[go: up one dir, main page]

JPH10277886A - Machine tool - Google Patents

Machine tool

Info

Publication number
JPH10277886A
JPH10277886A JP8407197A JP8407197A JPH10277886A JP H10277886 A JPH10277886 A JP H10277886A JP 8407197 A JP8407197 A JP 8407197A JP 8407197 A JP8407197 A JP 8407197A JP H10277886 A JPH10277886 A JP H10277886A
Authority
JP
Japan
Prior art keywords
spindle
tool
temperature
machine tool
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8407197A
Other languages
Japanese (ja)
Inventor
Kazunari Itou
万成 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP8407197A priority Critical patent/JPH10277886A/en
Publication of JPH10277886A publication Critical patent/JPH10277886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a machine tool in which the temperature relation between the spindle and the part to be measured is stabilized so that the thermal displacement of the spindle can be presumed accurately. SOLUTION: A coolant nozzle 6 is fixed to a spindle head 9 so that the blowout hole is directed so as to cool the tip of the spindle 1 and the tool shank part of a tool holder, and the first temperature sensor 3 is attached to near the bearing 2 of the spindle 1 while the second temperature sensor 4 is mounted on a bed 5, and the temperature there are sensed by a temperature sensor 11, while the thermal displacement amount of the spindle is calculated by a computing device 12, and on the basis of the result from computation, the command value to a Z-axis drive motor 14 of an NC device 13 is corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マシニングセンタ
等の工作機械において、主軸軸線方向の熱変位補正機能
を有する工作機械に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machine tool, such as a machining center, having a function of correcting thermal displacement in the axial direction of a spindle.

【0002】[0002]

【従来の技術】主軸の回転に伴う軸受等の発熱の影響を
受けやすい主軸頭の温度と、影響を比較的受けないとさ
れるベッド等の部位の温度とを夫々測定し、それらの温
度を基に主軸の回転軸線方向の熱変位を推定し、工具と
ワークとの相対位置を数値制御装置により工作機械の軸
指令で補正を行う技術は例えば特公昭61−59860
号公報等により周知である。
2. Description of the Related Art The temperature of a spindle head, which is susceptible to the heat generated by bearings and the like due to the rotation of a spindle, and the temperature of a part, such as a bed, which are relatively unaffected, are measured. A technique for estimating the thermal displacement of the spindle in the direction of the rotation axis and correcting the relative position between the tool and the work with the axis command of the machine tool by a numerical controller is disclosed in, for example, JP-B-61-59860.
It is well known in Japanese Patent Publication No.

【0003】この技術を図3の工作機械の構成図を用い
て説明する。図示するように、まず主軸1を支持する軸
受2の近傍に第1温度センサ3が取り付けられ、ベッド
5に第2温度センサ4が取り付けられている。そして主
軸1の先端に取り付けられた工具8を回転させてワーク
7を加工するときに、その2つの温度センサの温度を検
出器11で検出し、これを基に熱変位量を熱変位量演算
装置12で演算する。この演算結果を受け、数値制御装
置13がZ軸駆動モータ14に出力する軸駆動指令を加
算補正する。その結果、Z軸駆動モータ14によりボー
ルネジ15を介してZ軸方向移動可能な主軸頭9が温度
補正されて移動されるため、工具とワーク間の相対位置
を所望の値にすることができるものである。尚、図3に
おいて、10は移動テーブル、16はクーラントを放出
するノズル、17はコラムである。
[0003] This technique will be described with reference to the configuration diagram of a machine tool shown in FIG. As shown in the drawing, first, a first temperature sensor 3 is attached near a bearing 2 that supports a main shaft 1, and a second temperature sensor 4 is attached to a bed 5. When the workpiece 8 is machined by rotating the tool 8 attached to the tip of the spindle 1, the temperatures of the two temperature sensors are detected by the detector 11, and the thermal displacement is calculated based on the detected temperature. The calculation is performed by the device 12. Upon receiving the calculation result, the numerical controller 13 adds and corrects the axis drive command output to the Z-axis drive motor 14. As a result, the spindle head 9 movable in the Z-axis direction is moved with the temperature corrected by the Z-axis drive motor 14 via the ball screw 15 so that the relative position between the tool and the work can be set to a desired value. It is. In FIG. 3, reference numeral 10 denotes a moving table, 16 denotes a nozzle for discharging coolant, and 17 denotes a column.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の技
術は、特定部位の温度から機械の温度分布を仮定し、主
軸1の回転軸線方向の熱膨張を推定し補正を行っている
もので、運転条件の変化による機械温度分布の変化につ
いては考慮されていない。即ち、エアブロー、クーラン
トによる切削点の冷却・潤滑の有無、主軸回転数、切削
負荷の変化等により、主軸の放熱量は大きく変化するの
に対し考慮されていない。
However, in the above-mentioned conventional technique, the temperature expansion of the main shaft 1 is estimated and corrected by assuming the temperature distribution of the machine from the temperature of the specific portion. Changes in machine temperature distribution due to changes in operating conditions are not considered. That is, although the heat radiation amount of the main shaft largely changes due to the air blow, the presence or absence of cooling / lubrication of the cutting point by the coolant, the rotation speed of the main shaft, the change of the cutting load, etc., it is not considered.

【0005】そのため、例えば乾式切削の一例として図
4に示すように、主軸1と工具8との間で発生する熱は
軸受2を介して主軸頭9に流れると共に、工具8にも流
れて行くが、一方で加工時に切削点より発せられる熱は
工具8から主軸側に伝達される。また、切削点にクーラ
ントをかける湿式切削では図5に示すように、切削点の
熱がノズル17より放出されるクーラントにより外部に
排出されるだけでなく、工具8そのものも冷却され主軸
1の熱は一層工具側へ移動する。
[0005] Therefore, as shown in FIG. 4 as an example of dry cutting, heat generated between the spindle 1 and the tool 8 flows to the spindle head 9 via the bearing 2 and also to the tool 8. However, on the other hand, the heat generated from the cutting point during processing is transmitted from the tool 8 to the main shaft side. In the wet cutting in which a coolant is applied to the cutting point, as shown in FIG. 5, not only the heat at the cutting point is discharged to the outside by the coolant discharged from the nozzle 17, but also the tool 8 itself is cooled and the heat of the spindle 1 is reduced. Moves further to the tool side.

【0006】この結果、乾式切削と湿式切削とにおける
軸受2から主軸頭9に伝達される熱量に差が生じること
になり、両者を同一の推定方法で補正するのは適当では
ない。また、主軸は高回転時比べ低回転時の周囲への放
熱力が劣るので測定部位と主軸との温度関係が変化す
る。この結果、推定温度と実際の主軸の温度とに差が生
じる。
As a result, there is a difference in the amount of heat transmitted from the bearing 2 to the spindle head 9 in the dry cutting and the wet cutting, and it is not appropriate to correct both by the same estimation method. In addition, since the heat radiation of the main shaft at the time of low rotation is lower than that at the time of high rotation, the temperature relationship between the measurement site and the main shaft changes. As a result, a difference occurs between the estimated temperature and the actual spindle temperature.

【0007】図6は主軸の回転数と軸受の熱の伝達率を
調べたもので、低回転からある程度までは、回転数の上
昇に伴い熱伝達率も高くなり,その後安定することがわ
かる。逆に見ると低回転では熱伝達率は低いということ
がわかる。
FIG. 6 shows the relationship between the number of revolutions of the main shaft and the heat transfer coefficient of the bearing. It can be seen that the heat transfer rate increases with the increase in the number of revolutions from a low rotation to a certain level, and then stabilizes. Conversely, it can be seen that the heat transfer coefficient is low at low rotation.

【0008】そこで本発明は、上記従来の技術の有する
問題点に鑑みなされたもので、その目的とするところ
は、主軸の放熱を工作機械の運転条件に係わらず一定方
向として、主軸の放熱能力を安定させることにより、主
軸温度と測定部位との温度関係を安定させ、より高精度
な主軸の熱変位推定を行う工作機械を提供することにあ
る。
Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to dissipate heat from a spindle in a fixed direction regardless of operating conditions of a machine tool. Is to stabilize the temperature relationship between the spindle temperature and the measurement site, and to provide a machine tool that estimates the thermal displacement of the spindle with higher accuracy.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明による工作機械は、主軸の先端に工
具を取り付け、ワークと主軸との相対移動によりワーク
を加工する工作機械において、工作機械の特定部位の温
度を測定するセンサと、センサの出力から主軸の熱膨張
を演算する演算部と、演算結果に基づいてワークと主軸
との相対移動手段を制御する制御手段と、主軸先端及び
主軸先端に取り付けられた工具を冷却する冷却流体供給
手段とを有するよう構成される。
According to a first aspect of the present invention, there is provided a machine tool for attaching a tool to a tip of a main shaft and processing the work by relative movement between the work and the main shaft. A sensor for measuring the temperature of a specific part of the machine tool, a calculation unit for calculating the thermal expansion of the spindle from the output of the sensor, a control means for controlling a relative movement means between the workpiece and the spindle based on the calculation result, and a tip of the spindle. And cooling fluid supply means for cooling a tool attached to the tip of the spindle.

【0010】請求項2の発明による工作機械は、前記冷
却流体供給手段が、主軸先端及びツールシャンク部を冷
却することを特徴とする。
[0010] A machine tool according to a second aspect of the present invention is characterized in that the cooling fluid supply means cools the tip of the spindle and the tool shank.

【0011】[0011]

【発明の実施の形態】以下、本発明を具体化した実施の
形態を図面を基に詳細に説明する。図1は工作機械の構
成を示し、図2は主軸先端部の熱の流れを示した断面説
明図である。図示するように、主軸頭9にはクーラント
ノズル6が固定され、その吹き出し口は、主軸1の先端
及び工具ホルダーのツールシャンク部8aに向いてお
り、図示されていない圧縮空気供給源より清浄な圧縮空
気が供給されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a configuration of a machine tool, and FIG. 2 is an explanatory sectional view showing a flow of heat at a tip end of a spindle. As shown in the figure, a coolant nozzle 6 is fixed to the spindle head 9 and its outlet is directed toward the tip of the spindle 1 and the tool shank 8a of the tool holder, and is cleaner than a compressed air supply source (not shown). Compressed air is being supplied.

【0012】そして、主軸1を支持する軸受2の近傍に
第1温度センサ3を取り付け、ベッド5に第2温度セン
サ4を取り付け、2つの温度センサの温度を温度検出器
11により検出し、この検出値を基に演算装置12で熱
変位量を演算し、この演算結果を受けZ軸駆動モータ1
4に出力する軸駆動指令を補正する数値制御装置13に
より、Z軸駆動モータ14がボールネジ15を介してZ
軸方向移動可能な主軸頭9を移動させる点は従来の技術
と同一である。
A first temperature sensor 3 is mounted in the vicinity of a bearing 2 supporting the main shaft 1, a second temperature sensor 4 is mounted on a bed 5, and the temperatures of the two temperature sensors are detected by a temperature detector 11. The amount of thermal displacement is calculated by the calculation device 12 based on the detected value, and the calculation result is received.
The Z-axis drive motor 14 is controlled by the numerical controller 13 for correcting the axis drive command output to the
The point that the spindle head 9 that can move in the axial direction is moved is the same as the conventional technique.

【0013】また、気体と個体の熱伝達率は、相対速度
がある程度以上大きい場合には相対速度の変化による熱
伝達率の変化が小さくなることから、ノズルから供給さ
れる圧縮空気は、主軸端及びツールシャンク部8aの表
面と主軸が回転していない状態にて十分な相対速度を得
る圧力にて供給されるものとする。
When the relative speed of the gas and the solid is larger than a certain value, the change in the heat transfer rate due to the change in the relative speed becomes small. In addition, the pressure is supplied at a pressure to obtain a sufficient relative speed in a state where the surface of the tool shank 8a and the main shaft are not rotating.

【0014】このようにすることで、主軸の熱の流れ
は、冷却流体の冷却力が大きいためにどのような切削条
件においてもほぼ図2の矢印に示すようになり、軸受を
介して主軸頭に伝達される熱量が切削条件に左右され難
くなる。従って、主軸の回転数によらず主軸端あるいは
工具ホルダーからの放熱を一定に保つことができ、温度
センサの測定温度と主軸の温度との関係を主軸の回転数
によらず一定とすることが可能となり、熱変位補正機構
の精度を高めることができる。尚、ノズル吹き出し口の
方向としてツールシャンク部8aを指定したのは、形状
と主軸に対する位置が規定されており、異なる工具ホル
ダーにおいても冷却条件が安定するためである。
By doing so, the heat flow of the spindle becomes almost as shown by the arrow in FIG. 2 under any cutting conditions because the cooling power of the cooling fluid is large. The amount of heat transmitted to the cutting surface is less affected by cutting conditions. Therefore, heat radiation from the spindle end or the tool holder can be kept constant irrespective of the rotation speed of the spindle, and the relationship between the temperature measured by the temperature sensor and the temperature of the spindle can be kept constant regardless of the rotation speed of the spindle. This makes it possible to enhance the accuracy of the thermal displacement correction mechanism. The reason why the tool shank 8a is specified as the direction of the nozzle outlet is that the shape and the position with respect to the main shaft are defined, and the cooling conditions are stable even in different tool holders.

【0015】また、この場合冷却流体の量あるいは圧力
あるいは速度を主軸の回転数に従い制御することによ
り、放熱の制御をより正確に行うことも可能であり、熱
変位補正機構の精度をより高めることができるし、冷却
流体の温度を制御して供給することにより、熱変位補正
をより正確に行うこともできる。更に、冷却流体は圧縮
空気でなくとも良く、切削条件によっては、より冷却効
果の高い水あるいは切削液等、別の冷却用流体を用いる
ことも可能であるし、ノズルを複数設置して切削条件に
従い冷却流体を使い分けることも有効である。
In this case, by controlling the amount, pressure or speed of the cooling fluid in accordance with the number of revolutions of the main shaft, it is possible to more accurately control the heat radiation, and to further improve the accuracy of the thermal displacement compensating mechanism. In addition, by controlling and supplying the temperature of the cooling fluid, the thermal displacement can be corrected more accurately. Further, the cooling fluid does not have to be compressed air.Depending on the cutting conditions, another cooling fluid such as water or a cutting fluid having a higher cooling effect can be used. It is also effective to properly use the cooling fluid according to the above.

【0016】また、上記実施の形態においては、主軸の
うち主軸頭から出た主軸端のみを冷却する機構を示した
が、これは主軸頭の主軸回転支持部の機構に冷却流体が
悪影響を与えることを懸念したためであり、グリス潤滑
軸受による支持の場合は冷却流体の圧力によるグリスの
飛散があったり、オイルエア潤滑軸受であれば負圧によ
る潤滑不良の発生等の可能性が考えられるためである。
しかし、これらの懸念に対して、十分な配慮を行った上
で主軸頭内の主軸を冷却することは有効である。その
他、本発明の趣旨を逸脱しない範囲で各部の形状並びに
構成を適宜に変更して具体化することも可能である。
In the above-described embodiment, the mechanism for cooling only the spindle end of the spindle that protrudes from the spindle head has been described. However, the cooling fluid adversely affects the mechanism of the spindle rotation support portion of the spindle head. This is because there is a possibility that grease may be scattered by the pressure of the cooling fluid in the case of support by a grease-lubricated bearing, or that lubrication failure may occur due to negative pressure in the case of an oil-air lubricated bearing. .
However, it is effective to cool the spindle in the spindle head with due consideration given to these concerns. In addition, the shape and configuration of each part may be appropriately changed and embodied without departing from the spirit of the present invention.

【0017】[0017]

【発明の効果】以上詳述したように、請求項1の発明に
よれば、冷却流体を主軸先端部に供給するという簡素且
つ安価な構成により、周知の熱変位補正機能の精度を大
幅に向上させることができるという顕著な効果を奏す
る。
As described above in detail, according to the first aspect of the present invention, the accuracy of the well-known thermal displacement correction function is greatly improved by a simple and inexpensive configuration in which the cooling fluid is supplied to the tip of the spindle. It has a remarkable effect that it can be performed.

【0018】請求項2の発明によれば、請求項1の効果
に加え、異なる工具ホルダにおいても冷却条件が安定す
る。
According to the second aspect of the present invention, in addition to the effect of the first aspect, the cooling condition is stabilized even with different tool holders.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の1例を示す工作機械の構
成図である。
FIG. 1 is a configuration diagram of a machine tool showing an example of an embodiment of the present invention.

【図2】図1の主軸先端部の熱伝導を示す縦断面説明図
である。
FIG. 2 is an explanatory longitudinal sectional view showing heat conduction at a tip end of a spindle shown in FIG. 1;

【図3】従来の工作機械の構成図である。FIG. 3 is a configuration diagram of a conventional machine tool.

【図4】従来の乾式切削の熱伝導を示す主軸先端部の縦
断面説明図である。
FIG. 4 is an explanatory longitudinal sectional view of a tip end of a spindle showing heat conduction in conventional dry cutting.

【図5】従来の湿式切削の熱伝導を示す主軸先端部の縦
断面説明図である。
FIG. 5 is an explanatory longitudinal sectional view of a tip end portion of a spindle showing heat conduction in conventional wet cutting.

【図6】主軸の回転数と軸受の熱の伝達率の関係を示す
図である。
FIG. 6 is a diagram showing a relationship between a rotation speed of a main shaft and a heat transfer rate of a bearing.

【符号の説明】[Explanation of symbols]

1・・主軸、2・・軸受、3・・第1温度センサ、4・
・第2温度センサ、5・・ベッド、6・・ノズル(クー
ラントノズル)、7・・ワーク、8・・工具、8a・・
ツールシャンク部、9・・主軸頭、11・・温度検出
器、12・・演算装置、13・・数値制御装置、14・
・Z軸駆動モータ、15・・ボールネジ。
1. Spindle, 2. Bearing, 3. First temperature sensor, 4.
・ Second temperature sensor, 5 ・ Bed, 6 ・ Nozzle (coolant nozzle), 7 ・ Work, 8 ・ Tool, 8a ・ ・
Tool shank, 9 ... spindle head, 11 ... temperature detector, 12 ... arithmetic unit, 13 ... numerical controller, 14 ...
・ Z axis drive motor, 15 ・ ball screw.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主軸の先端に工具を取り付け、ワークと
主軸との相対移動によりワークを加工する工作機械にお
いて、工作機械の特定部位の温度を測定するセンサと、
センサの出力から主軸の熱膨張を演算する演算部と、演
算結果に基づいてワークと主軸との相対移動手段を制御
する制御手段と、主軸先端及び主軸先端に取り付けられ
た工具を冷却する冷却流体供給手段とを有することを特
徴とする工作機械。
1. A sensor for measuring a temperature of a specific portion of a machine tool in a machine tool for attaching a tool to a tip of a spindle and processing the workpiece by relative movement between the workpiece and the spindle.
A calculation unit for calculating the thermal expansion of the spindle from the output of the sensor; control means for controlling relative movement means between the workpiece and the spindle based on the calculation result; and a cooling fluid for cooling the spindle tip and a tool attached to the spindle tip. A machine tool comprising a supply unit.
【請求項2】 前記冷却流体供給手段が、主軸先端及び
ツールシャンク部を冷却することを特徴とする請求項1
に記載の工作機械。
2. The cooling fluid supply means cools a tip end of a spindle and a tool shank portion.
A machine tool according to claim 1.
JP8407197A 1997-04-02 1997-04-02 Machine tool Pending JPH10277886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8407197A JPH10277886A (en) 1997-04-02 1997-04-02 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8407197A JPH10277886A (en) 1997-04-02 1997-04-02 Machine tool

Publications (1)

Publication Number Publication Date
JPH10277886A true JPH10277886A (en) 1998-10-20

Family

ID=13820267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8407197A Pending JPH10277886A (en) 1997-04-02 1997-04-02 Machine tool

Country Status (1)

Country Link
JP (1) JPH10277886A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138175A (en) * 1999-11-17 2001-05-22 Kanto Seiki Kk Thermal deformation restricting method for machine tool, and temperature control device
JP2002307204A (en) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd Micro unevenness machining method and micro unevenness machining device
JP2008146411A (en) * 2006-12-11 2008-06-26 Okuma Corp Thermal displacement time constant stabilization system for machine tools
KR101503178B1 (en) * 2013-11-29 2015-03-16 현대위아 주식회사 Apparatus for compensating thermal deformation in machine tool and method for driving the same
KR20180134030A (en) * 2017-06-08 2018-12-18 두산공작기계 주식회사 Numerical controller for a machining tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001138175A (en) * 1999-11-17 2001-05-22 Kanto Seiki Kk Thermal deformation restricting method for machine tool, and temperature control device
JP4488564B2 (en) * 1999-11-17 2010-06-23 関東精機株式会社 Method for suppressing thermal deformation of machine tool and temperature control device
JP2002307204A (en) * 2001-04-11 2002-10-23 Nissan Motor Co Ltd Micro unevenness machining method and micro unevenness machining device
JP2008146411A (en) * 2006-12-11 2008-06-26 Okuma Corp Thermal displacement time constant stabilization system for machine tools
KR101503178B1 (en) * 2013-11-29 2015-03-16 현대위아 주식회사 Apparatus for compensating thermal deformation in machine tool and method for driving the same
KR20180134030A (en) * 2017-06-08 2018-12-18 두산공작기계 주식회사 Numerical controller for a machining tool

Similar Documents

Publication Publication Date Title
US10245697B2 (en) Method for controlling temperature adjustment system of machine
WO2018179280A1 (en) Main shaft device
JPH10244440A (en) Main spindle end displacement correction device for machine tool
JPH10277886A (en) Machine tool
JP4245375B2 (en) Machine tool control method and machine tool
JP4311686B2 (en) Method for processing printed circuit boards
JP2003039278A (en) Machine tool thermal displacement compensator
JP3292454B2 (en) Machine tool thermal displacement calculator and storage medium
JPH04343642A (en) Work thermal expansion correcting method for cut machining
JP2004148443A (en) Tool thermal displacement compensation method
JPH09300173A (en) Method and system of cooling main spindle of machine tool
JPS58160001A (en) Bit for high speed machining
JP2023519689A (en) Processing machine with high-precision processing capability
JPH1086037A (en) Temperature controller for machine tool
JPS6157144B2 (en)
JP3160246B2 (en) Thermal displacement compensation method for machine tool and machine tool for thermal displacement compensation
JPH0985582A (en) Thermal displacement estimating device of machine tool
JPH0919847A (en) Correcting device for thermal displacement of spindle
JPH0537443U (en) Ball screw cooling system
JPH0586448U (en) Spindle thermal displacement compensator
JP2607388Y2 (en) Numerically controlled machine tools
JP2005230955A (en) Thermal displacement prevention device
JP2004142020A (en) Machine tool and thermal displacement restraining method for machine tool
KR20210075309A (en) Transfer shaft for machine tooling with bearing cooling function
JP2002263989A (en) Machine Tools