[go: up one dir, main page]

JPH10279718A - Porous film, separator for battery and battery - Google Patents

Porous film, separator for battery and battery

Info

Publication number
JPH10279718A
JPH10279718A JP9092012A JP9201297A JPH10279718A JP H10279718 A JPH10279718 A JP H10279718A JP 9092012 A JP9092012 A JP 9092012A JP 9201297 A JP9201297 A JP 9201297A JP H10279718 A JPH10279718 A JP H10279718A
Authority
JP
Japan
Prior art keywords
layer
porous film
polyethylene
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9092012A
Other languages
Japanese (ja)
Inventor
Takashi Yamamura
隆 山村
Mitsuhiro Kaneda
充宏 金田
Soji Nishiyama
総治 西山
Takashi Wano
隆司 和野
Kiichiro Matsushita
喜一郎 松下
Kazunari Yamamoto
一成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9092012A priority Critical patent/JPH10279718A/en
Publication of JPH10279718A publication Critical patent/JPH10279718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a porous film capable of preventing the temperature increase of a lithium battery owing to the reaction of metallic lithium, which deposits on a negative pole when the lithium battery becomes an overcharge state, with the electrolyte, and suitable as a separator. SOLUTION: This porous film contains polyethylene and polypropylene as essential components, and it has a multilayered structure consisting of a low- content layer, whose polyethylene content is 0-20 wt.%, and a high-content layer, whose polyethylene content is 61-100 wt.%, and which contains >=0.5 wt.% a polyethylene having a melt index of >=3. When the porous film is used in a lithium battery, the polyethylene which forms the high-content layer covers the surface of metallic lithium which has molten and deposited on a negative pole to prevent the contact of the metallic lithium with the electrolyte, and thus the temperature elevation of the battery is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリエチレン(以下
「PE」という)とポリプロピレン(以下「PP」とい
う)を必須成分として含む多層型多孔質フィルム、その
多孔質フィルムから成る電池用セパレータおよびそのセ
パレータを組み込んだ電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer porous film containing polyethylene (hereinafter, referred to as "PE") and polypropylene (hereinafter, referred to as "PP") as essential components, a battery separator comprising the porous film, and a battery separator. The present invention relates to a battery incorporating a separator.

【0002】[0002]

【従来の技術】種々のタイプの電池が実用に供されてい
るが、近年、電子機器のコードレス化に対応するため、
軽量で、高起電力、高エネルギーが得られ、しかも、自
己放電の少ないリチウム電池が注目を集めている。そし
て、例えば、円筒形リチウムイオン二次電池が携帯電話
用やノート型パソコン用等に大量生産されつつある。
2. Description of the Related Art Various types of batteries have been put to practical use.
Lithium batteries that are lightweight, provide high electromotive force and high energy, and have low self-discharge have attracted attention. For example, cylindrical lithium ion secondary batteries are being mass-produced for mobile phones, notebook computers, and the like.

【0003】このリチウム電池の負極材料としては、金
属リチウムをはじめリチウム合金やリチウムイオンを吸
蔵・放出できる炭素材料のような層間化合物等を挙げる
ことができ、正極材料としては、MeO2 、LiMeO
2 (MeはCo、Ni、Mn、Fe等の遷移金属)等を
挙げることができる。また、電解液としてはエチレンカ
ーボネート、プロピレンカーボネート、アセトニトリ
ル、γ−ブチロラクトン、1,2−ジメトキシエタン、
テトラヒドロフラン等の有機溶媒にLiPF6 、LiC
3 SO3 、LiClO4 、LiBF4 等を電解質とし
て溶解したものが知られている。
As the negative electrode material of this lithium battery, there can be mentioned an intercalation compound such as lithium metal, a lithium alloy and a carbon material capable of occluding and releasing lithium ions, and the positive electrode material is MeO 2 , LiMeO 2
2 (Me is a transition metal such as Co, Ni, Mn, and Fe). Further, as the electrolytic solution, ethylene carbonate, propylene carbonate, acetonitrile, γ-butyrolactone, 1,2-dimethoxyethane,
LiPF 6 , LiC
It is known that F 3 SO 3 , LiClO 4 , LiBF 4 or the like is dissolved as an electrolyte.

【0004】上記材料から構成されるリチウム電池は外
部短絡や正・負極の誤接続等により異常電流が流れた場
合、これに伴って電池温度が著しく上昇し、これを組み
込んだ機器に熱的ダメージを与えるという懸念がある。
When an abnormal current flows due to an external short circuit or erroneous connection of the positive and negative electrodes, the temperature of the lithium battery made of the above-mentioned materials significantly increases, and the temperature of the battery becomes extremely high. There is a concern of giving.

【0005】そこで、異常電流による温度の上昇が生じ
た場合、正・負極の短絡防止のために組み込んだセパレ
ータの電気抵抗を増大させることにより電池反応を遮断
し、温度の過昇を防止するようにしている。
Therefore, when the temperature rises due to the abnormal current, the battery reaction is cut off by increasing the electric resistance of the separator incorporated to prevent a short circuit between the positive electrode and the negative electrode, thereby preventing the temperature from rising excessively. I have to.

【0006】このように電池の温度上昇に際し、電気抵
抗の増大により電池反応を遮断し、温度の過昇を防止す
ることにより安全を確保する機能は一般にシャットダウ
ン(Shut−down)特性と呼ばれ、リチウム電池
用セパレータにとっては重要な特性である。
[0006] In this way, when the temperature of the battery rises, the function of interrupting the battery reaction by increasing the electric resistance and ensuring safety by preventing the temperature from excessively rising is generally called a shutdown (Shut-down) characteristic. This is an important property for a lithium battery separator.

【0007】本出願人は、かようなSD特性に優れた電
池用セパレータとして、ポリエチレンとポリプロピレン
を必須成分として含有し、且つ、フィルムの厚さ方向に
おいてポリエチレン含有率が変化している多孔質フィル
ムを先に提案した(特開平7−216118号公報)。
The applicant of the present invention has proposed a porous film containing polyethylene and polypropylene as essential components and having a polyethylene content varying in the thickness direction of the film, as such a battery separator having excellent SD characteristics. (Japanese Patent Application Laid-Open No. 7-216118).

【0008】[0008]

【発明が解決しようとする課題】外部短絡や誤接続はリ
チウム電池の安全性を損なう要因の一つであるが、該電
池の安全性に関する懸念材料としては、これ以外にも、
「金属リチウムの析出」という問題を挙げることができ
る。
[0005] External short-circuits and erroneous connections are one of the factors that impair the safety of lithium batteries.
The problem of "precipitation of metallic lithium" can be cited.

【0009】この「金属リチウムの析出」とは、過充電
状態になったとき、電池内における正極活物質量と負極
活物質量のバランスが崩れて生じるものであり、インタ
ーカレートされなくなったリチウムイオンが、金属リチ
ウムの結晶として負極表面に析出する現象をいう。負極
表面に金属リチウムが析出すると、それが電解液と反応
して発熱し、電池温度の上昇を招来する。金属リチウム
の析出に起因するこの電池温度の上昇は当然のことなが
ら好ましいことではないが、現在のところ、これを阻止
する有効な手段は提案されていない。
[0009] The term "precipitation of metallic lithium" means that when the battery is overcharged, the balance between the amount of the positive electrode active material and the amount of the negative electrode active material in the battery is lost. This refers to a phenomenon in which ions are deposited on the negative electrode surface as crystals of metallic lithium. When metallic lithium precipitates on the surface of the negative electrode, it reacts with the electrolytic solution and generates heat, which causes an increase in battery temperature. This increase in battery temperature due to the deposition of metallic lithium is, of course, undesirable, but at present no effective means has been proposed to prevent it.

【0010】[0010]

【課題を解決するための手段】本発明は上記現状に鑑み
鋭意研究の結果なされたものであり、金属リチウムが析
出した場合、該金属リチウムと電解液との反応を早期に
遮断し、電池の温度を危険域に到達させるような不都合
を有効に防止し得る機能を有するセパレータとして好適
な多孔質フィルムを提供する。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of intensive studies in view of the above situation. When lithium metal is deposited, the reaction between the lithium metal and the electrolytic solution is interrupted at an early stage, and the battery is used. Provided is a porous film suitable as a separator having a function of effectively preventing inconvenience such as reaching a dangerous zone.

【0011】即ち、本発明に係る多孔質フィルムは、P
EとPPとを必須成分として含む多孔質フィルムであっ
て、PE含有率が0〜20重量%のPE低含有層と、P
E含有率が61〜100重量%であり、且つ、メルトイ
ンデックスが3以上のPEを0.5重量%以上含むPE
高含有層とを有することを特徴とするものである。
That is, the porous film according to the present invention comprises P
A porous film containing E and PP as essential components, wherein a PE low content layer having a PE content of 0 to 20% by weight;
PE having an E content of 61 to 100% by weight and a PE having a melt index of 3 or more and 0.5% by weight or more
A high-content layer.

【0012】本発明においては、PE高含有層の孔径が
0.04〜0.15μmであることが好ましい。
In the present invention, the pore diameter of the high PE content layer is preferably 0.04 to 0.15 μm.

【0013】また、本発明の多孔質フィルムはPE低含
有層の両面に、PE高含有層が設けられた三層構造、ま
たは、PE低含有層の片面に、PE高含有層が設けられ
た二層構造とすることが好ましい。
The porous film of the present invention has a three-layer structure in which a high PE content layer is provided on both sides of a low PE content layer, or a high PE content layer is provided on one surface of a low PE content layer. It is preferable to have a two-layer structure.

【0014】更に、本発明の多孔質フィルムはPE高含
有層の厚さがフィルムの総厚さの10〜50%であるこ
とが好ましい。
Further, in the porous film of the present invention, the thickness of the PE-rich layer is preferably 10 to 50% of the total thickness of the film.

【0015】そして、本発明の多孔質フィルムは、電池
用セパレータとして好適に使用されるものである。
[0015] The porous film of the present invention is suitably used as a battery separator.

【0016】また、本発明は正極、負極、これら両極間
に介在せしめられたセパレータおよび電解液を有し、こ
のセパレータが上記の多孔質フィルムであり、且つ、該
多孔質フィルムのPE高含有層が負極と接するように組
み込まれた電池を提供するものでもある。
The present invention also includes a positive electrode, a negative electrode, a separator and an electrolyte interposed between these two electrodes, wherein the separator is the above-mentioned porous film, and the PE-rich layer of the porous film is provided. Is also provided as a battery in which the battery is incorporated in contact with the negative electrode.

【0017】[0017]

【発明の実施の形態】本発明の多孔質フィルムは、上記
したようにPEとPPとを必須成分とするものであり、
その必須成分の1つであるPPとしては多孔質化の容易
さの点から立体規則性の良いアイソタクチックPPが好
ましいが、他のPPを用いることもできる。なお、特に
限定されるわけではないが、多孔質フィルムの強度を考
慮すると、重量平均分子量50万以上のPPを用いるの
が好ましく、重量平均分子量80万以上であればより好
ましい。また、もう一方の必須成分であるPEも特に限
定されないが、多孔質化の容易さの点から高密度PEあ
るいは中密度PEが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The porous film of the present invention contains PE and PP as essential components as described above,
As the PP which is one of the essential components, isotactic PP having good stereoregularity is preferable from the viewpoint of easy porosity, but other PP can also be used. Although not particularly limited, PP having a weight average molecular weight of 500,000 or more is preferably used in consideration of the strength of the porous film, and more preferably 800,000 or more. In addition, PE, which is another essential component, is not particularly limited, but high-density PE or medium-density PE is preferable from the viewpoint of easy porosity.

【0018】本発明の多孔質フィルムは上記したように
PEとPPを必須成分とするものであるが、更に、PE
含有率の異なる2つの層を有している必要がある。その
一つはPE含有率が0〜20重量%のPE低含有層であ
り、他の一つは、PE含有率が61〜100重量%であ
り、且つ、メルトインデックス(以下、「MI」とい
う)が3以上のPEを0.5重量%以上含むPE高含有
層である。
The porous film of the present invention contains PE and PP as essential components as described above.
It is necessary to have two layers having different contents. One is a low PE layer having a PE content of 0 to 20% by weight, and the other is a PE having a PE content of 61 to 100% by weight and a melt index (hereinafter referred to as "MI"). ) Is a high PE layer containing 0.5% by weight or more of 3 or more PEs.

【0019】このように本発明の多孔質フィルムはPE
低含有層とPE高含有層を有するので、必然的に多層構
造となる。なお、これら、PE低含有層およびPE高含
有層はいずれも多孔質層である。
As described above, the porous film of the present invention is made of PE
Having a low content layer and a high PE content layer inevitably results in a multilayer structure. In addition, these PE low content layer and PE high content layer are both porous layers.

【0020】PE低含有層はPPのみ、あるいはPEと
PPの混合物から形成される層であり、この層の形成成
分であるPEとPPの合計重量に占めるPE重量の割合
(PE含有率)は0〜20%とされる。
The low PE content layer is a layer formed of only PP or a mixture of PE and PP, and the ratio of the PE weight to the total weight of PE and PP (PE content), which is a component of this layer, is: 0 to 20%.

【0021】このPE低含有層は多孔質フィルムの機械
的強度を保持すると共にフィルムの形状維持機能を担う
ものであり、PE含有率が20%を超えるとこれらの機
能の低下傾向が現れるので好ましくない。例えば、この
層におけるPE含有量が20%を超える多孔質フィルム
は機械的強度が小さくなり、また、これをセパレータと
して組み込んだリチウム電池は何らかの原因で内部温度
が上昇した場合、比較的低温で全体が溶融状態となって
形状維持が困難となり、その結果、正負両極の短絡防止
機能が早期に喪失される恐れがある。
The low PE content layer has the function of maintaining the mechanical strength of the porous film and maintaining the shape of the film. When the PE content exceeds 20%, these functions tend to decrease, so that it is preferable. Absent. For example, a porous film having a PE content of more than 20% in this layer has a low mechanical strength, and a lithium battery incorporating this as a separator has a relatively low overall temperature when the internal temperature rises for some reason. Is in a molten state, and it is difficult to maintain the shape. As a result, the function of preventing short-circuiting of the positive and negative electrodes may be lost at an early stage.

【0022】一方、PE高含有層はPEのみ、またはP
EとPPの混合物から形成される層であり、この層の形
成成分であるPEとPPの合計重量に占めるPE重量の
割合(PE含有率)は61〜100%(好ましくは80
〜100%)とされる。このPE高含有層で重要なこと
は、このようにPE含有率を高く設定すると共に、MI
が3以上のPEの使用割合を0.5重量%以上とするこ
とである。
On the other hand, the PE-rich layer is composed of only PE or P
It is a layer formed from a mixture of E and PP, and the ratio of the PE weight to the total weight of PE and PP (PE content) is 61 to 100% (preferably 80%).
100100%). What is important in this high PE layer is that the PE content is set high and the MI content is high.
Is that the use ratio of PE of 3 or more is 0.5% by weight or more.

【0023】このPE高含有層は、例えば、多孔質フィ
ルムをセパレータとして組み込んだリチウム電池におい
て、金属リチウムの析出に伴う発熱反応遮断機能を担う
ものであり、そのためPE含有率を61%以上に設定し
ているのである。この層におけるPE含有率が61%未
満であると、発熱反応遮断機能が充分でなく、温度の過
昇を招き易いので好ましくない。
This PE-rich layer serves, for example, in a lithium battery incorporating a porous film as a separator, to shut off the exothermic reaction accompanying the deposition of metallic lithium. Therefore, the PE content is set to 61% or more. It is doing. If the PE content in this layer is less than 61%, the function of blocking the exothermic reaction is not sufficient, and the temperature tends to be excessively increased, which is not preferable.

【0024】そして、本発明では、PE高含有層の形成
成分であるPEとして、MIが3以上(好ましくは3〜
30)のものを用い、発熱反応遮断機能をより確実化し
ている。なお、この層の形成成分であるPEとしては、
MIが3以上のもののみを用いてもよいが、MIが3未
満のPEと併用してもよい。ただし、この層を形成して
いるPEとPPの合計重量に占めるMIが3以上である
PE重量の割合は0.5%以上(好ましくは10〜10
0%)とする必要がある。
In the present invention, as the PE which is a component forming the high PE content layer, the MI is 3 or more (preferably 3 to
30), the function of blocking the exothermic reaction is further ensured. In addition, as PE which is a forming component of this layer,
Only those having an MI of 3 or more may be used, but may be used in combination with a PE having an MI of less than 3. However, the ratio of the weight of the PE whose MI is 3 or more to the total weight of the PE and PP forming this layer is 0.5% or more (preferably 10 to 10%).
0%).

【0025】本発明の多孔質フィルムにおいては、この
ようにPE高含有層の存在により、過充電によって負極
表面に析出した金属リチウムと電解液との反応を早期に
遮断して電池温度の過昇を防止し、安全を確保できるの
である。
In the porous film of the present invention, due to the presence of the high PE content layer, the reaction between the lithium metal deposited on the negative electrode surface due to overcharging and the electrolytic solution is promptly interrupted and the battery temperature rises excessively. Can be prevented and safety can be ensured.

【0026】この安全確保機構は次のように考えられ
る。リチウム電池においては正極および負極の表面にセ
パレータが接触状態とされているが、電極表面は必ずし
も平滑でなく微小な凹凸が無数に存在しているので、電
極表面とセパレータとの間には微小間隙が存在してい
る。そこで、過充電状態になると負極表面に金属リチウ
ムが析出し、これが微小間隙に浸透した電解液と反応し
て発熱し、安全阻害の要因となるのである。ところが、
本発明の多孔質フィルムをセパレータとした場合は、金
属リチウムが析出して電解液と反応して温度が上昇し始
めるとPE高含有層中のPEが早期に軟化溶融し、その
軟化溶融分が負極表面の微小間隙に流れ込んでこれを充
填し金属リチウム表面を被覆するので、金属リチウムと
電解液との接触が絶たれて反応が遮断され、その結果、
温度の過昇が阻止されるのである。そして、本発明の多
孔質フィルムにおいては、PE高含有層の形成成分とし
て溶融時の流動性の良いMIが3以上のPEを用い、且
つ、その使用量を0.5重量%以上としているので、溶
融分による負極表面の微小間隙の充填と金属リチウム表
面の被覆は容易であり、析出金属リチウムと電解液との
反応遮断は確実に行なわれ、安全性が一層向上するので
ある。
The security mechanism is considered as follows. In a lithium battery, the separator is in contact with the surfaces of the positive electrode and the negative electrode. However, the electrode surface is not necessarily smooth, and there are countless minute irregularities. Exists. Then, when the battery is overcharged, metallic lithium precipitates on the surface of the negative electrode, which reacts with the electrolytic solution penetrating into the minute gap to generate heat, which is a factor of safety impairment. However,
When the porous film of the present invention is used as a separator, when the metal lithium precipitates and reacts with the electrolytic solution and the temperature starts to rise, the PE in the PE-rich layer is softened and melted early, and the softened melt is Since it flows into the minute gap on the negative electrode surface and fills it to cover the metal lithium surface, the contact between the metal lithium and the electrolyte is cut off and the reaction is interrupted.
Excessive temperature rise is prevented. Further, in the porous film of the present invention, since PE having good fluidity at the time of melting is used as a component having a high PE content of 3 or more, and the amount of the PE used is 0.5% by weight or more. In addition, it is easy to fill the minute gaps on the negative electrode surface with the molten component and cover the metallic lithium surface, and the reaction between the deposited metallic lithium and the electrolytic solution is surely interrupted, thereby further improving safety.

【0027】かような安全確保のメカニズムを発揮させ
るため、本発明の多孔質フィルムをセパレータとしてリ
チウム電池に組み込むには、該多孔質フィルムのPE高
含有層が負極と接するようにする。ただし、かような安
全確保を必ずしも必要としない電池に組み込む場合はこ
の限りではない。
In order to incorporate the porous film of the present invention into a lithium battery as a separator in order to exert such a mechanism for ensuring safety, the PE-rich layer of the porous film is brought into contact with the negative electrode. However, this does not apply to the case where such a battery is not necessarily required to ensure safety.

【0028】本発明の多孔質フィルムは上記したように
PE低含有層と、PE高含有層を有し、これらの層が積
層された多層型フィルムであり、その好ましい具体例と
しては、PE低含有層の両面にPE高含有層が設けられ
た三層型や、PE低含有層の片面にPE高含有層が設け
られた二層型を挙げることができる。しかし、厚さの増
加が許容されるのならば、四層以上の層構成とすること
もできる。四層以上の多孔質フィルムをリチウム電池用
セパレータとして用いる場合には、少なくとも一方の表
面層をPE高含有層とする。
The porous film of the present invention has a low PE content layer and a high PE content layer as described above, and is a multilayer film in which these layers are laminated. Examples thereof include a three-layer type in which a high PE content layer is provided on both surfaces of the content layer and a two-layer type in which a high PE content layer is provided on one surface of a low PE content layer. However, if an increase in the thickness is allowed, a four or more layer structure can be adopted. When four or more porous films are used as a lithium battery separator, at least one surface layer is a PE-rich layer.

【0029】なお、PE低含有層および/またはPE高
含有層には、所望により、他の合成樹樹脂、核剤、加工
助剤、界面活性剤、老化防止剤、可塑剤、難燃剤、着色
剤等の添加剤を適量配合することもできる。
The low PE and / or high PE layers may optionally contain other synthetic resin, nucleating agent, processing aid, surfactant, antioxidant, plasticizer, flame retardant, coloring, etc. An appropriate amount of an additive such as an agent can be blended.

【0030】本発明の多孔質フィルムは、例えば、PE
低含有層形成成分から成る層と、PE高含有層形成成分
から成る層を有する積層フィルムを成形し、次いで、こ
のフィルムを延伸により多孔質化する方法により製造で
きる。以下、この製法について説明する。
The porous film of the present invention is made of, for example, PE
It can be produced by a method of forming a laminated film having a layer composed of a component forming a low content layer and a layer composed of a component forming a high PE content, and then making the film porous by stretching. Hereinafter, this manufacturing method will be described.

【0031】この方法においては、先ず、PE低含有層
形成成分から成る層と、PE高含有層形成成分から成る
層を有する積層フィルムが成形される。この積層フィル
ムの成形は、PE低含有層形成成分から成る組成物と、
PE高含有層形成成分から成る組成物を用意し、これら
を多層押出機により同時に押し出す方法、PE低含有層
形成成分から成る組成物(またはPE高含有層形成成分
から成る組成物)を押し出してフィルムを成形した後、
このフィルム上にPE高含有層形成成分から成る組成物
(またはPE低含有層形成成分から成る組成物)を押し
出す方法、あるいはPE低含有層形成成分から成る組成
物と、PE高含有層形成成分から成る組成物を用意して
各々フィルムを成形し、次いでこれらを熱融着する方法
等により行なうことができる。
In this method, first, a laminated film having a layer composed of a component forming a low PE layer and a layer composed of a component forming a high PE layer is formed. Molding of the laminated film comprises a composition comprising a PE low-containing layer forming component,
A method comprising preparing a composition comprising a PE-rich layer-forming component and simultaneously extruding them with a multilayer extruder, extruding a composition comprising a PE-poor layer-forming component (or a composition comprising a PE-rich layer-forming component) After forming the film,
A method of extruding a composition comprising a PE-rich layer-forming component (or a composition comprising a PE-poor layer-forming component) onto the film, or a composition comprising a PE-poor layer-forming component and a PE-rich layer-forming component , A film is formed, and then these are heat-sealed.

【0032】このようにして得られた積層フィルムには
熱処理を施すことができる。この熱処理は、積層フィル
ムの結晶性の向上等を目的として行なわれるものであ
る。熱処理の方法は任意であってよく、例えば、加熱さ
れたロールや金属板に接触させる方法、積層フィルムを
空気中や不活性ガス中で加熱する方法、積層フィルムを
芯体上にロール上に巻き取り、これを気相中や媒体中で
加熱する方法等を採用できる。なお、加熱されたロール
や金属板に接触させる場合や積層フィルムを空気中や不
活性ガス中で加熱する場合、積層フィルムの両側をキャ
リアフィルムで挟んで行なってもよい。また、積層フィ
ルムを芯体上にロール状に巻き取り、これを気相中や媒
体中で加熱する場合には、ブロッキング防止のため、積
層フィルムに離型性シートを重ね合わせて巻き取ること
ができる。
The thus obtained laminated film can be subjected to a heat treatment. This heat treatment is performed for the purpose of improving the crystallinity of the laminated film and the like. The method of heat treatment may be any method, for example, a method of contacting a heated roll or a metal plate, a method of heating a laminated film in air or an inert gas, winding the laminated film on a roll on a core body. Then, a method of heating this in a gas phase or a medium can be adopted. In the case where the laminated film is brought into contact with a heated roll or a metal plate, or when the laminated film is heated in air or an inert gas, both sides of the laminated film may be sandwiched between carrier films. When the laminated film is wound into a roll on a core body and heated in a gas phase or a medium, a release sheet may be superimposed on the laminated film and wound to prevent blocking. it can.

【0033】この熱処理の温度と時間は熱処理の方法等
に応じて設定するが、通常、温度は約100〜165
℃、時間は約2秒から50時間の範囲で行なわれる。か
ような熱処理を施すことにより積層フィルムの結晶化度
が高められ、後に行なわれる延伸による微細孔の形成が
容易となり、気孔率のより高い多孔質フィルムが得られ
る。
The temperature and time of the heat treatment are set according to the method of the heat treatment and the like.
C., for a time in the range of about 2 seconds to 50 hours. By performing such a heat treatment, the crystallinity of the laminated film is increased, and the formation of fine pores by subsequent stretching is facilitated, so that a porous film having a higher porosity can be obtained.

【0034】このようにして熱処理した後、これを延伸
することにより積層フィルムの多孔質化を行なう。この
延伸方法としては、低温下で延伸した後、次いで高温下
で延伸する2段延伸法を適用することが好ましい。
After the heat treatment, the laminated film is made porous by stretching it. As the stretching method, it is preferable to apply a two-stage stretching method in which the film is stretched at a low temperature and then stretched at a high temperature.

【0035】即ち、先ず、積層フィルムに対して、低温
で1軸延伸を行なう。このときの温度は、通常、−20
℃〜60℃である。−20℃未満では延伸中にフィルム
の破断を生じやすく、逆に60℃を超えると多孔質化し
難い。この延伸方法は従来から知られているロール式延
伸、テンター式延伸等により行なうことができる。
That is, first, the laminated film is uniaxially stretched at a low temperature. The temperature at this time is usually -20.
C. to 60C. If the temperature is lower than −20 ° C., the film is easily broken during stretching, and if it is higher than 60 ° C., it is difficult to make the film porous. This stretching method can be performed by a conventionally known roll stretching, tenter stretching or the like.

【0036】このときの延伸率は、通常、約20〜40
0%好ましくは30〜200%とされる。この延伸率
(E1 )は低温延伸前の寸法(L0 )と、低温延伸後の
寸法(L1 )を用い、下記の数1により求めることがで
きる。
The stretching ratio at this time is usually about 20 to 40.
0%, preferably 30 to 200%. The stretching ratio (E 1 ) can be determined by the following equation 1 using the dimension (L 0 ) before low-temperature stretching and the dimension (L 1 ) after low-temperature stretching.

【0037】[0037]

【数1】 (Equation 1)

【0038】上記低温延伸に続き、高温延伸を行なう。
高温延伸は、上記低温延伸後の多孔質フィルムを、通
常、60℃〜PEの融点以下の温度で低温延伸と同方向
へ行なう。高温延伸時の延伸率は、通常、約10〜50
0%である。この延伸率(E2)は低温延伸前の寸法
(L0 )、低温延伸後の寸法(L1 =高温延伸前の寸
法)、および高温延伸後の寸法(L2 )を用い、下記数
2により求めることができる。
Following the low-temperature stretching, high-temperature stretching is performed.
The high-temperature stretching is performed in the same direction as the low-temperature stretching of the porous film after the low-temperature stretching, usually at a temperature of 60 ° C. to the melting point of PE or lower. The stretching ratio at the time of high temperature stretching is usually about 10 to 50
0%. The stretching ratio (E2) is obtained by using the dimension before low-temperature stretching (L 0 ), the dimension after low-temperature stretching (L 1 = dimension before high-temperature stretching), and the dimension after high-temperature stretching (L 2 ). You can ask.

【0039】[0039]

【数2】 (Equation 2)

【0040】このようにして得られる多孔質フィルムは
低温延伸および高温延伸の際に作用した応力が残留して
おり、延伸方向に収縮して寸法変化を生じ易いので、延
伸方向の寸法を収縮させておくことにより、寸法安定性
を高めることができる。収縮の度合いは任意でよいが、
通常、約10〜40%寸法が減少する程度とする。
The porous film thus obtained retains stress applied during low-temperature stretching and high-temperature stretching, and tends to shrink in the stretching direction to cause dimensional change. By doing so, dimensional stability can be improved. The degree of contraction may be arbitrary,
Usually, the size is reduced to about 10 to 40%.

【0041】また、多孔質フィルムの延伸方向の寸法が
変化しないように規制し、所定温度(例えば、延伸温度
またはそれ以上の温度)で加熱する所謂「ヒートセッ
ト」を施すことによっても前記の収縮と同様に寸法安定
性を高めることができる。このヒートセットの方法とし
ては、高温延伸後の多孔質フィルムを加熱されたロール
に接触させる方法、多孔質フィルムを空気中や不活性ガ
ス中で加熱する方法、多孔質フィルムを芯体上にロール
状に巻き取り、これを気相中や媒体中で加熱する方法等
を採用できる。勿論、収縮とヒートセットの双方を行な
って寸法安定性を向上させてもよい。
The so-called “heat set” in which the dimensions of the porous film in the stretching direction are not changed and the heating is performed at a predetermined temperature (for example, a stretching temperature or higher) is also performed. The dimensional stability can be improved in the same manner as described above. As a method of this heat setting, a method of contacting a porous film after hot stretching with a heated roll, a method of heating a porous film in air or an inert gas, and a method of rolling a porous film on a core body And a method of heating it in a gaseous phase or a medium. Of course, both shrinkage and heat setting may be performed to improve dimensional stability.

【0042】上記方法によれば、本発明の多孔質フィル
ムを容易に得ることができる。この多孔質フィルムはP
E低含有層およびPE高含有層に無数の微細孔が形成さ
れたもので、該微細孔の孔径は各層の組成や延伸率等に
より変わるが、通常、PE低含有層の孔径は0.02〜
0.06μmであり、PE高含有層の孔径は0.02〜
0.20μmである。
According to the above method, the porous film of the present invention can be easily obtained. This porous film is P
The low E content layer and the high PE content layer have innumerable micropores formed therein, and the pore size of the micropores varies depending on the composition and the elongation ratio of each layer. ~
0.06 μm, and the pore diameter of the PE-rich layer was 0.02 to
0.20 μm.

【0043】なお、リチウム電池用セパレータとして用
いる多孔質フィルムにおいては、PE高含有層の孔径を
0.04〜0.15μmとするのが好ましい(より好ま
しくは0.05〜0.1μm)ことが判明している。P
E高含有層の孔径をこのように設定すると、負極表面に
析出した金属リチウムによる目詰まり防止効果が特に優
れている。
In the porous film used as a separator for a lithium battery, the pore diameter of the PE-rich layer is preferably 0.04 to 0.15 μm (more preferably 0.05 to 0.1 μm). It is known. P
When the pore size of the E-rich layer is set in this manner, the effect of preventing clogging by metallic lithium deposited on the negative electrode surface is particularly excellent.

【0044】また、同様にこの多孔質フィルムをリチウ
ム電池用セパレータとして用いる場合には、PE高含有
層の厚さをフィルム総厚さの10〜50%とするのが好
ましい。前記したように、この多孔質フィルムをセパレ
ータとして組み込んだリチウム電池において、負極表面
に金属リチウムが析出し、これが電解液と反応した場合
には、P高含有層におけるPEが溶融流動し、負極とセ
パレータの間の微小間隙を充填して(これにより金属リ
チウム表面が被覆される)反応を遮断するのである。従
って、溶融流動するPEの分量は微小間隙を充填するの
に足りる量が必要であり、この量を確保するために、P
E高含有層の厚さをフィルムの総厚さの10〜50%に
するのが好ましいのである。多孔質フィルムの総厚さに
対するPE高含有層の厚さがこの範囲であるときは、こ
の量が充分に確保でき、また、フィルム強度も満足でき
る。
Similarly, when this porous film is used as a separator for a lithium battery, the thickness of the PE-rich layer is preferably set to 10 to 50% of the total thickness of the film. As described above, in a lithium battery incorporating this porous film as a separator, when metallic lithium precipitates on the negative electrode surface and reacts with the electrolytic solution, PE in the P-rich layer melts and flows, and It fills the minute gaps between the separators (this covers the metallic lithium surface) and blocks the reaction. Therefore, the amount of PE that melts and flows needs to be sufficient to fill the minute gap, and in order to secure this amount, P
It is preferred that the thickness of the E-rich layer be 10 to 50% of the total thickness of the film. When the thickness of the PE-rich layer relative to the total thickness of the porous film is within this range, this amount can be sufficiently ensured and the film strength can be satisfied.

【0045】更に、この多孔質フィルムはガーレー値が
1500sec/100cc以下であると、電池用セパ
レータとして好ましいことが判明している。
Further, it has been found that this porous film is preferable as a battery separator when the Gurley value is 1500 sec / 100 cc or less.

【0046】そして、この多孔質フィルムを電池用セパ
レータとして使用した場合には、約120〜130℃の
領域内の特定温度においてその電気抵抗値が室温の抵抗
値の数十倍〜数千倍以上に急増し、一方、フィルムの形
状は該特定温度より少なくとも約25℃高い温度まで維
持され、優れたSD特性を示すことが確認されている。
When this porous film is used as a battery separator, its electric resistance at a specific temperature within a range of about 120 to 130 ° C. is several tens to several thousand times or more the resistance at room temperature. On the other hand, it has been confirmed that the shape of the film is maintained at a temperature at least about 25 ° C. higher than the specific temperature and exhibits excellent SD characteristics.

【0047】この本発明の多孔質フィルムは電池セパレ
ータの他、その特性を応用して分離膜、建築用通気性フ
ィルム、衣料用通気性フィルム等の幅広い用途に適用で
きる。
The porous film of the present invention can be applied to a wide variety of applications such as a separator, an air-permeable film for construction, an air-permeable film for clothing, and the like by utilizing its characteristics in addition to the battery separator.

【0048】[0048]

【実施例】以下、実施例により本発明を更に詳細に説明
する。
The present invention will be described in more detail with reference to the following examples.

【0049】実施例1 重量平均分子量が100万、MIが0.5のアイソタク
チックPP(PE低含有層形成成分)を用意する。一
方、これとは別に、前記と同じPP10重量%、密度が
0.964g/cm3 、MIが0.3の高密度PE72
重量%、および密度が0.961g/cm3 、MIが
7.3の高密度PE18重量%から成る混合物(PE高
含有層形成成分)を用意する。
Example 1 An isotactic PP (a component forming a low PE content layer) having a weight average molecular weight of 1,000,000 and an MI of 0.5 was prepared. On the other hand, separately from this, high-density PE72 having the same 10% by weight of PP, a density of 0.964 g / cm 3 and an MI of 0.3
A mixture consisting of 18% by weight of high-density PE having a weight percentage of 0.961 g / cm 3 and an MI of 7.3 is prepared (PE-rich layer forming component).

【0050】そして、Tダイ押出機を用い、ダイス温度
230℃、冷却ロール温度80℃で3層同時押し出し法
により、厚さ12μmのPP層の両面に、厚さが各々1
2μmのPEとPPの混合物層が形成された長尺の積層
フィルムを成形する。
Using a T-die extruder, a three-layer simultaneous extrusion method at a die temperature of 230.degree. C. and a cooling roll temperature of 80.degree.
A long laminated film on which a mixture layer of 2 μm of PE and PP is formed.

【0051】この積層フィルムを、125℃の空気中で
40時間加熱して熱処理を行なう。次いで、ロール延伸
機を用い、温度25℃にて長尺方向に延伸率が40%と
なるように低温延伸した後、温度120℃にて同方向に
延伸率が200%になるように高温延伸を行なった。そ
して、延伸後、温度115℃において延伸方向の寸法を
10%収縮(高温延伸後の寸法を基準として)させるこ
とにより、PE低含有層の両面にPE高含有層が各々形
成された三層構造を有する白色多孔質フィルム(総厚さ
24μm)を得た。
The heat treatment is performed by heating this laminated film in the air at 125 ° C. for 40 hours. Then, using a roll stretching machine, the film is stretched at a temperature of 25 ° C. in the machine direction at a low temperature so as to have a stretching ratio of 40%, and then at a temperature of 120 ° C. and stretched at a high temperature so that the stretching ratio is 200% in the same direction. Was performed. After the stretching, the three-layer structure in which the PE-rich layer is formed on both sides of the PE-poor layer by shrinking the dimension in the stretching direction by 10% (based on the dimension after the high-temperature stretching) at 115 ° C. Was obtained (total thickness: 24 μm).

【0052】なお、使用したPE、PPの重量平均分子
量、密度およびMIは下記の方法により測定した値であ
る。
The weight average molecular weight, density and MI of PE and PP used are values measured by the following methods.

【0053】(重量平均分子量)ゲル浸透クロマトグラ
フ(ウォーターズ社製、GPC−150C)により、溶
媒としてO−ジクロロベンゼンを用い、135℃で測定
した。なお、カラムはShodex−80M(昭和電工
社製)を用い、データ処理にはTRC社製のデータ処理
システムを用いた。また、分子量は、ポリスチレンを基
準として算出した。
(Weight-Average Molecular Weight) Measured at 135 ° C. by gel permeation chromatography (GPC-150C, manufactured by Waters Corporation) using O-dichlorobenzene as a solvent. The column used was Shodex-80M (manufactured by Showa Denko KK), and a data processing system manufactured by TRC was used for data processing. The molecular weight was calculated based on polystyrene.

【0054】(密度)ASTM D 1505に準じて
測定した。単位は「g/cm3 」である。
(Density) The density was measured according to ASTM D1505. The unit is “g / cm 3 ”.

【0055】(MI)ASTM D 1238に準じて
測定した。単位は「g/10min」である。
(MI) The measurement was carried out according to ASTM D1238. The unit is “g / 10 min”.

【0056】実施例2 重量平均分子量が96万、MIが0.4のアイソタクチ
ックPP(PE低含有層形成成分)を用意する。一方、
これとは別に、前記と同じPP20重量%、密度が0.
964g/cm3 、MIが0.3の高密度PE50重量
%、および密度が0.961g/cm3 、MIが8.0
の高密度PE30重量%から成る混合物(PE高含有層
形成成分)を用意する。
Example 2 An isotactic PP (a component forming a low PE-containing layer) having a weight average molecular weight of 960,000 and an MI of 0.4 was prepared. on the other hand,
Apart from this, the same PP 20% by weight and density of 0.
964 g / cm 3 , 50% by weight of high density PE with MI of 0.3, and density of 0.961 g / cm 3 , MI of 8.0
Of a high-density PE of 30% by weight (PE-rich layer forming component) is prepared.

【0057】そして、Tダイ押出機を用い、ダイス温度
220℃、冷却ロール温度80℃で3層同時押し出し法
により、厚さ21μmのPP層の両面に、厚さが各々7
μmのPEとPPの混合物層が形成された長尺の積層フ
ィルムを成形する。
Using a T-die extruder, a three-layer simultaneous extrusion method at a die temperature of 220.degree. C. and a cooling roll temperature of 80.degree.
A long laminated film having a mixed layer of PE and PP having a thickness of μm is formed.

【0058】この積層フィルムを、127℃の空気中で
48時間加熱して熱処理を行なう。次いで、ロール延伸
機を用い、温度25℃で長尺方向に延伸率が40%とな
るように低温延伸した後、温度110℃にて同方向に延
伸率が200%になるように高温延伸を行なった。そし
て、延伸後、温度115℃において延伸方向の寸法を1
0%収縮させることにより、PE低含有層の両面にPE
高含有層が各々形成された三層構造を有する白色多孔質
フィルム(総厚さ25μm)を得た。
The heat treatment is performed by heating this laminated film in air at 127 ° C. for 48 hours. Next, using a roll stretching machine, the film is stretched at a temperature of 25 ° C. at a low temperature in the machine direction at a stretch ratio of 40%, and then at a temperature of 110 ° C., stretched at a high temperature in the same direction at a stretch ratio of 200%. Done. After the stretching, the dimension in the stretching direction is 1 at 115 ° C.
By shrinking by 0%, both sides of the PE low content layer
A white porous film (thickness: 25 μm) having a three-layer structure in which a high-content layer was formed was obtained.

【0059】実施例3 重量平均分子量が96万、MIが0.4のアイソタクチ
ックPP(PE低含有層形成成分)を用意する。一方、
これとは別に、前記と同じPP10重量%、密度が0.
966g/cm3 、MIが0.3の高密度PE54重量
%、および密度が0.961g/cm3 、MIが4.0
の高密度PE36重量%から成る混合物(PE高含有層
形成成分)を用意する。
Example 3 An isotactic PP (low PE layer forming component) having a weight average molecular weight of 960,000 and an MI of 0.4 is prepared. on the other hand,
Separately, the same 10% by weight of PP and a density of 0.
966 g / cm 3 , 54% by weight of high density PE with MI of 0.3, and density of 0.961 g / cm 3 , MI of 4.0
(PE-rich layer forming component) comprising 36% by weight of high-density PE.

【0060】上記材料を用いること、および高温延伸後
の収縮を20%とすること以外は実施例2と同様に作業
して、PE低含有層の両面にPE高含有層が各々形成さ
れた三層構造を有する白色多孔質フィルム(総厚さ25
μm)を得た。
The same operation as in Example 2 was carried out except that the above-mentioned materials were used and the shrinkage after high-temperature stretching was set to 20%. White porous film having a layer structure (total thickness 25
μm).

【0061】比較例1 重量平均分子量が100万、MIが0.5のアイソタク
チックPP(PE低含有層形成用)を用意する。一方、
これとは別に、前記と同じPP35重量%および密度が
0.964g/cm3 、MIが0.3の高密度PE65
重量%から成る混合物(PE高含有層形成用)を用意す
る。
Comparative Example 1 An isotactic PP (for forming a low PE content layer) having a weight average molecular weight of 1,000,000 and an MI of 0.5 was prepared. on the other hand,
Separately, the same high-density PE65 as above with 35% by weight of PP, a density of 0.964 g / cm 3 and an MI of 0.3.
A mixture consisting of% by weight (for forming a high PE content layer) is prepared.

【0062】上記材料を用いること、および高温延伸後
の収縮を20%とすること以外は実施例2と同様に作業
して、PE高含有層の両面にPE低含有層が各々形成さ
れた三層構造を有する白色多孔質フィルム(総厚さ25
μm)を得た。
The same operation as in Example 2 was carried out except that the above-mentioned materials were used and that the shrinkage after high-temperature stretching was set to 20%. White porous film having a layer structure (total thickness 25
μm).

【0063】比較例2 重量平均分子量が100万、MIが0.5のアイソタク
チックPP(PE低含有層形成成分)を用意する。一
方、これとは別に、前記と同じPP10重量%、および
密度が0.964g/cm3 、MIが0.3の高密度P
E90重量%から成る混合物(PE高含有層形成成分)
を用意する。
Comparative Example 2 Isotactic PP (a component forming a low PE content layer) having a weight average molecular weight of 1,000,000 and an MI of 0.5 was prepared. On the other hand, separately from the above, 10% by weight of the same PP as above, and a high-density P having a density of 0.964 g / cm 3 and an MI of 0.3
Mixture consisting of 90% by weight of E (PE-rich layer forming component)
Prepare

【0064】そして、Tダイ押出機を用い、ダイス温度
260℃、冷却ロール温度80℃で3層同時押し出し法
により、厚さ21μmのPE高含有層の両面に、厚さが
各々7μmのPE低含有層が形成された長尺の積層フィ
ルムを成形した。
Using a T-die extruder, a three-layer simultaneous extrusion method at a die temperature of 260 ° C. and a cooling roll temperature of 80 ° C. was applied to both sides of a 21 μm-thick PE-rich layer to form a 7 μm-thick PE low-layer. A long laminated film on which the containing layer was formed was formed.

【0065】この積層フィルムを、130℃の空気中で
48時間加熱して熱処理を行なう。次いで、ロール延伸
機を用い、温度50℃で長尺方向に延伸率が40%とな
るように低温延伸した後、温度125℃にて同方向に延
伸率が200%になるように高温延伸を行なった。そし
て、延伸後、温度125℃において延伸方向の寸法を1
0%収縮させることにより、PE高含有層の両面にPE
低含有層が各々形成された三層構造を有する白色多孔質
フィルム(総厚さ27μm)を得た。
The heat treatment is performed by heating this laminated film in air at 130 ° C. for 48 hours. Next, using a roll stretching machine, after performing low-temperature stretching at a temperature of 50 ° C. so as to have a stretching ratio of 40% in the machine direction, performing high-temperature stretching at a temperature of 125 ° C. so as to have a stretching ratio of 200% in the same direction. Done. After the stretching, the dimension in the stretching direction is set to 1 at a temperature of 125 ° C.
By shrinking by 0%, both sides of the PE-rich layer
A white porous film (total thickness: 27 μm) having a three-layer structure in which each of the low content layers was formed was obtained.

【0066】上記実施例および比較例で得た多孔質フィ
ルムの孔径、密着性およびガーレー値を測定した結果を
表1に示す。なお、これら特性の測定は下記の方法によ
った。
Table 1 shows the results of measurement of the pore diameter, adhesion and Gurley value of the porous films obtained in the above Examples and Comparative Examples. In addition, the measurement of these characteristics was based on the following method.

【0067】(孔径)BET法(吸着法)により測定し
た。単位は「μm」である。
(Pore Size) Measured by the BET method (adsorption method). The unit is “μm”.

【0068】(密着性)不織布、負極、予め電解液を含
浸させた多孔質フィルムおよび不織布をこの順序で重ね
合わせ、この重ね合わせ体の両側に厚さ3.5mmの鉄
製平板を各々配置し、温度135℃において、50kg
f/cm2 の条件で5分間加熱加圧した後、平板と不織
布を取り去る。そして、負極と多孔質フィルムを手で剥
離し、その際の状況を観察し、「◎」、「○」、「△」
および「×」の4段階に判定する。「◎」は負極を剥離
しにくく、多孔質フィルム表面にカーボン粉(負極の構
成成分)の跡がつくことを、「○」は負極をやや剥離し
にくく、カーボン粉の付着があることを、「△」は負極
がやや剥離しやすく、カーボン粉の付着が若干あること
を、「×」は負極が剥離しやすく、カーボン粉の付着も
ないことを、各々示している。
(Adhesion) A nonwoven fabric, a negative electrode, a porous film previously impregnated with an electrolytic solution and a nonwoven fabric are superimposed in this order, and a 3.5 mm-thick iron flat plate is disposed on each side of the superimposed body. 50 kg at 135 ° C
After heating and pressurizing under the condition of f / cm 2 for 5 minutes, the flat plate and the nonwoven fabric are removed. Then, the negative electrode and the porous film were peeled by hand, and the situation at that time was observed, and "◎", "「 "," △ "
And “x” are determined in four stages. "◎" indicates that the negative electrode was hardly peeled off and traces of carbon powder (components of the negative electrode) were formed on the porous film surface, and "「 "indicates that the negative electrode was slightly hardly peeled off and carbon powder was attached. “△” indicates that the negative electrode was slightly peeled off and some carbon powder was attached, and “×” indicates that the negative electrode was easily peeled off and no carbon powder was attached.

【0069】この「密着性」は多孔質フィルムをセパレ
ータとして用い、そのPE低含有層が負極と接するよう
に組み込んだリチウム電池において、負極表面に金属リ
チウムが析出した場合の該金属リチウムと電解液との反
応遮断機能の善し悪しを示すものである。「密着性」が
良好なことは析出した金属リチウムと電解液が反応した
際の温度上昇によるPE溶融分(PE低含有層における
溶融PE)の流動性が高く、該溶融分により負極とセパ
レータ間に存在する微小間隙が効率よく充填され、電解
液が確実に排除されること(反応が確実に遮断されるこ
と)を示している。
This “adhesion” refers to the case where, in a lithium battery in which a porous film is used as a separator and the low PE content layer is incorporated so as to be in contact with the negative electrode, the metal lithium and the electrolytic solution are deposited when lithium metal is deposited on the negative electrode surface. This indicates the quality of the reaction blocking function. Good “adhesion” means that the fluidity of the PE molten component (molten PE in the low PE layer) due to the temperature rise when the precipitated metallic lithium reacts with the electrolytic solution is high, and the molten component causes a gap between the negative electrode and the separator. This indicates that the minute gap existing in the sample is efficiently filled and the electrolytic solution is reliably eliminated (reaction is reliably shut off).

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【発明の効果】本発明の多孔質フィルムは電池用セパレ
ータとして用いると、析出金属リチムに起因する温度の
過上昇を有効に阻止できる。従って、この多孔質フィル
ムをセパレータとして組み込んだ電池は安全性が高いと
いう利点を有する。また、この多孔質フィルムは通気性
を有しているので、電池用セパレータ以外の種々の用途
にも用いることができる。
When the porous film of the present invention is used as a battery separator, it is possible to effectively prevent an excessive rise in temperature caused by deposited metal lithium. Therefore, a battery incorporating this porous film as a separator has the advantage of high safety. Further, since this porous film has air permeability, it can be used for various uses other than the battery separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和野 隆司 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 松下 喜一郎 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 山本 一成 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Wano 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Kiichiro Matsushita 1-1-2 Shimohozumi, Ibaraki-shi, Osaka No. Nitto Denko Corporation (72) Inventor Kazunari Yamamoto 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレンとポリプロピレンとを必須
成分として含む多孔質フィルムであって、ポリエチレン
含有率が0〜20重量%のポリエチレン低含有層と、ポ
リエチレン含有率が61〜100重量%であり、且つ、
メルトインデックスが3以上のポリエチレンを0.5重
量%以上含むポリエチレン高含有層とを有することを特
徴とする多孔質フィルム。
1. A porous film containing polyethylene and polypropylene as essential components, a polyethylene low content layer having a polyethylene content of 0 to 20% by weight, a polyethylene content of 61 to 100% by weight, and ,
A porous film, comprising: a polyethylene-rich layer containing 0.5% by weight or more of polyethylene having a melt index of 3 or more.
【請求項2】 ポリエチレン高含有層の孔径が0.04
〜0.15μmである請求項1記載の多孔質フィルム。
2. The high polyethylene content layer has a pore size of 0.04.
The porous film according to claim 1, which has a thickness of from 0.1 to 0.15 µm.
【請求項3】 ポリエチレン低含有層の両面に、ポリエ
チレン高含有層が設けられて成る請求項1または2記載
の多孔質フィルム。
3. The porous film according to claim 1, wherein a polyethylene-rich layer is provided on both sides of the polyethylene-poor layer.
【請求項4】 ポリエチレン低含有層の片面に、ポリエ
チレン高含有層が設けられて成る請求項1または2記載
の多孔質フィルム。
4. The porous film according to claim 1, wherein a polyethylene-rich layer is provided on one side of the polyethylene-poor layer.
【請求項5】 ポリエチレン高含有層の厚さがフィルム
の総厚さの10〜50%である請求項1乃至4のいずれ
かに記載の多孔質フィルム。
5. The porous film according to claim 1, wherein the thickness of the polyethylene-rich layer is 10 to 50% of the total thickness of the film.
【請求項6】請求項1乃至5のいずれかに記載の多孔質
フィルムからなる電池用セパレータ。
6. A battery separator comprising the porous film according to claim 1.
【請求項7】正極、負極、これら両極間に介在せしめら
れたセパレータおよび電解液を有し、このセパレータが
請求項1乃至5のいずれかに記載の多孔質フィルムであ
り、且つ、該多孔質フィルムのポリエチレン高含有層が
負極と接するように組み込まれていることを特徴とする
電池。
7. A positive electrode, a negative electrode, a separator interposed between these two electrodes, and an electrolytic solution, wherein the separator is the porous film according to any one of claims 1 to 5, and A battery, wherein a polyethylene-rich layer of a film is incorporated so as to be in contact with a negative electrode.
JP9092012A 1997-04-10 1997-04-10 Porous film, separator for battery and battery Pending JPH10279718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092012A JPH10279718A (en) 1997-04-10 1997-04-10 Porous film, separator for battery and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092012A JPH10279718A (en) 1997-04-10 1997-04-10 Porous film, separator for battery and battery

Publications (1)

Publication Number Publication Date
JPH10279718A true JPH10279718A (en) 1998-10-20

Family

ID=14042594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092012A Pending JPH10279718A (en) 1997-04-10 1997-04-10 Porous film, separator for battery and battery

Country Status (1)

Country Link
JP (1) JPH10279718A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117006A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
EP1905586A1 (en) * 2005-07-15 2008-04-02 Tonen Chemical Corporation Polyolefin multilayer microporous membrane and battery separator
WO2009028734A1 (en) 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
WO2009048175A2 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
EP2111911A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Multi-Layer Microporous Membrane, Battery Separator and Battery
EP2111914A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Multi-layer microporous membrane, battery separator and battery
EP2111915A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polymeric membrane, battery separator and battery
WO2011086823A1 (en) 2010-01-13 2011-07-21 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes and methods for producing and using such membranes
US8012622B2 (en) 2007-11-14 2011-09-06 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous membrane, battery separator and battery
WO2012020671A1 (en) 2010-08-12 2012-02-16 東レ東燃機能膜合同会社 Microporous film, process for production of the film, and use of the film
US8323821B2 (en) 2007-11-09 2012-12-04 Toray Battery Separator Film Co., Ltd. Multi-layer microporous membrane, battery separator and battery
US8507124B2 (en) 2007-11-14 2013-08-13 Toray Battery Separator Film Co., Ltd. Multi-layer, microporous membrane, battery separator and battery
US8748028B2 (en) 2007-11-02 2014-06-10 Toray Battery Separator Film Co. Ltd. Multi-layer microporous membrane, battery separator and battery
JP2016219411A (en) * 2015-05-15 2016-12-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium metal battery
CN107958981A (en) * 2017-06-24 2018-04-24 湖南中锂新材料有限公司 A kind of composite diaphragm and preparation method for lithium-ion-power cell
JP2020136094A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1905586A1 (en) * 2005-07-15 2008-04-02 Tonen Chemical Corporation Polyolefin multilayer microporous membrane and battery separator
US9431642B2 (en) 2005-07-15 2016-08-30 Toray Battery Separator Film Co., Ltd. Multi-layer microporous polyolefin membrane and battery separator
EP1905586A4 (en) * 2005-07-15 2012-07-25 Toray Tonen Specialty Separato Polyolefin multilayer microporous membrane and battery separator
WO2007117006A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
WO2009028734A1 (en) 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
US8709640B2 (en) 2007-08-31 2014-04-29 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
WO2009048175A2 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
US8748028B2 (en) 2007-11-02 2014-06-10 Toray Battery Separator Film Co. Ltd. Multi-layer microporous membrane, battery separator and battery
US8323821B2 (en) 2007-11-09 2012-12-04 Toray Battery Separator Film Co., Ltd. Multi-layer microporous membrane, battery separator and battery
US8012622B2 (en) 2007-11-14 2011-09-06 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous membrane, battery separator and battery
US8507124B2 (en) 2007-11-14 2013-08-13 Toray Battery Separator Film Co., Ltd. Multi-layer, microporous membrane, battery separator and battery
EP2111914A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Multi-layer microporous membrane, battery separator and battery
EP2111915A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polymeric membrane, battery separator and battery
EP2111911A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Multi-Layer Microporous Membrane, Battery Separator and Battery
WO2011086823A1 (en) 2010-01-13 2011-07-21 Toray Tonen Specialty Separator Godo Kaisha Microporous membranes and methods for producing and using such membranes
US9044716B2 (en) 2010-01-13 2015-06-02 Toray Battery Separator Film Co., Ltd. Microporous membranes and methods for producing and using such membranes
WO2012020671A1 (en) 2010-08-12 2012-02-16 東レ東燃機能膜合同会社 Microporous film, process for production of the film, and use of the film
US9136517B2 (en) 2010-08-12 2015-09-15 Toray Battery Separator Film Co., Ltd. Microporous film, process for production of the film, and use of the film
JP2016219411A (en) * 2015-05-15 2016-12-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium metal battery
CN107958981A (en) * 2017-06-24 2018-04-24 湖南中锂新材料有限公司 A kind of composite diaphragm and preparation method for lithium-ion-power cell
CN107958981B (en) * 2017-06-24 2021-06-08 内蒙古中锂新材料有限公司 Composite diaphragm for lithium ion power battery and preparation method
JP2020136094A (en) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5129895B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR101297771B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2024099677A (en) Battery separator and secondary lithium ion battery
US10115948B2 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
JP6171117B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR101297769B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR102290094B1 (en) Polyolefin microporous membrane, separator for power storage device, and power storage device
KR102086416B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR102180714B1 (en) Separator for energy storage device, and laminated body, roll, lithium ion secondary battery or energy storage device using the same
JP6665966B2 (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4988972B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US20100136410A1 (en) Separator for lithium ion secondary battery and method for manufacturing the same
US20140315068A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4988973B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JPH10279718A (en) Porous film, separator for battery and battery
US20140308567A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JPWO2014021291A1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2014136837A1 (en) Nonaqueous-secondary-battery separator and nonaqueous secondary battery
CN111463390A (en) Improved coated separator, lithium battery and related methods
JPH0513062A (en) Nonaqueous electrolyte battery