substrate | |
KR20130135965A (en) | Ceramic circuit board | |
JP3629783B2 (en) | Circuit board | |
JP3539634B2 (en) | Silicon nitride substrate for circuit mounting and circuit substrate | |
JP2698780B2 (en) | Silicon nitride circuit board | |
JP4193958B2 (en) | Molten metal member having excellent corrosion resistance against molten metal and method for producing the same | |
JP3834351B2 (en) | Ceramic circuit board | |
JP3238051B2 (en) | Brazing material | |
JP3450570B2 (en) | High thermal conductive silicon nitride circuit board | |
JP2772273B2 (en) | Silicon nitride circuit board | |
JP6595740B1 (en) | Metal-silicon carbide composite and method for producing the same | |
JPH1093244A (en) | Multilayer silicon nitride circuit board | |
JP2004231513A (en) | Circuit board excellent in high strength/high heat conductivity | |
JPH10284547A (en) | Pressure welding tool for lead material bonding for ic chip | |
JP3275786B2 (en) | Pressure welding tool for IC chip lead material bonding | |
JPS62270483A (en) | Ceramic metallizing composition, metallization and metallized product | |
JPH10242221A (en) | Compression bonding tool for bonding ic chip leads | |
JP2019009021A (en) | Ceramic member and manufacturing method of the same | |
JPH07124804A (en) | Cutting chip showing excellent wear resistance | |
JP2677748B2 (en) | Ceramics copper circuit board | |
JPH0597533A (en) | Composition for bonding ceramic-metal and bonded product of ceramic-metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |