[go: up one dir, main page]

JPH10284365A - Cata-dioptric system - Google Patents

Cata-dioptric system

Info

Publication number
JPH10284365A
JPH10284365A JP9083151A JP8315197A JPH10284365A JP H10284365 A JPH10284365 A JP H10284365A JP 9083151 A JP9083151 A JP 9083151A JP 8315197 A JP8315197 A JP 8315197A JP H10284365 A JPH10284365 A JP H10284365A
Authority
JP
Japan
Prior art keywords
optical system
aspherical
concave mirror
catadioptric
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9083151A
Other languages
Japanese (ja)
Inventor
Yuutou Takahashi
友刀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9083151A priority Critical patent/JPH10284365A/en
Priority to US09/052,481 priority patent/US5969882A/en
Priority to DE69806667T priority patent/DE69806667T2/en
Priority to EP98105955A priority patent/EP0869383B1/en
Publication of JPH10284365A publication Critical patent/JPH10284365A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cata-dioptric system which is compact and has superior imaging performance in spite of about the same number of lenses as a conventional one. SOLUTION: In this optical system, an intermediate image C of a first face R is formed with a first imaging optical system A having a concave mirror M1, and then the intermediate image C is imaged on a second face W with a second imaging optical system B having an aperture stop S. In this case, a first aspheric member P is positioned in the vicinity of the intermediate image C, and a second aspheric member Q is positioned in the vicinity of the concave mirror M1 or the aperture stop S, or the concave mirror M1 is shaped into an aspheric surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造に用いられ
るステッパーなどの縮小露光装置の光学系に関するもの
であり、特に、紫外線波長域で使用可能な1/4倍〜1
/5倍の反射屈折光学系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system of a reduction exposure apparatus such as a stepper used in the manufacture of semiconductors.
It relates to a / 5-fold catadioptric optical system.

【0002】[0002]

【従来の技術】近年、半導体装置のパターンを焼き付け
る露光装置は、より解像力の高いものが要求されてきて
いる。この要求を満足するためには、光源の波長を短波
長化し、かつNA(光学系の開口数)を大きくしなけれ
ばならない。この要求に応えるために、反射系と使用波
長に使える光学ガラスからなる屈折系とを組み合せるい
わゆる反射屈折光学系で縮小投影光学系を構成する技術
が色々提案されている。
2. Description of the Related Art In recent years, an exposure apparatus for printing a pattern of a semiconductor device has been required to have a higher resolution. In order to satisfy this requirement, the wavelength of the light source must be shortened and the NA (numerical aperture of the optical system) must be increased. In order to meet this demand, various techniques have been proposed in which a reduction projection optical system is constituted by a so-called catadioptric system that combines a reflection system and a refraction system made of optical glass usable for a used wavelength.

【0003】その中で、光学系の途中で少なくとも1回
以上の中間結像を行なうタイプではこれまでに種々のも
のが提案されているが、途中1回結像のものに限定して
みると、特公平5−25170号、特開昭63−163
319号、特開平4−234722号、USP−4,7
79,966号に開示された反射屈折光学系が挙げられ
る。
[0003] Among them, various types have been proposed so far for a type in which an intermediate image is formed at least once in the middle of an optical system. JP-B-5-25170, JP-A-63-163
No. 319, JP-A-4-234722, USP-4,7
No. 79,966.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術の中で、
凹面鏡1枚だけ使用しているものは、特開平4−234
722号及びUSP−4,779,966号に開示され
た反射屈折光学系である。これらの光学系は、凹面鏡で
構成される往復光学系において、負レンズのみが採用さ
れており、正の屈折力の光学系が使われていない。その
ため、光束が広がって凹面鏡に入射するため、凹面鏡の
径が大きくなりがちであった。
In the above prior art,
One in which only one concave mirror is used is disclosed in Japanese Patent Laid-Open No. 4-234.
No. 722 and U.S. Pat. No. 4,779,966. In these optical systems, only a negative lens is employed in a reciprocating optical system constituted by a concave mirror, and an optical system having a positive refractive power is not used. Therefore, the light beam spreads and enters the concave mirror, so that the diameter of the concave mirror tends to increase.

【0005】特に、USP−4,779,966号に開
示された反射屈折光学系では、中間像よりも後方の第2
結像光学系に凹面鏡を使用している。したがって光学系
の必要な明るさを確保するためには、光束が広がって凹
面鏡に入射することになり、凹面鏡の小型化が困難なも
のであった。本発明は上記問題点に鑑み、レンズ枚数が
上記従来例と同程度であるにもかかわらず、小型であ
り、結像性能に優れた反射屈折光学系を提供することを
目的とする。
[0005] In particular, in the catadioptric optical system disclosed in US Pat. No. 4,779,966, the second optical system is located behind the intermediate image.
A concave mirror is used for the imaging optical system. Therefore, in order to ensure the required brightness of the optical system, the light beam spreads and enters the concave mirror, making it difficult to reduce the size of the concave mirror. In view of the above problems, it is an object of the present invention to provide a catadioptric optical system that is small in size and excellent in image forming performance, although the number of lenses is almost the same as in the conventional example.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、凹面鏡M1を有する第1結像光学系A
によって第1面Rの中間像Cを形成し、開口絞りSを有
する第2結像光学系Bによって前記中間像Cの像を第2
面W上に形成する反射屈折光学系において、前記中間像
Cの近傍に第1非球面部材Pを配置し、前記凹面鏡M1
付近或いは前記開口絞りS付近に第2非球面部材Qを配
置するか、若しくは前記凹面鏡M1を非球面に形成する
ことを特徴とする反射屈折光学系を提供する。
In order to achieve the above object, according to the present invention, a first imaging optical system A having a concave mirror M1 is provided.
To form an intermediate image C of the first surface R, and the second image forming optical system B having the aperture stop S converts the image of the intermediate image C to a second image.
In the catadioptric optical system formed on the surface W, a first aspherical member P is disposed near the intermediate image C, and the concave mirror M1 is provided.
A catadioptric optical system is provided in which a second aspherical member Q is disposed in the vicinity or near the aperture stop S, or the concave mirror M1 is formed as an aspherical surface.

【0007】[0007]

【発明の実施の形態】以下では、図1を参照しながら説
明を行う。本発明では、第1面Rを第2面Wへ投影する
光学系において、一度中間像Cを形成する所謂2回結像
光学系を採用する。この凹面鏡を用いた2回結像光学系
を採用する理由は、ペッツバール和及び色収差の良好な
補正のためである。ここで、本発明では、更に収差の補
正を良好にするために、非球面部材を特定の位置に設け
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, description will be made with reference to FIG. In the present invention, a so-called two-time imaging optical system that once forms an intermediate image C is employed in the optical system that projects the first surface R onto the second surface W. The reason why the two-time imaging optical system using the concave mirror is employed is to favorably correct Petzval sum and chromatic aberration. Here, in the present invention, the aspherical member is provided at a specific position in order to further improve aberration correction.

【0008】ここで、開口絞りS付近に第2非球面部材
Qを配置する場合は、画角に関する収差(例えば歪曲収
差や非点収差)にはほとんど影響を与えずに、球面収差
及びコマ収差を補正することができる。これは、光束の
主光線が絞りの中心を通るため、いかなる非球面形状で
あっても、主光線は非球面形状の影響を受けないからで
ある。逆に、第1面R上の軸上及び軸外から発した全て
の光束は、必ず開口絞りS全体を通るため、第1面R上
の軸上及び軸外から発した全ての光束は、均等に屈折作
用を受けるようになる。
Here, when the second aspherical member Q is arranged near the aperture stop S, spherical aberration and coma aberration are hardly affected on the angle of view (for example, distortion and astigmatism). Can be corrected. This is because the chief ray of the light beam passes through the center of the stop, and the chief ray is not affected by the aspheric shape regardless of the aspheric shape. Conversely, all light beams emitted from on-axis and off-axis on the first surface R always pass through the entire aperture stop S, so all light beams emitted from on-axis and off-axis on the first surface R are Becomes evenly refracted.

【0009】また、入射高に関する収差を独立して補正
することができるところとして、第2結像光学系Bの開
口絞りS付近以外に、第1結像光学系Aの凹面鏡M1付
近が存在する。第1結像光学系Aの凹面鏡M1付近に非
球面部材を配置する場合は、平行平面板の面を非球面に
加工したものまたは独立した1個の非球面レンズが考え
られる。また、第1結像光学系Aの凹面鏡M1付近に非
球面部材を配置しなくても、凹面鏡M1自体を非球面凹
面鏡としても良い。
[0009] In addition to the vicinity of the aperture stop S of the second imaging optical system B, the vicinity of the concave mirror M1 of the first imaging optical system A can be corrected independently of the aberration relating to the incident height. . When an aspherical member is arranged near the concave mirror M1 of the first imaging optical system A, a parallel plane plate whose surface is processed into an aspherical surface or one independent aspherical lens can be considered. Further, the concave mirror M1 itself may be an aspherical concave mirror without disposing an aspherical member near the concave mirror M1 of the first imaging optical system A.

【0010】次に、中間像C付近に第1非球面部材Pを
配置する場合は、入射高に関する収差(例えば球面収差
やコマ収差)にはほとんど影響を与えずに、歪曲収差及
び非点収差を補正することができるのである。これは、
中間像C付近では光束が収斂しているために、その付近
の非球面の形状からは、第1面R上の軸上及び軸外から
発した周辺光束は影響を受けないからである。逆に、全
ての主光線は、非球面の形状による屈折作用を受けるこ
とになる。
Next, when the first aspherical member P is disposed near the intermediate image C, distortion and astigmatism are hardly affected by aberrations relating to the incident height (for example, spherical aberration and coma). Can be corrected. this is,
This is because the luminous flux converges near the intermediate image C, and the on-axis and off-axis peripheral luminous fluxes on the first surface R are not affected by the shape of the aspheric surface in the vicinity. Conversely, all chief rays undergo refraction due to the aspherical shape.

【0011】ここで、中間像C付近に第1非球面部材P
を配置する場合は、独立した1個の非球面レンズであっ
ても良く、また付近に配置したプリズムの端面や平行平
面板の面を非球面に加工したものでも良い。また付近に
配置した光束分離ミラーやプリズムの反射面を非球面に
加工しても良い。また、本発明における非球面部材は、
平行平板のみならず、一般的なレンズであってもよい。
また、第1非球面部材Pは、光路を偏向させる第2反射
面M2を設ける場合、プリズムであっても構わない。
Here, the first aspherical member P is located near the intermediate image C.
In this case, a single independent aspherical lens may be used, or an end surface of a prism and a plane of a parallel flat plate arranged in the vicinity may be processed into an aspherical surface. In addition, the reflection surface of the light beam separating mirror or the prism disposed in the vicinity may be processed to be an aspheric surface. Further, the aspherical member in the present invention,
Not only a parallel plate but also a general lens may be used.
When the first aspherical member P is provided with the second reflecting surface M2 for deflecting the optical path, the first aspherical member P may be a prism.

【0012】また、2回結像光学系全体をよりコンパク
トにするために、中間像Cが形成される位置又はその近
傍に、光路を偏向させるための第2反射面M2を設ける
ことが好ましい。このとき、第2反射面M2は、ミラー
やプリズムの反射面が考えられる。更に、第1結像光学
系Aは、凹面鏡M1への入射光が通過するのみの往路光
学系A11と、凹面鏡M1を含み凹面鏡M1への入射光
と凹面鏡M1からの反射光との双方が通過する往復光学
系A12と、からなることが好ましい。これは、第1結
像光学系Aを等倍で使用しないことを意味しており、こ
れによって、第2結像光学系Bで発生する歪曲収差及び
コマ収差を良好に補正するためである。
In order to make the entire two-time imaging optical system more compact, it is preferable to provide a second reflection surface M2 for deflecting the optical path at or near the position where the intermediate image C is formed. At this time, the second reflection surface M2 may be a reflection surface of a mirror or a prism. Further, the first imaging optical system A includes a forward optical system A11 that only allows incident light to the concave mirror M1 to pass, and both the incident light to the concave mirror M1 including the concave mirror M1 and the reflected light from the concave mirror M1 pass. And a reciprocating optical system A12. This means that the first imaging optical system A is not used at the same magnification, and thereby the distortion and coma generated in the second imaging optical system B are favorably corrected.

【0013】このとき、往路光学系A11は、負屈折力
であることが好ましい。これは、往復光学系A12へ入
射する光束と往復光学系A12から射出する光束とが、
重なりあわないようにするためである。また、第2反射
面M2と第2結像光学系Bとの間に、光路を偏向させる
ための第3反射面M3を設け、第1面Rと第2面Wとが
平行に配置されることが好ましい。第3反射面M3を設
けることで、光学系自体が2回折り曲げられるので、よ
り小型になる。また、その際、第1面Rと第2面Wとを
平行に配置することで、第2反射面M2と第3反射面M
3との間以外に配置された光学部材の光軸方向が一致す
るので、光学部材に非対称な変形が生じず、製造上より
精度の高い光学系が達成できる。また、本発明による各
実施例では、第2反射面M2と第3反射面M3との間に
光学部材が存在しないので、全ての光学部材の光軸方向
が一致する。従って、かなり製造上精度の高い光学系が
期待できる。
At this time, it is preferable that the outward optical system A11 has a negative refractive power. This is because the light beam entering the reciprocating optical system A12 and the light beam exiting from the reciprocating optical system A12 are:
This is so as not to overlap. Further, a third reflecting surface M3 for deflecting the optical path is provided between the second reflecting surface M2 and the second imaging optical system B, and the first surface R and the second surface W are arranged in parallel. Is preferred. By providing the third reflecting surface M3, the optical system itself can be bent twice, so that the size can be further reduced. At this time, by arranging the first surface R and the second surface W in parallel, the second reflection surface M2 and the third reflection surface M
Since the optical axis directions of the optical members disposed other than the position 3 coincide with each other, asymmetric deformation does not occur in the optical members, and an optical system with higher precision in manufacturing can be achieved. Further, in each embodiment according to the present invention, since no optical member exists between the second reflecting surface M2 and the third reflecting surface M3, the optical axis directions of all the optical members match. Therefore, a highly accurate optical system can be expected in manufacturing.

【0014】また更に、第1非球面部材Pの非球面は、
回転対称非球面、トーリック非球面、又は完全非対称非
球面のいずれかであることが好ましい。また、第2非球
面部材Qの非球面は、回転対称非球面であることが好ま
しい。
Further, the aspherical surface of the first aspherical member P is
It is preferable to use any of a rotationally symmetric aspheric surface, a toric aspheric surface, and a completely asymmetric aspheric surface. The aspheric surface of the second aspherical member Q is preferably a rotationally symmetric aspherical surface.

【0015】[0015]

【実施例】以下に、本発明の実施例を示す。また、硝材
として使用したSiO2は、波長248nmで屈折率1.5
0839である。尚、各実施例では硝材としてSiO2のみ
を使用したが、硝材としてはCaF2も使用可能である。 〔第1実施例〕図2は本実施例における反射屈折光学系
の光路図であり、表1は本実施例における反射屈折光学
系のレンズデータ表である。以下にこの図及び表を参照
しながら説明を行う。尚、表1には、左より順に、面番
号、曲率半径、面間隔、硝材、本発明に係る記号を記し
てある。本実施例における反射屈折光学系は、第1面R
であるレチクル上から光線が通過する順に、屈折レンズ
1枚からなる往路光学系A11、6枚のレンズと凹面鏡
M1と第1非球面部材Pである非球面に加工された1枚
の平行平面板とからなる往復光学系A12、で構成され
た第1結像光学系Aを有している。また、光線は、第1
結像光学系Aを通過した後、第2反射面M2である光束
分離用ミラー、第3反射面M3である折り曲げミラーで
反射され、5枚のレンズと絞りと第2非球面部材Qであ
る1枚の非球面に加工した平行平面板とからなる第2結
像光学系を通過し、第2面であるウェハ上に達する。光
束分離ミラーの付近では、レチクルの中間像Cが形成さ
れている。
Examples of the present invention will be described below. Further, SiO 2 used as a glass material has a refractive index of 1.5 at a wavelength of 248 nm.
0839. In each embodiment, only SiO 2 was used as the glass material, but CaF 2 can also be used as the glass material. [First Embodiment] FIG. 2 is an optical path diagram of a catadioptric optical system in this embodiment, and Table 1 is a lens data table of the catadioptric optical system in this embodiment. The description will be made below with reference to this figure and table. In Table 1, a surface number, a radius of curvature, a surface interval, a glass material, and a symbol according to the present invention are described in order from the left. The catadioptric optical system in the present embodiment has a first surface R
In the order in which light rays pass from above the reticle, a forward optical system A11 consisting of one refracting lens, six lenses, a concave mirror M1, and one parallel flat plate processed into an aspheric surface as the first aspherical member P And a first imaging optical system A composed of a reciprocating optical system A12. In addition, the light beam
After passing through the imaging optical system A, it is reflected by the light beam separating mirror as the second reflecting surface M2 and the bending mirror as the third reflecting surface M3, and includes five lenses, a diaphragm, and a second aspherical member Q. The light passes through a second imaging optical system composed of one parallel flat plate processed into an aspherical surface, and reaches a wafer as a second surface. An intermediate image C of the reticle is formed near the light beam splitting mirror.

【0016】ここで、この光学系は、縮小倍率1/4
倍、像側の開口数NAは0.6、最大物体高は52.8
であり、露光サイズ55×90等の矩形開口で走査して
露光することが可能である。
Here, this optical system has a reduction magnification of 1/4.
, The numerical aperture NA on the image side is 0.6, and the maximum object height is 52.8.
It is possible to perform scanning and exposure with a rectangular aperture having an exposure size of 55 × 90 or the like.

【0017】[0017]

【表1】 面番号 曲率半径 面間隔 硝材 0 0.00000 60.000 R 1 -639.93122 10.935 SiO2 A A11 2 638.79323 63.097 3 772.20352 30.000 SiO2 A12 4 -534.73642 0.081 5 285.29345 30.000 SiO2 6 -5948.04836 206.478 7 501.06370 30.000 SiO2 8 -309.92623 5.000 9 -251.33100 11.810 SiO2 10 168.56869 117.942 11 321.57847 30.000 SiO2 12 -464.57044 115.331 13 -161.47861 12.000 SiO2 14 765.45803 20.000 15 -244.06677 -20.000 反射面 M1 16 765.45803 -12.000 SiO2 17 -161.47861 -115.331 18 -464.57044 -30.000 SiO2 19 321.57847 -117.942 20 168.56869 -11.811 SiO2 21 -251.33100 -5.000 22 -309.92623 -30.000 SiO2 23 501.06370 -206.478 24 -5948.04836 -30.000 SiO2 25 285.29345 -0.081 26 -534.73642 -30.000 SiO2 27 772.20352 -0.100 28 0.00000 -7.000 SiO2 P 非球面データ K 1 A 0.645652210378e-8; B -0.254015221025e-13; C 0.152056034342e-16; -0.158200516208e-20 28 0.00000 -0.100 29 0.00000 267.300 反射面 M2 30 0.00000 -346.376 反射面 M3 31 -197.49176 -30.000 SiO2 B 32 17530.15232 -67.213 33 0.00000 -5.000 S 34 0.00000 -7.000 SiO2 Q 非球面データ K 1 A 0.131379214487e-7; B 0.333184500674e-12; C -0.250435601016e-17; 0.20950464532e-20 35 0.00000 -0.100 36 -147.90421 -25.000 SiO2 37 -414.36719 -69.235 38 -91.80571 -35.000 SiO2 39 -1272.56390 -0.100 40 -147.96775 -15.000 SiO2 41 -63.01133 -3.000 42 -63.15395 -43.894 SiO2 43 772.99694 -15.000 45 0.00000 W 図2に示す通り、使用レンズの有効径は170以下、物
像間距離は741であり、通常のこのスペックで使用さ
れる屈折系球面光学系の3/4程度に小さいことが分か
る。また、レンズの有効径及び光学系全体が小型化され
たにもかかわらず、使用レンズ枚数は従来の光学系とほ
ぼ同じレンズ枚数である。
TABLE 1 Surface number curvature radius spacing glass materials 0 0.00000 60.000 R 1 -639.93122 10.935 SiO 2 A A11 2 638.79323 63.097 3 772.20352 30.000 SiO 2 A12 4 -534.73642 0.081 5 285.29345 30.000 SiO 2 6 -5948.04836 206.478 7 501.06370 30.000 SiO 2 8 -309.92623 5.000 9 -251.33100 11.810 SiO 2 10 168.56869 117.942 11 321.57847 30.000 SiO 2 12 -464.57044 115.331 13 -161.47861 12.000 SiO 2 14 765.45803 20.000 15 -244.06677 -20.000 Reflection surface M1 16 765.45803 -12.000 SiO 2 17 -161. 18 -464.57044 -30.000 SiO 2 19 321.57847 -117.942 20 168.56869 -11.811 SiO 2 21 -251.33100 -5.000 22 -309.92623 -30.000 SiO 2 23 501.06370 -206.478 24 -5948.04836 -30.000 SiO 2 25 285.29345 -0.081 26 -534.73642 -30.000 SiO 2 27 772.20352 -0.100 28 0.00000 -7.000 SiO 2 P Aspherical data K 1 A 0.645652210378e-8; B -0.254015221025e-13; C 0.152056034342e-16; -0.158200516208e-20 28 0.00000 -0.100 29 0.00000 267.300 Reflective surface M2 30 0.00000 -346.376 Reflective surface M3 31 -197.49176 -3 0.000 SiO 2 B 32 17530.15232 -67.213 33 0.00000 -5.000 S 34 0.00000 -7.000 SiO 2 Q Aspherical data K 1 A 0.131379214487e-7; B 0.333184500674e-12; C -0.250435601016e-17; 0.20950464532e-20 35 0.00000 -0.100 36 -147.90421 -25.000 SiO 2 37 -414.36719 -69.235 38 -91.80571 -35.000 SiO 2 39 -1272.56390 -0.100 40 -147.96775 -15.000 SiO 2 41 -63.01133 -3.000 42 -63.15395 -43.894 SiO 2 43 772.99694 -15.000 45 0.00000 W As shown in FIG. 2, the effective diameter of the lens used is 170 or less, and the distance between the object and the image is 741. It can be seen that the effective diameter of the lens is about / of that of the refractive spherical optical system normally used in this specification. Further, despite the downsizing of the effective diameter of the lens and the entire optical system, the number of lenses used is almost the same as that of the conventional optical system.

【0018】また、図3は、本実施例における反射屈折
光学系の横収差図であり、図4は非点収差図及び歪曲収
差図である。これらより、紫外線エキシマレーザーの2
48nmの単波長における、球面収差、コマ収差、非点
収差、歪曲収差もほぼ無収差に近い状態まで良好に補正
された優れた性能の光学系を提供していることが分か
る。 〔第2実施例〕図5は本実施例における反射屈折光学系
の光路図であり、表2は本実施例における反射屈折光学
系のレンズデータ表である。以下にこの図及び表を参照
しながら説明を行う。尚、表1には、左より順に、面番
号、曲率半径、面間隔、硝材、本発明に係る記号を記し
てある。
FIG. 3 is a lateral aberration diagram of the catadioptric optical system in this embodiment, and FIG. 4 is an astigmatism diagram and a distortion diagram. From these, the UV excimer laser 2
It can be seen that the optical system of the present invention provides excellent performance in which spherical aberration, coma, astigmatism, and distortion at a single wavelength of 48 nm have been well corrected to almost no aberration. [Second Embodiment] FIG. 5 is an optical path diagram of a catadioptric optical system in this embodiment, and Table 2 is a lens data table of the catadioptric optical system in this embodiment. The description will be made below with reference to this figure and table. In Table 1, a surface number, a radius of curvature, a surface interval, a glass material, and a symbol according to the present invention are described in order from the left.

【0019】本実施例における反射屈折光学系は、第1
面Rであるレチクル上から光線が通過する順に、屈折レ
ンズ1枚からなる往路光学系A11及び8枚のレンズと
凹面鏡M1とからなる往復光学系A12で構成された第
1結像光学系A、光束分離プリズムを有している。ま
た、光線は、第1結像光学系A及び光束分離プリズムを
通過した後、5枚のレンズと開口絞りSと第2非球面部
材Qである1枚の非球面に加工した平行平面板とからな
る第2結像光学系を通過し、第2面Wであるウェハ上に
達する。ここで、光束分離プリズムは、入射面が非球面
に加工してあり、これ自体で第1非球面部材Pであり、
第2反射面M2と第3反射面M3とを有している。
The catadioptric optical system according to the present embodiment has a first
A first imaging optical system A including a forward optical system A11 including one refracting lens and a reciprocating optical system A12 including eight lenses and a concave mirror M1 in the order in which light beams pass from the reticle serving as the surface R. It has a light beam splitting prism. After passing through the first image-forming optical system A and the light beam splitting prism, the light beam has five lenses, an aperture stop S, and a parallel plane plate processed into one aspherical surface as a second aspherical member Q. And reaches the wafer which is the second surface W. Here, the light beam splitting prism has an incident surface processed into an aspherical surface, and is itself a first aspherical member P,
It has a second reflecting surface M2 and a third reflecting surface M3.

【0020】ここで、この光学系は、縮小倍率1/4
倍、像側の開口数NAは0.6、最大物体高は70であ
り、露光サイズ24×120等の矩形開口で走査して露
光することが可能である。
Here, this optical system has a reduction magnification of 1/4.
The numerical aperture NA on the image side is 0.6, the maximum object height is 70, and it is possible to perform scanning and exposure with a rectangular aperture having an exposure size of 24 × 120 or the like.

【0021】[0021]

【表2】 面番号 曲率半径 面間隔 硝材 0 0.0 000 97.329 R 1 -852.84892 10.935 SiO2 A A11 2 427.78583 60.827 3 663.60250 40.000 SiO2 A12 4 -351.03784 0.081 5 257.40324 34.550 SiO2 6 2438.07789 216.095 7 502.34945 40.000 SiO2 8 -262.00938 0.775 9 -244.76524 11.810 SiO2 10 159.40009 37.191 11 953.44172 20.000 SiO2 12 -747.74093 23.298 13 -127.21946 15.000 SiO2 14 -225.24650 1.495 15 270.26506 40.000 SiO2 16 -212.42840 44.058 17 -136.12200 12.000 SiO2 18 300.22202 20.000 19 -209.22265 -20.000 反射面 M1 20 300.22202 -12.000 SiO2 21 -136.12200 -44.058 22 -212.42840 -40.000 SiO2 23 270.26506 -1.495 24 -225.24650 -15.000 SiO2 25 -127.21946 -23.298 26 -747.74094 -20.000 SiO2 27 953.44172 -37.191 28 159.40009 -11.810 SiO2 29 -244.76524 -0.775 30 -262.00938 -40.000 SiO2 31 502.34945 -216.095 32 2438.07789 -34.550 SiO2 33 257.40324 -0.081 34 -351.03784 -40.000 SiO2 35 663.60250 -3.000 36 0.00000 3.000 SiO2 P 非球面データ K 1 A 0.887390809767e-8; B 0.169993245617e-13; C -0.191633424206e-19; -0.177186383906e-22 37 0.00000 267.300 反射面 M2 38 0.00000 -16.200 反射面 M3 39 0.00000 -290.000 40 -147.64203 -30.000 SiO2 41 191842.92952 -32.911 42 0.00000 -5.000 S 43 0.00000 -20.000 SiO2 Q 44 0.00000 -27.384 非球面データ K 1 A 0.669401563554e-8; B 0.390599494004e-12; C 0.312995771257e-16; D -0.592108763547e-20 45 -135.93921 -26.306 SiO2 46 -499.74670 -4.092 47 -107.66763 -43.000 SiO2 48 -64.44984 -2.000 49 -66.18404 -30.000 SiO2 50 -574.11841 -0.073 51 -114.99848 -29.315 SiO2 52 252.71212 -15.000 53 0.00000 W 図5から分かるように、一部分のレンズの有効径は22
0程度であるが、その他のレンズ有効径は150以下と
非常に小さく、物像間距離も790と小型になってい
る。また、レンズの有効径及び光学系全体が小型化され
たにもかかわらず、使用レンズ枚数は従来の光学系とほ
ぼ同じレンズ枚数である。
TABLE 2 97.329 Surface number curvature radius spacing glass materials 0 0.0 000 R 1 -852.84892 10.935 SiO 2 A A11 2 427.78583 60.827 3 663.60250 40.000 SiO 2 A12 4 -351.03784 0.081 5 257.40324 34.550 SiO 2 6 2438.07789 216.095 7 502.34945 40.000 SiO 2 8 -262.00938 0.775 9 -244.76524 11.810 SiO 2 10 159.40009 37.191 11 953.44172 20.000 SiO 2 12 -747.74093 23.298 13 -127.21946 15.000 SiO 2 14 -225.24650 1.495 15 270.26506 40.000 SiO 2 16 -212.42840 44.058 17 -136.12200 12.000 SiO 2 18 300.22202 20 19 -209.22265 -20.000 Reflective surface M1 20 300.22202 -12.000 SiO 2 21 -136.12200 -44.058 22 -212.42840 -40.000 SiO 2 23 270.26506 -1.495 24 -225.24650 -15.000 SiO 2 25 -127.21946 -23.298 26 -747.74094 -20.000 SiO 2 27 953.44172 -37.191 28 159.40009 -11.810 SiO 2 29 -244.76524 -0.775 30 -262.00938 -40.000 SiO 2 31 502.34945 -216.095 32 2438.07789 -34.550 SiO 2 33 257.40324 -0.081 34 -351.03784 -40.000 SiO 2 35 663.60250 -3.000 36 0.00000 3.000 SiO 2 P Aspheric data K 1 A 0.8873 90809767e-8; B 0.169993245617e-13; C -0.191633424206e-19; -0.177186383906e-22 37 0.00000 267.300 Reflective surface M2 38 0.00000 -16.200 Reflective surface M3 39 0.00000 -290.000 40 -147.64203 -30.000 SiO 2 41 191842.92952 -32.911 42 0.00000 -5.000 S 43 0.00000 -20.000 SiO 2 Q 44 0.00000 -27.384 Aspherical data K 1 A 0.669401563554e-8; B 0.390599494004e-12; C 0.312995771257e-16; D -0.592108763547e-20 45 -135.93921 -26.306 SiO 2 46 -499.74670 -4.092 47 -107.66763 -43.000 SiO 2 48 -64.44984 -2.000 49 -66.18404 -30.000 SiO 2 50 -574.11841 -0.073 51 -114.99848 -29.315 SiO 2 52 252.71212 -15.000 53 0.00000 W As can be seen from FIG. In addition, the effective diameter of some lenses is 22
Other lens effective diameters are as small as 150 or less, and the object-image distance is as small as 790. Further, despite the downsizing of the effective diameter of the lens and the entire optical system, the number of lenses used is almost the same as that of the conventional optical system.

【0022】,また、図6は、本実施例における反射屈
折光学系の横収差図であり、図7は非点収差図及び歪曲
収差図である。これらより、紫外線エキシマレーザーの
248nmの単波長における、球面収差、コマ収差、非
点収差、歪曲収差もほぼ無収差に近い状態まで良好に補
正された優れた性能の光学系を提供していることが分か
る。
FIG. 6 is a lateral aberration diagram of the catadioptric optical system in this embodiment, and FIG. 7 is an astigmatism diagram and a distortion diagram. As a result, an optical system with excellent performance in which spherical aberration, coma, astigmatism, and distortion at a single wavelength of 248 nm of an ultraviolet excimer laser are satisfactorily corrected to almost no aberration is provided. I understand.

【0023】[0023]

【発明の効果】以上に示した様に、本発明では、中間像
Cの近傍に第1非球面部材Pを配置し、凹面鏡M1付近
或いは開口絞りS付近に第2非球面部材Pを配置する
か、若しくは凹面鏡を非球面に形成することにより、レ
ンズ枚数が従来例と同程度であるにもかかわらず、小型
であり、結像性能に優れた反射屈折光学系を提供するこ
とができる。
As described above, in the present invention, the first aspherical member P is arranged near the intermediate image C, and the second aspherical member P is arranged near the concave mirror M1 or near the aperture stop S. Alternatively, by forming the concave mirror as an aspherical surface, it is possible to provide a catadioptric optical system which is small in size and excellent in image forming performance, although the number of lenses is almost the same as that of the conventional example.

【0024】このように本発明によれば、最小の非球面
要素を使いながら、最大の効果を得ることができるの。
もちろん、さらに非球面を追加して使用することによ
り、さらに小型で、レンズ枚数の少ない光学系も可能で
ある。
As described above, according to the present invention, the maximum effect can be obtained while using the minimum aspherical element.
Of course, by using an additional aspherical surface, an optical system with a smaller size and a smaller number of lenses can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】 図2は、第1実施例の反射屈折光学系の光路
図である。
FIG. 2 is an optical path diagram of the catadioptric optical system of the first embodiment.

【図3】 図3は、第1実施例の横収差図である。FIG. 3 is a lateral aberration diagram of the first example.

【図4】 図4は、第1実施例の像面湾曲図及び歪曲収
差図である。
FIG. 4 is a diagram illustrating a field curvature and a distortion diagram according to the first embodiment.

【図5】 図5は、第2実施例の反射屈折光学系の光路
図である。
FIG. 5 is an optical path diagram of a catadioptric optical system according to a second embodiment.

【図6】 図6は、第2実施例の横収差図である。FIG. 6 is a lateral aberration diagram of the second embodiment.

【図7】 図7は、第2実施例の像面湾曲図及び歪曲収
差図である。
FIG. 7 shows a field curvature diagram and a distortion diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

R 第1面 A 第1結像光学系 A11 往路光学系 A12 往復光学系 M1 凹面鏡 M2 第2反射面 M3 第3反射面 C 中間像 B 第2結像光学系 S 開口絞り W 第2面 P 第1非球面部材 Q 第2非球面部材 R first surface A first imaging optical system A11 forward optical system A12 reciprocating optical system M1 concave mirror M2 second reflection surface M3 third reflection surface C intermediate image B second imaging optical system S aperture stop W second surface P 1 Aspherical member Q 2nd aspherical member

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】凹面鏡を有する第1結像光学系によって第
1面の中間像を形成し、開口絞りを有する第2結像光学
系によって前記中間像の像を第2面上に形成する反射屈
折光学系において、 前記中間像の近傍に第1非球面部材を配置し、 前記凹面鏡付近或いは前記開口絞り付近に第2非球面部
材を配置するか、若しくは前記凹面鏡を非球面に形成す
ることを特徴とする反射屈折光学系。
1. A reflection for forming an intermediate image on a first surface by a first imaging optical system having a concave mirror and forming an image of the intermediate image on a second surface by a second imaging optical system having an aperture stop. In the refractive optical system, a first aspherical member is arranged near the intermediate image, and a second aspherical member is arranged near the concave mirror or near the aperture stop, or the concave mirror is formed as an aspherical surface. Characteristic catadioptric system.
【請求項2】前記第1結像光学系は、前記凹面鏡への入
射光が通過するのみの往路光学系と、 前記凹面鏡を含み、前記凹面鏡への入射光と前記凹面鏡
からの反射光との双方が通過する往復光学系と、からな
ることを特徴とする請求項1記載の反射屈折光学系。
2. The optical system according to claim 1, wherein the first imaging optical system includes an outward optical system that only allows the light incident on the concave mirror to pass therethrough, and includes the concave mirror, wherein the light incident on the concave mirror and the light reflected from the concave mirror are combined. 2. A catadioptric optical system according to claim 1, comprising a reciprocating optical system through which both pass.
【請求項3】前記往路光学系は、負屈折力であることを
特徴とする請求項2記載の反射屈折光学系。
3. The catadioptric optical system according to claim 2, wherein said outward optical system has a negative refractive power.
【請求項4】前記第1非球面部材の非球面は、平面上に
形成され、 前記第2非球面部材の非球面は、平面上に形成されるこ
とを特徴とする請求項1乃至3記載の反射屈折光学系。
4. The aspherical surface of the first aspherical member is formed on a plane, and the aspherical surface of the second aspherical member is formed on a plane. Catadioptric system.
【請求項5】前記第1非球面部材は、平行平面板又はプ
リズムであり、 前記第2非球面部材は、平行平面板であることを特徴と
する請求項1乃至4記載の反射屈折光学系。
5. The catadioptric optical system according to claim 1, wherein the first aspherical member is a plane parallel plate or a prism, and the second aspherical member is a plane parallel plate. .
【請求項6】前記中間像が形成される位置又はその近傍
に、光路を偏向させるための第2反射面を設けたことを
特徴とする請求項1乃至5記載の反射屈折光学系。
6. The catadioptric optical system according to claim 1, further comprising a second reflecting surface for deflecting an optical path at or near a position where said intermediate image is formed.
【請求項7】前記第2反射面と前記第2結像光学系との
間に、光路を偏向させるための第3反射面を設け、前記
第1面と前記第2面とが平行に配置されることを特徴と
する請求項6記載の反射屈折光学系。
7. A third reflecting surface for deflecting an optical path is provided between the second reflecting surface and the second imaging optical system, and the first surface and the second surface are arranged in parallel. 7. The catadioptric optical system according to claim 6, wherein
【請求項8】前記第1非球面部材の非球面は、回転対称
非球面、トーリック非球面、又は完全非対称非球面であ
ることを特徴とする請求項1乃至7記載の反射屈折光学
系。
8. The catadioptric system according to claim 1, wherein the aspherical surface of the first aspherical member is a rotationally symmetric aspherical surface, a toric aspherical surface, or a completely asymmetrical aspherical surface.
【請求項9】前記第2非球面部材の非球面は、回転対称
非球面であることを特徴とする請求項1乃至8記載の反
射屈折光学系。
9. The catadioptric optical system according to claim 1, wherein the aspherical surface of said second aspherical member is a rotationally symmetric aspherical surface.
JP9083151A 1997-04-01 1997-04-01 Cata-dioptric system Pending JPH10284365A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9083151A JPH10284365A (en) 1997-04-01 1997-04-01 Cata-dioptric system
US09/052,481 US5969882A (en) 1997-04-01 1998-03-31 Catadioptric optical system
DE69806667T DE69806667T2 (en) 1997-04-01 1998-04-01 Catadioptric optical system
EP98105955A EP0869383B1 (en) 1997-04-01 1998-04-01 Catadioptric optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9083151A JPH10284365A (en) 1997-04-01 1997-04-01 Cata-dioptric system

Publications (1)

Publication Number Publication Date
JPH10284365A true JPH10284365A (en) 1998-10-23

Family

ID=13794239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9083151A Pending JPH10284365A (en) 1997-04-01 1997-04-01 Cata-dioptric system

Country Status (1)

Country Link
JP (1) JPH10284365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221950A (en) * 1999-12-29 2001-08-17 Carl Zeiss Stiftung Trading As Carl Zeiss Projection exposure lens having aspheric element
US6707616B1 (en) 1998-04-07 2004-03-16 Nikon Corporation Projection exposure apparatus, projection exposure method and catadioptric optical system
JP2007013179A (en) * 2005-07-01 2007-01-18 Carl Zeiss Smt Ag Method of correcting lithography projection objective, and the objective
EP1191378A4 (en) * 2000-03-03 2009-11-04 Nikon Corp Reflection/refraction optical system and projection exposure apparatus comprising the optical system
KR100932319B1 (en) * 2000-07-10 2009-12-16 가부시키가이샤 니콘 An imaging optical system, an exposure apparatus provided with the imaging optical system, the microdevice manufacturing method using this exposure apparatus, and the exposure method using the imaging optical system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707616B1 (en) 1998-04-07 2004-03-16 Nikon Corporation Projection exposure apparatus, projection exposure method and catadioptric optical system
JP2001221950A (en) * 1999-12-29 2001-08-17 Carl Zeiss Stiftung Trading As Carl Zeiss Projection exposure lens having aspheric element
EP1191378A4 (en) * 2000-03-03 2009-11-04 Nikon Corp Reflection/refraction optical system and projection exposure apparatus comprising the optical system
KR100932319B1 (en) * 2000-07-10 2009-12-16 가부시키가이샤 니콘 An imaging optical system, an exposure apparatus provided with the imaging optical system, the microdevice manufacturing method using this exposure apparatus, and the exposure method using the imaging optical system
JP2007013179A (en) * 2005-07-01 2007-01-18 Carl Zeiss Smt Ag Method of correcting lithography projection objective, and the objective

Similar Documents

Publication Publication Date Title
US6995918B2 (en) Projection optical system and projection exposure apparatus
USRE38421E1 (en) Exposure apparatus having catadioptric projection optical system
EP0736789B1 (en) Catadioptric optical system and exposure apparatus having the same
JP3747951B2 (en) Catadioptric optics
US6665126B2 (en) Projection exposure lens with aspheric elements
US4747678A (en) Optical relay system with magnification
US20030021040A1 (en) Catadioptric reduction lens
US6118596A (en) Catadioptric reduction projection optical system and method
EP0869383A2 (en) Catadioptric optical system
JPH103039A (en) Reflective/refractive optical system
JPH08171054A (en) Reflection refraction optical system
JPH08211294A (en) Projection exposing device
JP2001027727A (en) Reflective and refractive optical system and projection exposure device equipped with that optical system
JPH08179204A (en) Projection optical system and projection aligner
JPH07140384A (en) Projection optical system and projection aligner
JPH07140385A (en) Projection optical system and projection aligner
JP2001343589A (en) Projection optical system, projection exposure device by the same, manufacturing method of devices
JPH103041A (en) Catadioptric reduction optical system
US6069749A (en) Catadioptric reduction optical system
JP2001154094A (en) Catadioptric objective with physical beam splitter
JPH11326767A (en) Cata-dioptric reduction system
JPH10284365A (en) Cata-dioptric system
JP2005512151A (en) Catadioptric reduction objective lens
JPH1010429A (en) Double image-formation optical system
JPH1010430A (en) Double image-formation optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911