JPH10284130A - Semiconductor substrate mounting type secondary battery - Google Patents
Semiconductor substrate mounting type secondary batteryInfo
- Publication number
- JPH10284130A JPH10284130A JP9102625A JP10262597A JPH10284130A JP H10284130 A JPH10284130 A JP H10284130A JP 9102625 A JP9102625 A JP 9102625A JP 10262597 A JP10262597 A JP 10262597A JP H10284130 A JPH10284130 A JP H10284130A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- substrate
- secondary battery
- thin
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、基板搭載型の二次
電池に関し、特に、小型化・軽量化に好適とされ電極に
リチウム金属を用いない、好ましくは半導体基板上に搭
載される基板搭載型の二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate-mounted secondary battery, and more particularly to a substrate-mounted secondary battery which is suitable for miniaturization and weight reduction and does not use lithium metal for electrodes, preferably mounted on a semiconductor substrate. Type secondary battery.
【0002】[0002]
【従来の技術】現在、電子機器のダウンサイジング(縮
小化)が急速に進んでいる。例えば半導体チップのよう
に劇的に縮小化が進んでいる分野もある一方で、電源部
のように、遅々として縮小化が進まない分野もある。昨
今では、電子機器において、電源部の大きさが、その機
器の容積の大部分を占めることになる、というようなこ
ともある。2. Description of the Related Art At present, downsizing of electronic equipment is rapidly progressing. For example, in some fields such as a semiconductor chip, the reduction is dramatically progressing, while in other fields such as a power supply section, the reduction is not progressing slowly. In recent years, in electronic devices, the size of the power supply unit may occupy most of the volume of the device.
【0003】しかし、リチウム二次電池の実用化は、一
気に、電源の性能を飛躍的にアップさせた。リチウム二
次電池は、これまでの主力であった、ニッカド電池など
と比較すると、理論的には数倍の充放電容量の電池が、
従来の大きさで実現し、メモリ効果などの弊害もない。However, the practical use of lithium secondary batteries has dramatically improved the performance of power supplies. Lithium rechargeable batteries are theoretically several times more chargeable and dischargeable than nickel-cadmium batteries, etc.
It is realized with a conventional size, and has no adverse effects such as a memory effect.
【0004】しかしながら、従来の技術では、正電極お
よび負電極を、金属片または金属箔としているため、サ
イズの縮小化にも限界があった。However, in the prior art, since the positive electrode and the negative electrode are made of metal pieces or metal foils, there is a limit in reducing the size.
【0005】また、負電極にリチウム金属そのものを使
用するものもあり、リチウム金属が有害物質であるた
め、環境破壊についても懸念されてきた。[0005] In some cases, lithium metal itself is used for the negative electrode. Since lithium metal is a harmful substance, concern has been raised about environmental destruction.
【0006】例えば特開平6−260168号公報に
は、負電極と集電体との密着性能を向上させることによ
り接着剤量を減少させ、高率放電特性が優れたリチウム
二次電池を提供することを目的として、負電極の集電体
がリチウムと合金を形成しない金属もしくは合金よりな
る金属箔であり、この金属箔は厚さ50μm以下の電解
金属箔で、金属箔の両面に凹凸を形成したリチウム二次
電池が提案されている。For example, Japanese Patent Application Laid-Open No. Hei 6-260168 discloses a lithium secondary battery having an excellent high-rate discharge characteristic in which the amount of adhesive is reduced by improving the adhesion performance between a negative electrode and a current collector. For the purpose, the current collector of the negative electrode is a metal foil made of a metal or an alloy that does not form an alloy with lithium, and this metal foil is an electrolytic metal foil having a thickness of 50 μm or less, and forms irregularities on both surfaces of the metal foil. Lithium secondary batteries have been proposed.
【0007】[0007]
【発明が解決しようとする課題】上記したように、従来
のリチウム二次電池においては、電極に、金属片または
金属箔を用いており、また場合によっては、リチウム金
属を電極に用いている。As described above, in a conventional lithium secondary battery, a metal piece or a metal foil is used for an electrode, and in some cases, lithium metal is used for an electrode.
【0008】そして、電極に金属片もしくは箔を用いる
場合、ある程度の厚みが無ければ、リチウム二次電池を
構成できないことから、電池の縮小化を促進できない、
という問題点を有している。When a metal piece or foil is used for an electrode, a lithium secondary battery cannot be constructed unless it has a certain thickness, so that the battery cannot be reduced in size.
There is a problem that.
【0009】また、有害物質であるリチウム金属を、大
量に使用しなければならないため、環境に悪影響を与え
たり、人体に害をおよぼす可能性もある。[0009] Further, since a large amount of lithium metal, which is a harmful substance, must be used, there is a possibility of adversely affecting the environment or harming the human body.
【0010】したがって、本発明は、上記問題点に鑑み
てなされたものであって、その目的は、リチウム二次電
池の小型及び軽量化を図るリチウム二次電池を提供する
ことにある。また本発明は、電極材料としてリチウム金
属を使用せず環境へ及ぼす影響を抑止低減するようにし
たリチウム二次電池を提供することも、その目的として
いる。[0010] Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery capable of reducing the size and weight of the lithium secondary battery. Another object of the present invention is to provide a lithium secondary battery that does not use lithium metal as an electrode material and suppresses and reduces the effect on the environment.
【0011】[0011]
【課題を解決するための手段】前記目的を達成するた
め、本発明の半導体基板搭載型の二次電池は、半導体基
板上に、薄膜化した電極と固体電解質とを有する、こと
を特徴とする。In order to achieve the above object, a semiconductor substrate-mounted secondary battery according to the present invention is characterized in that a thinned electrode and a solid electrolyte are provided on a semiconductor substrate. .
【0012】本発明は、半導体基板上に形成される負電
極及び正電極が、好ましくは遷移金属酸化物などよりな
り、リチウム金属片を用いることなく、リチウム二次電
池を構成した、ことを特徴とする。The present invention is characterized in that the negative electrode and the positive electrode formed on the semiconductor substrate are preferably made of a transition metal oxide or the like, and constitute a lithium secondary battery without using a lithium metal piece. And
【0013】また、本発明は、基板上に、第1薄膜電
極、固体電解質、及び第2薄膜電極をこの順に積層して
なることを特徴とする。Further, the present invention is characterized in that a first thin film electrode, a solid electrolyte, and a second thin film electrode are laminated on a substrate in this order.
【0014】さらに、本発明は、基板上に、第1電極配
線、第1薄膜電極、固体電解質、及び第2薄膜電極、及
び第2電極配線をこの順に積層してなることを特徴とす
る。Further, the present invention is characterized in that a first electrode wiring, a first thin film electrode, a solid electrolyte, a second thin film electrode, and a second electrode wiring are laminated in this order on a substrate.
【0015】本発明の基板搭載型の二次電池は、基板上
に設けられた絶縁膜の上に第1、第2電極配線を備え、
前記第1、第2電極配線上にそれぞれ第1、第2薄膜電
極を略同一高さに配設し、前記第1薄膜電極、第2薄膜
電極及びその間隙を覆うように固体電解質を備えたこと
を特徴とする。A substrate-mounted secondary battery according to the present invention includes first and second electrode wirings on an insulating film provided on a substrate,
First and second thin-film electrodes are disposed at substantially the same height on the first and second electrode wirings, respectively, and a solid electrolyte is provided so as to cover the first and second thin-film electrodes and a gap therebetween. It is characterized by the following.
【0016】また、本発明は、前記基板が、半導体基板
からなることを特徴とする。Further, the present invention is characterized in that the substrate comprises a semiconductor substrate.
【0017】さらに、本発明は、あらかじめ前記第1薄
膜電極にリチウムイオンを含むようにして構成されてい
る、ことを特徴とする。Further, the present invention is characterized in that the first thin-film electrode is configured to contain lithium ions in advance.
【0018】そして、本発明は、前記第1薄膜電極及
び、第2薄膜電極が遷移金属酸化物よりなる、ことを特
徴とする。Further, the present invention is characterized in that the first thin-film electrode and the second thin-film electrode are made of a transition metal oxide.
【0019】[発明の概要]本発明は、電極および電解
質をスパッタリング法などで薄膜化し、構成物を可能な
限り薄くして、リチウム二次電池の小型・軽量化を図っ
たものである。また、電極材料としてリチウム金属を使
用しないことで、環境への悪影響を極限まで抑え、環境
保全を実現している。本発明によれば、これまでのリチ
ウム二次電池と比較して、大幅な小型・軽量が図られて
いる。より具体的には、電池を構成する、正極、負極、
電解質をスパッタリング法などで薄膜化して、ミクロン
オーダの厚さの電池を作成することができる。また、有
害物質であるリチウムの使用量を極限まで減少でき、破
壊時の人体への影響や環境への影響が微少な電池を実現
できる。さらに、半導体基板上に電池を作成でき、チッ
プ外部に設けられていた電源部を不要とし、電子機器の
特段の小型・縮小化を達成している。[Summary of the Invention] In the present invention, an electrode and an electrolyte are thinned by a sputtering method or the like, and the constituents are made as thin as possible to reduce the size and weight of the lithium secondary battery. In addition, by not using lithium metal as an electrode material, adverse effects on the environment are suppressed to the utmost, thereby realizing environmental conservation. According to the present invention, a significant reduction in size and weight is achieved as compared with conventional lithium secondary batteries. More specifically, a positive electrode, a negative electrode,
By thinning the electrolyte by a sputtering method or the like, a battery having a thickness on the order of microns can be produced. In addition, the amount of lithium, which is a harmful substance, can be reduced to the utmost limit, and a battery having a minimal effect on the human body and an environment when destroyed can be realized. Furthermore, a battery can be formed on a semiconductor substrate, and a power supply unit provided outside the chip is not required, thereby achieving a particularly small and small electronic device.
【0020】[0020]
【発明の実施の形態】次に、本発明の実施の形態につい
て、図面を参照して詳細に説明する。Next, an embodiment of the present invention will be described in detail with reference to the drawings.
【0021】図1は、本発明の第1の実施の形態の構成
を示す平面図である。また、図2は、図1のX−X線の
断面図である。図1及び図2を参照すると、この実施の
形態は、シリコン基板1と、負極(負電極)2、固体電
解質3、正極(正電極)4、及び配線用電極5を備えて
構成されている。FIG. 1 is a plan view showing the configuration of the first embodiment of the present invention. FIG. 2 is a sectional view taken along line XX of FIG. Referring to FIGS. 1 and 2, this embodiment includes a silicon substrate 1, a negative electrode (negative electrode) 2, a solid electrolyte 3, a positive electrode (positive electrode) 4, and a wiring electrode 5. .
【0022】半導体基板1はP型、N型のどちらのタイ
プの基板であってもよく、基板中の不純物濃度や面方位
には特に依存しない。また、基板としては、電流が流れ
て、リチウムと合金化しない部材であれば、半導体基板
以外の部材を用いることも可能である。The semiconductor substrate 1 may be a P-type or N-type substrate, and does not particularly depend on the impurity concentration or plane orientation in the substrate. Further, as the substrate, a member other than the semiconductor substrate may be used as long as a current flows and does not alloy with lithium.
【0023】負極2は、薄膜化が可能であり、リチウム
二次電池の電極材料として用いられる、部材であれば、
この実施の形態において、その部材は特に限定されな
い。この電極材料の薄膜化は、スパッタリング法や電子
ビーム蒸着法、加熱蒸着法などにより成膜することで実
現される。The negative electrode 2 can be made into a thin film, and if it is a member used as an electrode material of a lithium secondary battery,
In this embodiment, the members are not particularly limited. This thinning of the electrode material is realized by forming a film by a sputtering method, an electron beam evaporation method, a heating evaporation method, or the like.
【0024】予め負極2にリチウムを注入する方法とし
ては、イオン注入法、液体電解質とリチウム金属電極と
を使用して一度だけ放電を行う方法、リチウムを最初か
ら含んでいる電極物質を使用する方法などがある。As a method of injecting lithium into the negative electrode 2 in advance, there are an ion implantation method, a method of performing discharge only once using a liquid electrolyte and a lithium metal electrode, and a method of using an electrode material containing lithium from the beginning. and so on.
【0025】固体電解質3は、薄膜化が可能であり、リ
チウムを自由に移動させることができる、固体電解質で
あれば、この実施の形態において、その部材は特に限定
されない。固体電解質3の薄膜化には、スパッタリング
法や電子ビーム蒸着法、加熱蒸着法、スピンコート法な
どを用いることができる。In the present embodiment, the solid electrolyte 3 is not particularly limited as long as it can be formed into a thin film and can move lithium freely. For thinning the solid electrolyte 3, a sputtering method, an electron beam evaporation method, a heating evaporation method, a spin coating method, or the like can be used.
【0026】正極4は、薄膜化が可能であり、リチウム
二次電池の電極材料として用いられる部材であれば、こ
の実施の形態において、その部材は特に限定されない。
この電極材料の薄膜化は、スパッタリング法や電子ビー
ム蒸着法、加熱蒸着法などに成膜することで実現され
る。In the present embodiment, the material of the positive electrode 4 is not particularly limited as long as it can be made thin and is used as an electrode material of a lithium secondary battery.
The thinning of the electrode material is realized by forming a film by a sputtering method, an electron beam evaporation method, a heating evaporation method, or the like.
【0027】配線用電極5a、5bは、薄膜化が可能で
あり、抵抗が低く、シリコン基板および正極4を構成す
る物質とオーム性接触がとれる部材からなる。これらの
電極材料の薄膜化には、スパッタリング法や電子ビーム
蒸着法、加熱蒸着法などが適用できる。The wiring electrodes 5a and 5b can be made thin, have low resistance, and can be in ohmic contact with the material constituting the silicon substrate and the positive electrode 4. For the thinning of these electrode materials, a sputtering method, an electron beam evaporation method, a heating evaporation method, or the like can be applied.
【0028】負極2、正極4の膜厚は、薄すぎると充放
電容量の減少してしまい、逆に、厚すぎるとサイズが大
きくなってしまうという理由で、好ましくは0.2〜
0.5ミクロン程度の膜厚とされる。If the film thickness of the negative electrode 2 and the positive electrode 4 is too small, the charge / discharge capacity is reduced, and if the film thickness is too large, the size is preferably 0.2 to 0.2.
The thickness is about 0.5 μm.
【0029】図3は、本発明の第2の実施の形態の構成
を示す断面図である。FIG. 3 is a sectional view showing the configuration of the second embodiment of the present invention.
【0030】図3を参照して、この実施の形態は、前記
第1の実施の形態と比較すると、配線電極5bが負極2
とシリコン基板1との間にまで延在している。この実施
の形態の場合、シリコン基板1には、電流が流れる必要
が無いので、基板1として、半導体物質に限らず、絶縁
物などを用いてもよい。Referring to FIG. 3, this embodiment is different from the first embodiment in that wiring electrode 5b is connected to negative electrode 2a.
And the silicon substrate 1. In this embodiment, since there is no need for a current to flow through the silicon substrate 1, the substrate 1 is not limited to a semiconductor material, but may be an insulator or the like.
【0031】図4は、本発明の第3の実施の形態の構成
を示す断面図である。FIG. 4 is a sectional view showing the structure of the third embodiment of the present invention.
【0032】図4を参照して、この実施の形態において
は、シリコン基板1上に絶縁膜6を形成し、その上に配
線電極5a、5bを形成し、正極4と負極2をそれぞれ
配線電極5a、5b上に並べて配置している。すなわ
ち、前記実施の形態のように正極4と負極2は積層され
ていない。このような配置としたことにより、電池自体
の厚さをより薄くすることが可能である。また、この実
施の形態の場合、基板を絶縁物に変更することも可能で
ある。Referring to FIG. 4, in this embodiment, an insulating film 6 is formed on a silicon substrate 1, wiring electrodes 5a and 5b are formed thereon, and a positive electrode 4 and a negative electrode 2 are connected to each other. They are arranged side by side on 5a and 5b. That is, the positive electrode 4 and the negative electrode 2 are not stacked as in the above embodiment. With such an arrangement, the thickness of the battery itself can be further reduced. Further, in the case of this embodiment, the substrate can be changed to an insulator.
【0033】[0033]
【実施例】次に、図1、及び図2を参照して、本発明の
実施例の動作について説明する。Next, the operation of the embodiment of the present invention will be described with reference to FIGS.
【0034】放電時、負極2の内部にあるリチウムは、
リチウムイオンと電子に分かれ、リチウムイオンは固体
電解質3に、電子は外部回路に放出される。At the time of discharging, the lithium inside the negative electrode 2 is:
Separated into lithium ions and electrons, the lithium ions are emitted to the solid electrolyte 3 and the electrons are emitted to an external circuit.
【0035】放出されたリチウムイオンは、固体電解質
3を通って、正極4に注入される。また、放出された電
子は外部回路を通って、正極4に注入される。結果とし
て、正極4には、リチウムイオンと電子が注入され、正
極4の内部にはリチウムが蓄積されていく。負極2と正
極4の電位が同一になると放電は止まる。The released lithium ions pass through the solid electrolyte 3 and are injected into the positive electrode 4. The emitted electrons are injected into the positive electrode 4 through an external circuit. As a result, lithium ions and electrons are injected into the positive electrode 4, and lithium is accumulated inside the positive electrode 4. When the potentials of the negative electrode 2 and the positive electrode 4 become the same, the discharge stops.
【0036】充電時には、外部電源から電位を印加す
る。その際、正極に−(マイナス)の電位を印加し、負
極には+(プラス)の電位を印加する。すると、放電時
とは逆にリチウムは移動する。正極4に含まれていたリ
チウムは、リチウムイオンと電子に分かれ、リチウムイ
オンは固体電解質3を通って、負極2に注入され、電子
は外部電源を通って、負極2に注入され、負極2の内部
にリチウムが蓄積されていく。At the time of charging, a potential is applied from an external power supply. At this time, a negative (−) potential is applied to the positive electrode, and a positive (+) potential is applied to the negative electrode. Then, lithium moves in a manner opposite to that at the time of discharging. The lithium contained in the positive electrode 4 is separated into lithium ions and electrons, and the lithium ions pass through the solid electrolyte 3 and are injected into the negative electrode 2. The electrons pass through an external power supply and are injected into the negative electrode 2. Lithium is accumulated inside.
【0037】負極2に、それ以上リチウムが蓄積できな
くなるか、正極4から、全てのリチウムイオンが放出さ
れると、充電は終了する。When no more lithium can be stored in the negative electrode 2 or all lithium ions are released from the positive electrode 4, the charging is completed.
【0038】このような動作を行う電池の一実施例とし
て、次のようなリチウム二次電池が考えられる。As an example of a battery performing such an operation, the following lithium secondary battery can be considered.
【0039】正極または負極材料として好ましくは遷移
金属酸化物を用いる。例えば、酸化ニオブや酸化コバル
ト、酸化バナジウムなどが挙げられる。いずれの材料
も、リチウム二次電池の電極材料になり得るが、ここで
は、スパッタリング法で成膜した五酸化バナジウムを用
いる。五酸化バナジウムV2O5は、遷移金属酸化物の中
でも、初期放電電位が約4Vと比較的高く、放電時間も
優れている。この五酸化バナジウムを、負極2と正極4
の電極材料として用いる。Preferably, a transition metal oxide is used as a positive electrode or negative electrode material. For example, niobium oxide, cobalt oxide, vanadium oxide, and the like can be given. Any of the materials can be used as an electrode material of a lithium secondary battery. Here, vanadium pentoxide formed by a sputtering method is used. Vanadium pentoxide V 2 O 5 has a relatively high initial discharge potential of about 4 V and excellent discharge time among transition metal oxides. The vanadium pentoxide was used for the negative electrode 2 and the positive electrode 4
To be used as an electrode material.
【0040】固体電解質3には、比較的高温でなくて
も、電解質として作用するリン酸化リチウムを用いる。As the solid electrolyte 3, lithium phosphate which acts as an electrolyte even at a relatively low temperature is used.
【0041】配線電極5aおよび5bの材料としては、
導電性の良好な金属を用いるのが適切であり、例として
は、金やアルミニウムなどが適切であるが、ここではア
ルミニウムを用いる。As the material of the wiring electrodes 5a and 5b,
It is appropriate to use a metal having good conductivity, such as gold or aluminum. For example, aluminum is used here.
【0042】具体的な製法としては、はじめに、シリコ
ン基板1上に、電極5bとして、アルミニウムをスパッ
タリング法で例えば膜厚200nmの薄膜を成膜する。As a specific production method, first, a thin film having a thickness of, for example, 200 nm is formed on the silicon substrate 1 as the electrode 5b by sputtering aluminum.
【0043】次に、シリコン基板上に負極2として、五
酸化バナジウムをスパッタリング法で例えば膜厚300
nmの薄膜を成膜する。Next, vanadium pentoxide was formed as a negative electrode 2 on a silicon substrate by sputtering to a thickness of, for example, 300 nm.
A thin film of nm is formed.
【0044】その後、予め、負極2にリチウムを注入す
る。その方法としては、リチウムのイオン注入やリチウ
ムを構成物質として含んだ酸化バナジウムの薄膜化、リ
チウムイオンによるスパッタリング、リチウムと五酸化
バナジウムの同時成膜、充放電作用によるリチウムの挿
入などが好ましい。Thereafter, lithium is injected into the negative electrode 2 in advance. Preferable examples of the method include lithium ion implantation, thinning of vanadium oxide containing lithium as a constituent substance, sputtering with lithium ions, simultaneous film formation of lithium and vanadium pentoxide, and insertion of lithium by a charge / discharge action.
【0045】本実施例では、充放電作用によるリチウム
の挿入による方法を用いている。これは、液体の固体電
解質とリチウム金属片を用いて、一般的なリチウム二次
電池を構成し、一度放電を行って、五酸化バナジウムに
リチウムを挿入する。In this embodiment, a method of inserting lithium by charge / discharge action is used. In this method, a general lithium secondary battery is formed using a liquid solid electrolyte and a lithium metal piece, and once discharged, lithium is inserted into vanadium pentoxide.
【0046】そして、負極2の上に固体電解質3とし
て、リン酸リチウムをスパッタリング法で、例えば膜厚
300nmの薄膜を成膜し、さらに、固体電解質3の上
に正極4として、五酸化バナジウムをスパッタリング法
で例えば膜厚300nmの薄膜を成膜する。Then, a thin film having a thickness of, for example, 300 nm is formed on the negative electrode 2 by sputtering lithium phosphate as the solid electrolyte 3, and further, vanadium pentoxide is formed on the solid electrolyte 3 as the positive electrode 4. A thin film having a thickness of, for example, 300 nm is formed by a sputtering method.
【0047】最後に、正極4の上に、配線電極5aを、
スパッタリング法で膜厚200nmの薄膜を成膜する。Finally, a wiring electrode 5 a is formed on the positive electrode 4.
A thin film having a thickness of 200 nm is formed by a sputtering method.
【0048】本実施例においては、このように、異種の
薄膜を積み重ねながら、作成していくが、その際、短絡
を防ぐため、上方の薄膜ほどサイズを小さくしていく。In this embodiment, the thin films of different types are formed while being stacked as described above. At this time, in order to prevent a short circuit, the size of the thin film on the upper side is reduced.
【0049】これで、シリコン基板1上の厚さが約12
00nm(1.2μm)の微少のリチウム二次電池がで
きる。Thus, the thickness on the silicon substrate 1 is about 12
A minute lithium secondary battery of 00 nm (1.2 μm) can be obtained.
【0050】[0050]
【発明の効果】以上説明したように、本発明によれば下
記記載の効果を奏する。As described above, according to the present invention, the following effects can be obtained.
【0051】(1)本発明の第1の効果は、半導体チッ
プに電源を実装することができる、ということである。
このため、従来半導体チップの外部に設けられていた電
源を、取り除くことができ、大幅なダウンサイジングを
可能としている。(1) A first effect of the present invention is that a power supply can be mounted on a semiconductor chip.
For this reason, the power supply conventionally provided outside the semiconductor chip can be removed, thereby enabling a significant downsizing.
【0052】その理由は、本発明においては、シリコン
基板上に電池を作成しているためである。The reason is that in the present invention, a battery is formed on a silicon substrate.
【0053】(2)本発明の第2の効果は、取り扱いが
容易である、ということである。(2) The second effect of the present invention is that handling is easy.
【0054】その理由は、本発明においては、電極の構
成物質に、リチウム金属を用いていないためである。The reason is that in the present invention, lithium metal is not used as a constituent material of the electrode.
【図1】本発明の第1の実施の形態を示す平面図であ
る。FIG. 1 is a plan view showing a first embodiment of the present invention.
【図2】図1をX−X線で切断したときの断面図であ
る。FIG. 2 is a cross-sectional view when FIG. 1 is cut along a line XX.
【図3】本発明の第2の実施の形態を示す断面図であ
る。FIG. 3 is a sectional view showing a second embodiment of the present invention.
【図4】本発明の第3の実施の形態を示す断面図であ
る。FIG. 4 is a sectional view showing a third embodiment of the present invention.
【符号の説明】 1 P型またはN型のシリコン基板 2 負極 3 固体電解質 4 正極 5a 配線用電極 5b 配線用電極 6 絶縁物[Description of Signs] 1 P-type or N-type silicon substrate 2 Negative electrode 3 Solid electrolyte 4 Positive electrode 5a Wiring electrode 5b Wiring electrode 6 Insulator
Claims (12)
解質とを有することを特徴とする半導体基板搭載型の二
次電池。1. A secondary battery mounted on a semiconductor substrate, comprising a thinned electrode and a solid electrolyte on a semiconductor substrate.
極が、好ましくは遷移金属酸化物などよりなり、リチウ
ム金属片を用いることなく、リチウム二次電池を構成し
た、ことを特徴とする半導体基板搭載型の二次電池。2. The method according to claim 1, wherein the negative electrode and the positive electrode formed on the semiconductor substrate are preferably made of a transition metal oxide or the like, and constitute a lithium secondary battery without using a lithium metal piece. Secondary battery mounted on a semiconductor substrate.
び第2薄膜電極をこの順に積層してなることを特徴とす
る基板搭載型の二次電池。3. A substrate-mounted secondary battery comprising a first thin-film electrode, a solid electrolyte, and a second thin-film electrode laminated in this order on a substrate.
固体電解質、及び第2薄膜電極、及び第2電極配線をこ
の順に積層してなることを特徴とする基板搭載型の二次
電池。4. A first electrode wiring, a first thin film electrode,
A substrate-mounted secondary battery comprising a solid electrolyte, a second thin-film electrode, and a second electrode wiring laminated in this order.
2電極配線を備え、前記第1、第2電極配線上にそれぞ
れ第1、第2薄膜電極を略同一高さに配設し、前記第1
薄膜電極、第2薄膜電極及びその間隙を覆うように固体
電解質を備えたことを特徴とする基板搭載型の二次電
池。5. A semiconductor device comprising: an insulating film provided on a substrate; and first and second electrode wirings provided on the insulating film, and first and second thin-film electrodes on the first and second electrode wirings, respectively, having substantially the same height. Arranging the first
A substrate-mounted secondary battery comprising a thin-film electrode, a second thin-film electrode, and a solid electrolyte so as to cover a gap therebetween.
徴とする請求項3記載の基板搭載型の二次電池。6. The substrate mounted secondary battery according to claim 3, wherein said substrate is made of a semiconductor substrate.
オンを含むようにして構成されている、ことを特徴とす
る請求項3〜6のいずれか一に記載の基板搭載型の二次
電池。7. The substrate-mounted secondary battery according to claim 3, wherein said first thin-film electrode is configured to contain lithium ions in advance.
移金属酸化物よりなる、ことを特徴とする請求項3〜7
のいずれか一に記載の基板搭載型の二次電池。8. The method according to claim 3, wherein said first thin film electrode and said second thin film electrode are made of a transition metal oxide.
The substrate-mounted secondary battery according to any one of the above.
ることを特徴とする請求項4または5記載の基板搭載型
の二次電池。9. The substrate mounted type secondary battery according to claim 4, wherein said substrate is made of a semiconductor or an insulating member.
前記第2薄膜電極上に第2電極配線を備え、前記第1、
第2電極配線間に起電力を得る、ことを特徴とする請求
項3記載の基板搭載型の二次電池。10. A semiconductor device comprising: the first electrode wiring on the substrate;
A second electrode wiring on the second thin-film electrode;
The substrate-mounted secondary battery according to claim 3, wherein an electromotive force is obtained between the second electrode wirings.
極、電極配線などが、下側の層よりも上の層の方が平面
形状の面積が順次小とされる、ことを特徴とする請求項
1〜10のいずれか一に記載の基板搭載型の二次電池。11. A thin film electrode, an electrode wiring and the like formed by laminating on the substrate, wherein the area of the planar shape is gradually reduced in the upper layer than in the lower layer. The substrate-mounted secondary battery according to any one of claims 1 to 10.
極、電極配線などが所定の膜厚、好ましくは略200〜
500nmで成膜される、ことを特徴とする請求項3記
載の基板搭載型の二次電池。12. A thin film electrode, an electrode wiring and the like which are sequentially laminated on the substrate have a predetermined film thickness, preferably approximately 200 to 200 nm.
The substrate-mounted secondary battery according to claim 3, wherein the secondary battery is formed to a thickness of 500 nm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09102625A JP3116857B2 (en) | 1997-04-04 | 1997-04-04 | Rechargeable battery mounted on semiconductor substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09102625A JP3116857B2 (en) | 1997-04-04 | 1997-04-04 | Rechargeable battery mounted on semiconductor substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10284130A true JPH10284130A (en) | 1998-10-23 |
JP3116857B2 JP3116857B2 (en) | 2000-12-11 |
Family
ID=14332432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09102625A Expired - Fee Related JP3116857B2 (en) | 1997-04-04 | 1997-04-04 | Rechargeable battery mounted on semiconductor substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3116857B2 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071832A1 (en) * | 2000-03-22 | 2001-09-27 | Sanyo Electric Co., Ltd. | Rechargeable battery using nonaqueous electrolyte |
JP2001313237A (en) * | 2000-04-25 | 2001-11-09 | Korea Advanced Inst Of Sci Technol | Thin film type super capacitor, method of manufacturing the same, and hybrid battery using the same |
WO2002089236A1 (en) * | 2001-04-24 | 2002-11-07 | Matsushita Electric Industrial Co., Ltd. | Secondary cell and production method thereof |
WO2003021705A1 (en) * | 2001-08-29 | 2003-03-13 | Matsushita Electric Industrial Co., Ltd. | Production method of lithuim secondary battery and production device therefor |
WO2003021706A1 (en) * | 2001-09-03 | 2003-03-13 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing electrochemical device |
US6828063B2 (en) | 2000-11-18 | 2004-12-07 | Samsung Sdi Co., Ltd. | Anode thin film for lithium secondary battery |
US7253494B2 (en) | 2003-04-04 | 2007-08-07 | Matsushita Electric Industrial Co., Ltd. | Battery mounted integrated circuit device having diffusion layers that prevent cations serving to charge and discharge battery from diffusing into the integrated circuit region |
WO2007135790A1 (en) | 2006-05-23 | 2007-11-29 | Incorporated National University Iwate University | Total solid rechargeable battery |
JP2008522401A (en) * | 2004-11-26 | 2008-06-26 | エヌエックスピー ビー ヴィ | Surface area modification method and electronic device |
JP2008226728A (en) * | 2007-03-14 | 2008-09-25 | Geomatec Co Ltd | Thin-film solid secondary battery and composite device equipped with the same |
JP2009509289A (en) * | 2005-06-15 | 2009-03-05 | インフィニット パワー ソリューションズ, インコーポレイテッド | Electrochemical device having a barrier layer protective substrate |
JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
JP2009513025A (en) * | 2005-12-05 | 2009-03-26 | インダストリー−アカデミック コーオペレーション ファンデーション キョンサン ナショナル ユニバーシティ | Silicon wafer for semiconductors with a built-in power supply device on the back of the wafer |
KR100898020B1 (en) | 2007-07-13 | 2009-05-19 | 고려대학교 산학협력단 | Secondary battery and semiconductor having same |
JP2010055764A (en) * | 2008-08-26 | 2010-03-11 | Seiko Epson Corp | Battery and its manufacturing method |
JP2010161097A (en) * | 2009-01-06 | 2010-07-22 | Seiko Instruments Inc | Electrochemical cell, and method of manufacturing the same |
WO2010090125A1 (en) | 2009-02-03 | 2010-08-12 | ソニー株式会社 | Solid state thin film lithium ion secondary battery and manufacturing method therefor |
WO2010090126A1 (en) | 2009-02-03 | 2010-08-12 | ソニー株式会社 | Solid state thin film lithium ion secondary battery and manufacturing method therefor |
JP2010182447A (en) * | 2009-02-03 | 2010-08-19 | Sony Corp | Solid-state thin film lithium ion secondary battery, and method of manufacturing the same |
JP2010245031A (en) * | 2009-03-20 | 2010-10-28 | Semiconductor Energy Lab Co Ltd | Power storage device, and manufacturing method thereof |
WO2011010552A1 (en) | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery |
JP2012520552A (en) * | 2009-03-16 | 2012-09-06 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Lithium micro battery and manufacturing method thereof |
JP2012523676A (en) * | 2009-04-13 | 2012-10-04 | アプライド マテリアルズ インコーポレイテッド | High power, high energy, and large area energy storage devices |
WO2013011568A1 (en) * | 2011-07-19 | 2013-01-24 | 株式会社日立製作所 | Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery |
JP2013229309A (en) * | 2012-03-26 | 2013-11-07 | Semiconductor Energy Lab Co Ltd | Power storage element, method for manufacturing the same, and power storage device |
JP2014011021A (en) * | 2012-06-29 | 2014-01-20 | Fujitsu Ltd | Secondary battery and manufacturing method thereof |
JP2017098530A (en) * | 2015-09-22 | 2017-06-01 | アナログ デバイスィズ インコーポレイテッドAnalog Devices, Inc. | Wafer-capped rechargeable power source |
US9768467B2 (en) | 2013-04-19 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and a method for fabricating the same |
WO2018189976A1 (en) * | 2017-04-14 | 2018-10-18 | 昭和電工株式会社 | Lithium ion secondary cell and method for manufacturing lithium ion secondary cell |
WO2019077825A1 (en) * | 2017-10-19 | 2019-04-25 | 昭和電工株式会社 | Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery |
CN110036501A (en) * | 2016-12-06 | 2019-07-19 | 株式会社村田制作所 | Secondary cell |
CN114583245A (en) * | 2020-11-30 | 2022-06-03 | 丰田自动车株式会社 | All-solid-state secondary battery |
WO2025004593A1 (en) * | 2023-06-28 | 2025-01-02 | パナソニックIpマネジメント株式会社 | Battery and battery manufacturing method |
-
1997
- 1997-04-04 JP JP09102625A patent/JP3116857B2/en not_active Expired - Fee Related
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001071832A1 (en) * | 2000-03-22 | 2001-09-27 | Sanyo Electric Co., Ltd. | Rechargeable battery using nonaqueous electrolyte |
JP2001313237A (en) * | 2000-04-25 | 2001-11-09 | Korea Advanced Inst Of Sci Technol | Thin film type super capacitor, method of manufacturing the same, and hybrid battery using the same |
US6828063B2 (en) | 2000-11-18 | 2004-12-07 | Samsung Sdi Co., Ltd. | Anode thin film for lithium secondary battery |
US7094500B2 (en) | 2001-04-24 | 2006-08-22 | Matsushita Electric Industrial Co., Ltd. | Secondary battery |
WO2002089236A1 (en) * | 2001-04-24 | 2002-11-07 | Matsushita Electric Industrial Co., Ltd. | Secondary cell and production method thereof |
KR100827911B1 (en) * | 2001-04-24 | 2008-05-07 | 마쯔시다덴기산교 가부시키가이샤 | Secondary Battery and Manufacturing Method |
WO2003021705A1 (en) * | 2001-08-29 | 2003-03-13 | Matsushita Electric Industrial Co., Ltd. | Production method of lithuim secondary battery and production device therefor |
CN1306643C (en) * | 2001-08-29 | 2007-03-21 | 松下电器产业株式会社 | Production method of lithuim secondary battery and production device therefor |
US8375568B2 (en) | 2001-08-29 | 2013-02-19 | Panasonic Corporation | Method for manufacturing lithium secondary battery and apparatus for manufacturing the same |
US7455702B2 (en) | 2001-08-29 | 2008-11-25 | Matsushita Electric Industrial Co., Ltd. | Production method of lithium secondary battery and production device therefor |
WO2003021706A1 (en) * | 2001-09-03 | 2003-03-13 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing electrochemical device |
US7425223B2 (en) | 2001-09-03 | 2008-09-16 | Matsushita Electric Industrial Co., Ltd. | Method for preparing electrochemical device with a layer structure |
US7253494B2 (en) | 2003-04-04 | 2007-08-07 | Matsushita Electric Industrial Co., Ltd. | Battery mounted integrated circuit device having diffusion layers that prevent cations serving to charge and discharge battery from diffusing into the integrated circuit region |
CN100358144C (en) * | 2003-04-04 | 2007-12-26 | 松下电器产业株式会社 | Battery-mounted integrated circuit device |
JP2008522401A (en) * | 2004-11-26 | 2008-06-26 | エヌエックスピー ビー ヴィ | Surface area modification method and electronic device |
JP2009509289A (en) * | 2005-06-15 | 2009-03-05 | インフィニット パワー ソリューションズ, インコーポレイテッド | Electrochemical device having a barrier layer protective substrate |
JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
JP2009513025A (en) * | 2005-12-05 | 2009-03-26 | インダストリー−アカデミック コーオペレーション ファンデーション キョンサン ナショナル ユニバーシティ | Silicon wafer for semiconductors with a built-in power supply device on the back of the wafer |
US8883347B2 (en) | 2006-05-23 | 2014-11-11 | Namics Corporation | All solid state secondary battery |
US9263727B2 (en) | 2006-05-23 | 2016-02-16 | Namics Corporation | All solid state secondary battery |
WO2007135790A1 (en) | 2006-05-23 | 2007-11-29 | Incorporated National University Iwate University | Total solid rechargeable battery |
JP2008226728A (en) * | 2007-03-14 | 2008-09-25 | Geomatec Co Ltd | Thin-film solid secondary battery and composite device equipped with the same |
KR100898020B1 (en) | 2007-07-13 | 2009-05-19 | 고려대학교 산학협력단 | Secondary battery and semiconductor having same |
JP2010055764A (en) * | 2008-08-26 | 2010-03-11 | Seiko Epson Corp | Battery and its manufacturing method |
JP2010161097A (en) * | 2009-01-06 | 2010-07-22 | Seiko Instruments Inc | Electrochemical cell, and method of manufacturing the same |
JP2010182447A (en) * | 2009-02-03 | 2010-08-19 | Sony Corp | Solid-state thin film lithium ion secondary battery, and method of manufacturing the same |
WO2010090126A1 (en) | 2009-02-03 | 2010-08-12 | ソニー株式会社 | Solid state thin film lithium ion secondary battery and manufacturing method therefor |
WO2010090125A1 (en) | 2009-02-03 | 2010-08-12 | ソニー株式会社 | Solid state thin film lithium ion secondary battery and manufacturing method therefor |
JP2012520552A (en) * | 2009-03-16 | 2012-09-06 | コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ | Lithium micro battery and manufacturing method thereof |
JP2010245031A (en) * | 2009-03-20 | 2010-10-28 | Semiconductor Energy Lab Co Ltd | Power storage device, and manufacturing method thereof |
US9590277B2 (en) | 2009-03-20 | 2017-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and manufacturing method thereof |
US9401525B2 (en) | 2009-03-20 | 2016-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and manufacturing method thereof |
JP2012523676A (en) * | 2009-04-13 | 2012-10-04 | アプライド マテリアルズ インコーポレイテッド | High power, high energy, and large area energy storage devices |
WO2011010552A1 (en) | 2009-07-22 | 2011-01-27 | 住友電気工業株式会社 | Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery |
WO2013011568A1 (en) * | 2011-07-19 | 2013-01-24 | 株式会社日立製作所 | Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery |
JPWO2013011568A1 (en) * | 2011-07-19 | 2015-02-23 | 株式会社日立製作所 | Electrode for ion secondary battery, method for producing electrode for ion secondary battery, lithium ion secondary battery, and magnesium ion secondary battery |
US11056516B2 (en) | 2012-03-26 | 2021-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Power storage element, manufacturing method thereof, and power storage device |
US11587959B2 (en) | 2012-03-26 | 2023-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Power storage element, manufacturing method thereof, and power storage device |
US9660298B2 (en) | 2012-03-26 | 2017-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Power storage element, manufacturing method thereof, and power storage device |
US9748287B2 (en) | 2012-03-26 | 2017-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Power storage element, manufacturing method thereof, and power storage device |
JP2013229309A (en) * | 2012-03-26 | 2013-11-07 | Semiconductor Energy Lab Co Ltd | Power storage element, method for manufacturing the same, and power storage device |
US10461103B2 (en) | 2012-03-26 | 2019-10-29 | Semiconductor Energy Laboratory Co., Ltd. | Power storage element, manufacturing method thereof, and power storage device |
JP2014011021A (en) * | 2012-06-29 | 2014-01-20 | Fujitsu Ltd | Secondary battery and manufacturing method thereof |
US9768467B2 (en) | 2013-04-19 | 2017-09-19 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and a method for fabricating the same |
US11923499B2 (en) | 2013-04-19 | 2024-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and a method for fabricating the same |
US11594752B2 (en) | 2013-04-19 | 2023-02-28 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and a method for fabricating the same |
US11005123B2 (en) | 2013-04-19 | 2021-05-11 | Semiconductor Energy Laboratory Co., Ltd. | Secondary battery and a method for fabricating the same |
JP2017098530A (en) * | 2015-09-22 | 2017-06-01 | アナログ デバイスィズ インコーポレイテッドAnalog Devices, Inc. | Wafer-capped rechargeable power source |
JP2018195585A (en) * | 2015-09-22 | 2018-12-06 | アナログ ディヴァイスィズ インク | Wafer-capped rechargeable power source |
CN110036501A (en) * | 2016-12-06 | 2019-07-19 | 株式会社村田制作所 | Secondary cell |
WO2018189976A1 (en) * | 2017-04-14 | 2018-10-18 | 昭和電工株式会社 | Lithium ion secondary cell and method for manufacturing lithium ion secondary cell |
WO2019077825A1 (en) * | 2017-10-19 | 2019-04-25 | 昭和電工株式会社 | Method for manufacturing lithium ion secondary battery, and lithium ion secondary battery |
JP2022086332A (en) * | 2020-11-30 | 2022-06-09 | トヨタ自動車株式会社 | All-solid-state secondary battery |
CN114583245A (en) * | 2020-11-30 | 2022-06-03 | 丰田自动车株式会社 | All-solid-state secondary battery |
CN114583245B (en) * | 2020-11-30 | 2024-04-02 | 丰田自动车株式会社 | All-solid-state secondary battery |
WO2025004593A1 (en) * | 2023-06-28 | 2025-01-02 | パナソニックIpマネジメント株式会社 | Battery and battery manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3116857B2 (en) | 2000-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3116857B2 (en) | Rechargeable battery mounted on semiconductor substrate | |
US7624499B2 (en) | Flexible circuit having an integrally formed battery | |
JP4437890B2 (en) | Solar cell composite thin film solid lithium ion secondary battery | |
US20040161640A1 (en) | Quick recharge energy storage device, in the form of thin films | |
JP2005063958A (en) | Thin-film solid lithium ion secondary battery and manufacturing method thereof | |
JP2004158222A (en) | Multilayer layer built battery | |
JPH11238528A (en) | Lithium secondary battery | |
KR102452328B1 (en) | Secondary battery and manufacturing method thereof | |
US8242590B2 (en) | Silicon wafer for semiconductor with powersupply system on the backside of wafer | |
JP4381176B2 (en) | Thin film solid secondary battery | |
JP2014517457A (en) | Architecture with storage and / or stacking of electrical energy generating elements with configurable electrical output and method of making such an architecture | |
JPH04233170A (en) | Capacitor integrated battery | |
JP2008140705A (en) | Manufacturing method of all-solid lithium secondary battery, and all-solid lithium secondary battery | |
KR100525828B1 (en) | A button cell type lithium battery and its manufacturing method | |
JPH0329131B2 (en) | ||
US7381495B2 (en) | DIY thin film battery | |
JPS6072170A (en) | Solid electrolyte battery | |
JPS5990360A (en) | Solid secondary battery | |
JP2024108327A (en) | All-solid-state battery and method for manufacturing the all-solid-state battery | |
US20230122858A1 (en) | Method of Embedding a Multi-Layer Lithium Ion Battery on a Flexible Printed Circuit Board | |
JPH0522349B2 (en) | ||
KR101480060B1 (en) | Battery pack | |
JPS5918576A (en) | Multipotential solid state battery | |
JP2552354B2 (en) | Sealed lead acid battery | |
JPH0714568A (en) | Battery assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000905 |
|
LAPS | Cancellation because of no payment of annual fees |