JPH10270741A - Semiconductor photoreceptor - Google Patents
Semiconductor photoreceptorInfo
- Publication number
- JPH10270741A JPH10270741A JP9077207A JP7720797A JPH10270741A JP H10270741 A JPH10270741 A JP H10270741A JP 9077207 A JP9077207 A JP 9077207A JP 7720797 A JP7720797 A JP 7720797A JP H10270741 A JPH10270741 A JP H10270741A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- light
- light absorbing
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 42
- 108091008695 photoreceptors Proteins 0.000 title abstract 3
- 230000005684 electric field Effects 0.000 claims description 7
- 230000031700 light absorption Effects 0.000 abstract description 14
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 6
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 3
- 230000007704 transition Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 133
- 230000003287 optical effect Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体受光素子に
関し、更に詳細には、広帯域にわたり高速動作性に優れ
た半導体受光素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving device, and more particularly to a semiconductor light receiving device excellent in high-speed operation over a wide band.
【0002】[0002]
【従来の技術】発光素子により電気信号を光信号に変換
し、光ファイバーを経由して受光素子により光信号を受
光し、かつ受光した光信号を電気信号に変換する光通信
システムでは、高速で高効率な動作特性が発光素子及び
受光素子に要求されている。特に、将来の高速大容量光
通信システムでは、広帯域にわたり高速動作性に優れた
半導体受光素子(Photo Diode )が必要不可欠である。2. Description of the Related Art In an optical communication system in which an electric signal is converted into an optical signal by a light emitting element, an optical signal is received by a light receiving element via an optical fiber, and the received optical signal is converted into an electric signal, a high speed and high speed communication system is required. Efficient operating characteristics are required for light emitting elements and light receiving elements. In particular, in a future high-speed and large-capacity optical communication system, a semiconductor light receiving element (Photo Diode) excellent in high-speed operation over a wide band is indispensable.
【0003】[0003]
【発明が解決しようとする課題】ところで、pin型半
導体受光素子では、面入射型及び導波路型のいずれの受
光素子でも、応答速度はキャリアが空乏層を走行する走
行時間の長短に依存し、周波数特性は受光素子のCR時
定数の大小に依存している。即ち、走行時間が短い程、
受光素子の応答速度が速くなり、また、CR時定数が小
さい程、受光素子の周波数帯域が広くなる。しかし、応
答速度を高めるために、空乏層を薄くして、キャリア走
行時間を短くしようとすると、薄くなった空乏層のため
に接合容量が増大して、CR時定数が大きくなり、トレ
ードオフの形で受光素子の帯域が制限される。従って、
従来、広帯域にわたり高速動作性に優れた受光素子を実
現することは難しかった。In the case of the pin type semiconductor light receiving element, the response speed of both the surface incident type and the waveguide type light receiving element depends on the length of the traveling time during which the carrier travels through the depletion layer. The frequency characteristics depend on the magnitude of the CR time constant of the light receiving element. That is, the shorter the running time,
The faster the response speed of the light receiving element and the smaller the CR time constant, the wider the frequency band of the light receiving element. However, when the depletion layer is made thinner to shorten the carrier transit time in order to increase the response speed, the junction capacity increases due to the thinned depletion layer, and the CR time constant becomes large. The shape of the light receiving element limits the band. Therefore,
Conventionally, it has been difficult to realize a light receiving element having excellent high-speed operation over a wide band.
【0004】そこで、本発明の目的は、広帯域にわたり
高速で動作する半導体受光素子を提供することである。Accordingly, an object of the present invention is to provide a semiconductor light receiving element which operates at high speed over a wide band.
【0005】[0005]
【課題を解決するための手段】上述のように、単に空乏
層を薄くしてキャリア走行遅延を回避しようとすると、
トレードオフの形で受光素子の帯域が制限される。そこ
で、本発明者は、正孔のドリフト速度が電子のドリフト
速度より一桁程度低く、それがキャリア走行遅延の要因
になっていることに着目した。そして、単に、正孔走行
時間を短縮するだけであれば、光吸収層を薄くすれば良
いが、CR時定数の増大や受光感度の低下を引き起こす
等の問題が多いので、光信号の吸収領域とキャリア走行
領域とを分離し、光信号の吸収領域として、バンドギャ
ップが受光する光のエネルギーより小さな光吸収層を設
け、キャリア走行領域として、光吸収層上にそれと接
し、バンドギャップが受光する光のエネルギーより大き
く、単に光吸収層からの電子を走行させるキャリア走行
層とを設けることにした。そして、光吸収層の層厚を従
来の光吸収層より薄くし、光吸収層とキャリア走行層と
の層厚の和が従来の光吸収層の層厚より厚くなるように
した。これにより、接合容量は光吸収層とキャリア走行
層の厚さの和により規定されて小さくなるので、CR時
定数は小さくなる。一方、次に説明するように、キャリ
ア走行遅延は生じない。それは、ドリフト速度の速い電
子が光吸収層及びキャリア走行層を走行し、ドリフト速
度の遅い正孔は薄い光吸収層のみを走行するからであ
る。このようにして、CR時定数を小さく維持しつつキ
ャリア走行遅延時間を短くすることができ、キャリア走
行遅延とCR時定数とのトレードオフを満足させること
ができる。As described above, when the depletion layer is simply thinned to avoid carrier traveling delay,
The band of the light receiving element is limited in a trade-off manner. Therefore, the present inventor has paid attention to the fact that the drift speed of holes is about one digit lower than the drift speed of electrons, which is a factor of carrier traveling delay. To simply shorten the hole transit time, the light absorbing layer may be thinned. However, there are many problems such as an increase in CR time constant and a decrease in light receiving sensitivity. And a carrier traveling region, and an optical signal absorption region is provided with a light absorbing layer smaller than the energy of light received by the band gap as an optical signal absorbing region. As a carrier traveling region, the light absorbing layer is in contact with the light absorbing layer and the band gap receives light. A carrier traveling layer which is larger than the energy of light and simply allows electrons from the light absorbing layer to travel is provided. The thickness of the light absorbing layer was made thinner than that of the conventional light absorbing layer, and the sum of the thicknesses of the light absorbing layer and the carrier traveling layer was made larger than the thickness of the conventional light absorbing layer. Thereby, the junction capacitance is defined by the sum of the thicknesses of the light absorption layer and the carrier transit layer, and becomes smaller, so that the CR time constant becomes smaller. On the other hand, as described below, no carrier running delay occurs. This is because electrons having a high drift speed travel through the light absorption layer and the carrier traveling layer, and holes having a low drift velocity travel only through the thin light absorption layer. In this way, the carrier running delay time can be shortened while keeping the CR time constant small, and the trade-off between the carrier running delay and the CR time constant can be satisfied.
【0006】得た上述の知見に基づいて、上記目的を達
成するために、本発明に係る半導体受光素子は、少なく
とも、光吸収層と、n側電極に電気的に接触する半導体
電極接触層とを有する半導体積層構造を備えた半導体受
光素子において、受光する光のエネルギーより広いバン
ドギャップを有し、キャリア濃度が光吸収層とほぼ同じ
半導体層が、キャリア走行層として、光吸収層と半導体
電極接触層との間で光吸収層上に接して設けられている
ことを特徴としている。本発明では、受光する光のエネ
ルギーよりバンドギャップが大きく、かつ電子のドリフ
ト速度が大きい材料により、キャリア走行層を形成す
る。Based on the above-mentioned knowledge obtained, in order to achieve the above object, a semiconductor light receiving element according to the present invention comprises at least a light absorption layer and a semiconductor electrode contact layer electrically contacting an n-side electrode. In a semiconductor light receiving element having a semiconductor laminated structure having a semiconductor layer, a semiconductor layer having a band gap wider than the energy of light to be received and having a carrier concentration substantially equal to that of the light absorbing layer is used as a carrier traveling layer as a light absorbing layer and a semiconductor electrode. It is characterized in that it is provided in contact with the contact layer on the light absorbing layer. According to the present invention, the carrier transit layer is formed of a material having a band gap larger than the energy of the received light and a high electron drift speed.
【0007】好適には、光吸収層が、バンドギャップの
相互に異なる半導体層の積層構造により構成され、正孔
の走行を速める内蔵電界が光吸収層内に形成されるよう
に、キャリア走行層に近い層ほどバンドギャップが大き
くなっているようにする。また、光吸収層が、キャリア
濃度の相互に異なる半導体層の積層構造により構成さ
れ、正孔の走行を速める内蔵電界が光吸収層内に形成さ
れるように、キャリア走行層に近い層ほどキャリア濃度
が高くなっているようにする。これにより、応答速度が
速くなり、周波数帯域が広くなる。更には、好適には、
勾配の付いた(グレーデッド化された)バンドギャップ
又はキャリア濃度を有するように、光吸収層を構成する
積層構造を形成する。[0007] Preferably, the light absorption layer is formed of a laminated structure of semiconductor layers having different band gaps, and the carrier traveling layer is formed so that a built-in electric field for accelerating the traveling of holes is formed in the light absorption layer. The band gap is made larger in a layer closer to. In addition, the light absorbing layer is formed of a laminated structure of semiconductor layers having different carrier concentrations, and a layer closer to the carrier traveling layer is formed so that a built-in electric field for accelerating hole transport is formed in the light absorbing layer. Ensure that the concentration is high. As a result, the response speed is increased and the frequency band is widened. Further, preferably,
A stacked structure forming a light absorbing layer is formed so as to have a gradient (graded) band gap or carrier concentration.
【0008】[0008]
【発明の実施の形態】通常、光通信に用いられている波
長1.3μm、又は1.55μmの光を吸収させる場合
には、好ましくは、光吸収層にはInGaAs、InG
aAlAs、またはInGaAsPを使用し、キャリア
走行層にはInPを使用する。光吸収層をグレーデッド
バンドギャップ化する際には、ホールに対して内蔵電界
が生じるように、キャリア走行層から離れるに従いバン
ドギャップが小さくなるようにする。また、キャリア濃
度勾配に付けて、光吸収層に内蔵電界を形成するために
は、キャリア走行層から離れるに従いn型の光吸収層で
有ればキャリア濃度が減少すうようにすれば良いし、p
型の光吸収層で有ればキャリア濃度が増加するようにす
ればよい。または、キャリア走行層から離れるにつれ
て、n型からp型へと導電型が変更するようにしても良
い。以下に、添付図面を参照し、実施例を挙げて、本発
明の実施の形態を具体的かつ詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case where light having a wavelength of 1.3 .mu.m or 1.55 .mu.m, which is usually used for optical communication, is to be absorbed, preferably, the light absorption layer is made of InGaAs or InG.
aAlAs or InGaAsP is used, and InP is used for the carrier transit layer. When the light absorbing layer is formed into a graded band gap, the band gap is reduced as the distance from the carrier transit layer increases so that a built-in electric field is generated for holes. In addition, in order to form a built-in electric field in the light absorbing layer in accordance with the carrier concentration gradient, the carrier concentration may be reduced if the n-type light absorbing layer is used as the distance from the carrier traveling layer increases, p
The carrier concentration may be increased if the light absorption layer is of a mold type. Alternatively, the conductivity type may be changed from n-type to p-type as the distance from the carrier transit layer increases. Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings and examples.
【0009】[0009]
【実施例】実施例1 本実施例は、本発明に係る半導体受光素子の基本的な構
成を有する実施例であって、図1は実施例1の半導体受
光素子の層構造を示す模式的断面図である。本実施例の
半導体受光素子(以下、簡単に受光素子と言う)10
は、面入射型の受光素子であって、図1に示すように、
半絶縁性InPの基板12と、エピタキシャル結晶成長
法により基板12上に、順次、形成された、層厚0.5
μm のInPバッファ層14、層厚0.5μm のn−I
nP電極コンタクト層16、層厚0.3μm のi−In
Pキャリア走行層18、層厚0.3μm のi−InGa
As光吸収層20及び層厚0.2μm のn−InPキャ
ップ層22の半導体積層構造を備えている。Embodiment 1 This embodiment is an embodiment having a basic structure of a semiconductor light receiving element according to the present invention. FIG. 1 is a schematic cross section showing a layer structure of the semiconductor light receiving element of Embodiment 1. FIG. Semiconductor light receiving element of this embodiment (hereinafter simply referred to as light receiving element) 10
Is a surface incident type light receiving element, as shown in FIG.
A layer thickness of 0.5 formed on a substrate 12 of semi-insulating InP and the substrate 12 by an epitaxial crystal growth method sequentially.
μm InP buffer layer 14, 0.5 μm thick n-I
nP electrode contact layer 16, i-In having a layer thickness of 0.3 μm
P carrier running layer 18, i-InGa having a thickness of 0.3 μm
It has a semiconductor laminated structure of an As light absorbing layer 20 and an n-InP cap layer 22 having a layer thickness of 0.2 μm.
【0010】各半導体層のバンドギャップ及びキャリア
濃度は、以下の通りである。 バッファ層14 :バンドギャップ/1.35eV キャリア濃度/1×1017cm-3 電極コンタクト層16:バンドギャップ/1.35eV キャリア濃度/1×1019cm -3 キャリア走行層18 :バンドギャップ/1.35eV 光吸収層20 :バンドギャップ/0.74eV キャップ層22 :バンドギャップ/1.35eV キャリア濃度/1×1019cm -3 The band gap and carrier concentration of each semiconductor layer are as follows. Buffer layer 14: Band gap / 1.35 eV Carrier concentration / 1 × 10 17 cm −3 Electrode contact layer 16: Band gap / 1.35 eV Carrier concentration / 1 × 10 19 cm −3 Carrier running layer 18: Band gap / 1 .35 eV light absorbing layer 20: band gap / 0.74 eV cap layer 22: band gap / 1.35 eV carrier concentration / 1 × 10 19 cm −3
【0011】半導体積層構造のうち、キャップ層22、
光吸収層20、キャリア走行層18及び電極コンタクト
層16の上部層は、メサ構造に加工されている。メサ構
造の最上層を成すキャップ層22上にp側電極24、及
び電極コンタクト層16上にはn側電極26が形成さ
れ、更に、メサ構造及び電極コンタクト層16の面の電
極を除く領域には、保護層及び反射防止膜としてシリコ
ン窒化膜28が成膜されている。p側電極24の内側
は、反射防止膜28を備えた直径20μm の円形受光面
30となっている。In the semiconductor laminated structure, the cap layer 22,
The upper layers of the light absorption layer 20, the carrier traveling layer 18, and the electrode contact layer 16 are processed into a mesa structure. A p-side electrode 24 is formed on the cap layer 22 which is the uppermost layer of the mesa structure, and an n-side electrode 26 is formed on the electrode contact layer 16. Has a silicon nitride film 28 formed as a protective layer and an antireflection film. The inside of the p-side electrode 24 is a circular light receiving surface 30 having a diameter of 20 μm and having an antireflection film 28.
【0012】以下に、実施例1の受光素子10の作製方
法の概略を説明する。先ず、基板12上に、順次、バッ
ファ層14、電極コンタクト層16、キャリア走行層1
8、光吸収層20及びキャップ層22をエピタキシャル
結晶成長する。次いで、既知のリソグラフィ技術を用い
てエッチングマスクをパターニングし、得たエッチング
マスクをマスクにして、エッチング液によるウェットエ
ッチングを施して、キャップ層22、光吸収層20、及
びキャリア走行層18の上部層をエッチングして、面入
射型受光素子のメサ構造を形成する。次いで、保護膜2
8、電極24、26等を形成し、面入射型の受光素子1
0を完成する。Hereinafter, an outline of a method for manufacturing the light receiving element 10 of the first embodiment will be described. First, a buffer layer 14, an electrode contact layer 16, and a carrier traveling layer 1 are sequentially formed on a substrate 12.
8. Epitaxial crystal growth of the light absorption layer 20 and the cap layer 22. Next, the etching mask is patterned using a known lithography technique, and wet etching is performed with an etching solution using the obtained etching mask as a mask to form an upper layer of the cap layer 22, the light absorbing layer 20, and the carrier traveling layer 18. Is etched to form a mesa structure of the surface incident type light receiving element. Next, the protective film 2
8, the electrodes 24, 26, etc. are formed, and the surface incident type light receiving element 1
Complete 0.
【0013】実施例2 本実施例は請求項2に記載の本発明に係る半導体受光素
子の実施例であって、図2は実施例2の受光素子の層構
造の要部を模式的に示している。本実施例の受光素子4
0は、その光吸収層20が、実施例1のi−InGaA
sのバルク層に代えて、正孔に対して内蔵電界が生じる
ように、バンドギャップが0.77eVで層厚0.15
μm のInGaAlAsからなる下部光吸収層42とバ
ンドギャップが0.74eVの層厚0.15μm のIn
GaAsからなる上部光吸収層44とをそれぞれエピタ
キシャル結晶成長させた2層構造とし、下部光吸収層4
2がキャリア走行層18に接するようにしてキャリア走
行層18上に形成されている。実施例2の受光素子は、
光吸収層20の構造を除いて、実施例1と同じ構成を備
えている。 Embodiment 2 This embodiment is an embodiment of a semiconductor light receiving element according to the present invention, and FIG. 2 schematically shows a main part of a layer structure of the light receiving element of Embodiment 2. ing. Light receiving element 4 of this embodiment
0 indicates that the light absorbing layer 20 is made of the i-InGaAs of Example 1.
s instead of the bulk layer, a band gap of 0.77 eV and a layer thickness of 0.15
μm of the lower light absorbing layer 42 made of InGaAlAs and 0.15 μm of In
The upper light-absorbing layer 44 made of GaAs has a two-layer structure in which each of the upper light-absorbing layers 44 is epitaxially grown.
2 is formed on the carrier traveling layer 18 so as to be in contact with the carrier traveling layer 18. The light receiving element of the second embodiment is
Except for the structure of the light absorbing layer 20, it has the same configuration as the first embodiment.
【0014】実施例3 本実施例は請求項3に記載の本発明に係る半導体受光素
子の実施例であって、図3は実施例3の受光素子の層構
造の要部を模式的に示している。本実施例の受光素子5
0は、その光吸収層が、実施例1のi−InGaAsの
バルク層に代えて、正孔に対して内蔵電界が生じるよう
に、キャリア濃度が1×1015cm-3で層厚が0.15
μm のn−InGaAsからなる下部光吸収層52と、
キャリア濃度が5×1017cm-3で層厚が0.15μm
のn−InGaAsからなる上部光吸収層54とをそれ
ぞれエピタキシャル結晶成長させた2層構造とし、下部
光吸収層52がキャリア走行層18に接するようにして
キャリア走行層18上に形成されている。 Embodiment 3 This embodiment is an embodiment of a semiconductor light receiving element according to the present invention, and FIG. 3 schematically shows a main part of a layer structure of the light receiving element of Embodiment 3. ing. Light receiving element 5 of this embodiment
0 indicates that the light absorbing layer has a carrier concentration of 1 × 10 15 cm −3 and a layer thickness of 0 so that a built-in electric field is generated for holes instead of the i-InGaAs bulk layer of Example 1. .15
a lower light absorption layer 52 made of n-InGaAs of μm;
Carrier concentration is 5 × 10 17 cm -3 and layer thickness is 0.15 μm
The upper light-absorbing layer 54 made of n-InGaAs has a two-layer structure formed by epitaxial crystal growth, and the lower light-absorbing layer 52 is formed on the carrier traveling layer 18 so as to be in contact with the carrier traveling layer 18.
【0015】従来例 本発明に係る半導体受光素子との比較を行うために、実
施例1のキャリア走行層18を光吸収層20と同じi−
InGaAs層として、層厚0.6μm の光吸収層20
としたことを除いて、構成が実施例1の受光素子10と
同じ受光素子、即ち従来の構成を有する受光素子を従来
例として作製した。 Conventional Example In order to make a comparison with the semiconductor light receiving element according to the present invention, the carrier transit layer 18 of the first embodiment has the same i-type as the light absorbing layer 20.
The light absorbing layer 20 having a thickness of 0.6 μm is used as the InGaAs layer.
A light receiving element having the same configuration as the light receiving element 10 of the first embodiment, that is, a light receiving element having a conventional configuration was manufactured as a conventional example except that the above-described configuration was adopted.
【0016】実施例1から3の受光素子及び従来例の受
光素子に対する波長1.55μm の変調光信号に対する
3dB低下帯域を測定したところ、それぞれ、35GH
z、45GHz、48GHz及び23GHzの帯域を得
た。以上の結果から、実施例1から3の受光素子は、従
来の受光素子に比べて、帯域が広く、高速大容量光通用
に適していることが判る。The 3 dB reduction band for the modulated light signal having a wavelength of 1.55 μm was measured for the light receiving elements of Examples 1 to 3 and the conventional light receiving element.
Bands of z, 45 GHz, 48 GHz and 23 GHz were obtained. From the above results, it can be seen that the light receiving elements of Examples 1 to 3 have a wider band than the conventional light receiving elements and are suitable for high-speed and large-capacity light transmission.
【0017】以上、本発明の実施例の一つについて述べ
てきたが、光吸収層とキャリア走行層の上下に光を閉じ
込めるクラッド層を形成した導波路型受光素子として本
発明を構成することもできる。また、光吸収層とキャリ
ア走行層とはヘテロ界面となっているので、伝導帯には
ヘテロ接合スパイクが形成され、それに伴うポテンシャ
ルの井戸が素子特性に悪影響を及ぼすことが懸念され
る。その場合には、バンドギャップを滑らかに繋ぐよう
にグレーデッド領域を設ける等の改変を行うことができ
ることは言うまでもない。While one of the embodiments of the present invention has been described above, the present invention may be configured as a waveguide type light receiving element in which a clad layer for confining light above and below a light absorbing layer and a carrier transit layer is formed. it can. Further, since the light absorption layer and the carrier transit layer form a hetero interface, a heterojunction spike is formed in the conduction band, and there is a concern that a potential well associated therewith adversely affects device characteristics. In that case, it goes without saying that modifications such as providing a graded region so as to smoothly connect the band gaps can be made.
【0018】[0018]
【発明の効果】本発明によれば、少なくとも、光吸収層
とn側電極に電気的に接触する半導体電極接触層とを有
する半導体積層構造を備えた半導体受光素子において、
更に、受光する光のエネルギーより広いバンドギャップ
を有し、キャリア濃度が光吸収層とほぼ同じ半導体層を
キャリア走行層として光吸収層と半導体電極接触層との
間で光吸収層上に接して設けることにより、CR時定数
を小さく維持しつつキャリア走行時間を短縮し、広帯域
にわたり高速動作性に優れた半導体受光素子を実現して
いる。According to the present invention, there is provided a semiconductor light receiving device having a semiconductor laminated structure having at least a light absorbing layer and a semiconductor electrode contact layer electrically contacting an n-side electrode.
Furthermore, a semiconductor layer having a band gap wider than the energy of the received light and having a carrier concentration substantially equal to that of the light absorbing layer is in contact with the light absorbing layer between the light absorbing layer and the semiconductor electrode contact layer as a carrier traveling layer. By providing such a structure, the carrier transit time is shortened while keeping the CR time constant small, and a semiconductor light receiving element excellent in high-speed operation over a wide band is realized.
【図1】実施例1の受光素子の層構造を示す模式的断面
図である。FIG. 1 is a schematic cross-sectional view illustrating a layer structure of a light receiving element according to a first embodiment.
【図2】実施例2の受光素子の層構造の要部を示す模式
的断面図である。FIG. 2 is a schematic cross-sectional view illustrating a main part of a layer structure of a light receiving element according to a second embodiment.
【図3】実施例3の受光素子の層構造の要部を示す模式
的断面図である。FIG. 3 is a schematic cross-sectional view illustrating a main part of a layer structure of a light receiving element according to a third embodiment.
10 実施例1の受光素子 12 半絶縁性InP基板 14 層厚0.5μm のInPバッファ層 16 層厚0.5μm のn−InP電極コンタクト層 18 層厚0.3μm のi−InPキャリア走行層 20 層厚0.3μm のi−InGaAs光吸収層 22 層厚0.2μm のn−InPキャップ層 24 p側電極 26 n側電極 28 シリコン窒化膜 30 円形受光面 40 実施例2の受光素子 42 下部光吸収層 44 上部光吸収層 50 実施例3の受光素子 52 下部光吸収層 54 上部光吸収層 Reference Signs List 10 light receiving element of Example 1 12 semi-insulating InP substrate 14 0.5-μm thick InP buffer layer 16 0.5-μm thick n-InP electrode contact layer 18 18-μm thick i-InP carrier traveling layer 20 I-InGaAs light absorbing layer having a thickness of 0.3 μm 22 n-InP cap layer having a thickness of 0.2 μm 24 p-side electrode 26 n-side electrode 28 silicon nitride film 30 circular light receiving surface 40 light receiving element of the second embodiment 42 lower light Absorbing layer 44 Upper light absorbing layer 50 Light receiving element of Example 3 52 Lower light absorbing layer 54 Upper light absorbing layer
Claims (3)
気的に接触する半導体電極接触層とを有する半導体積層
構造を備えた半導体受光素子において、 受光する光のエネルギーより広いバンドギャップを有
し、キャリア濃度が光吸収層とほぼ同じ半導体層が、キ
ャリア走行層として、光吸収層と半導体電極接触層との
間で光吸収層上に接して設けられていることを特徴とす
る半導体受光素子。1. A semiconductor light receiving device having a semiconductor laminated structure having at least a light absorbing layer and a semiconductor electrode contact layer electrically contacting an n-side electrode, having a band gap wider than the energy of light to be received. A semiconductor layer having a carrier concentration substantially equal to that of the light absorbing layer is provided as a carrier transit layer between the light absorbing layer and the semiconductor electrode contact layer and in contact with the light absorbing layer. element.
なる半導体層の積層構造により構成され、正孔の走行を
速める内蔵電界が光吸収層内に形成されるように、キャ
リア走行層に近い層ほどバンドギャップが大きくなって
いることを特徴とする請求項1に記載の半導体受光素
子。2. The light absorbing layer is formed of a laminated structure of semiconductor layers having different band gaps from each other, and is close to the carrier traveling layer so that a built-in electric field for accelerating holes is formed in the light absorbing layer. 2. The semiconductor light receiving device according to claim 1, wherein the band gap is larger in the layer.
る半導体層の積層構造により構成され、正孔の走行を速
める内蔵電界が光吸収層内に形成されるように、キャリ
ア走行層に近い層ほどキャリア濃度が高くなっているこ
とを特徴とする請求項1に記載の半導体受光素子。3. The light absorbing layer is formed of a laminated structure of semiconductor layers having different carrier concentrations from each other, and is close to the carrier traveling layer so that a built-in electric field for accelerating hole traveling is formed in the light absorbing layer. 2. The semiconductor light receiving device according to claim 1, wherein the carrier concentration is higher in the layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9077207A JPH10270741A (en) | 1997-03-28 | 1997-03-28 | Semiconductor photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9077207A JPH10270741A (en) | 1997-03-28 | 1997-03-28 | Semiconductor photoreceptor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10270741A true JPH10270741A (en) | 1998-10-09 |
Family
ID=13627393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9077207A Pending JPH10270741A (en) | 1997-03-28 | 1997-03-28 | Semiconductor photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10270741A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002091485A1 (en) * | 2001-05-02 | 2002-11-14 | Anritsu Corporation | Semiconductor light receiving element provided with acceleration spacer layers between a plurality of light absorbing layers and method for fabricating the same |
US7368750B2 (en) * | 2002-09-20 | 2008-05-06 | Fujitsu Quantum Devices Limited | Semiconductor light-receiving device |
KR100831597B1 (en) * | 2000-04-27 | 2008-05-23 | 소니 가부시끼 가이샤 | Electronic component mounting system |
-
1997
- 1997-03-28 JP JP9077207A patent/JPH10270741A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100831597B1 (en) * | 2000-04-27 | 2008-05-23 | 소니 가부시끼 가이샤 | Electronic component mounting system |
WO2002091485A1 (en) * | 2001-05-02 | 2002-11-14 | Anritsu Corporation | Semiconductor light receiving element provided with acceleration spacer layers between a plurality of light absorbing layers and method for fabricating the same |
US6756609B2 (en) | 2001-05-02 | 2004-06-29 | Anritsu Corporation | Semiconductor light receiving element provided with acceleration spacer layers between plurality of light absorbing layers and method for fabricating the same |
US7368750B2 (en) * | 2002-09-20 | 2008-05-06 | Fujitsu Quantum Devices Limited | Semiconductor light-receiving device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4220688B2 (en) | Avalanche photodiode | |
JPH06350123A (en) | Composition-modulated avalanche photodiode | |
US6232141B1 (en) | Semiconductor light-receiving device and method of fabricating the same | |
US5324959A (en) | Semiconductor optical device having a heterointerface therein | |
US7368750B2 (en) | Semiconductor light-receiving device | |
JPH10270741A (en) | Semiconductor photoreceptor | |
JP2012124404A (en) | Photodiode and manufacturing method therefor | |
JP2730472B2 (en) | Semiconductor light receiving element | |
JP2003174185A (en) | Semiconductor light receiving element | |
JPH051629B2 (en) | ||
JPH09223805A (en) | Semiconductor waveguide type optical receiver | |
JP2962069B2 (en) | Waveguide structure semiconductor photodetector | |
JP4284781B2 (en) | MSM type photodiode | |
JP3138199B2 (en) | Semiconductor waveguide type light receiving element and method of manufacturing the same | |
JP3030394B2 (en) | Semiconductor light receiving element | |
JP2841876B2 (en) | Semiconductor light receiving element | |
JP2685703B2 (en) | Semiconductor photodetector and method of manufacturing the same | |
US7687874B2 (en) | Surface illuminated photodiode and optical receiver module | |
JPH0832105A (en) | Optical semiconductor device | |
US20230253516A1 (en) | Photodetector | |
JP2638445B2 (en) | Semiconductor light receiving element | |
JPS62282469A (en) | Semiconductor photodetector | |
JP2004047674A (en) | Semiconductor light receiving element | |
JP2005086028A (en) | Semiconductor photo detector | |
JPH06244450A (en) | Avalanche photodiode |