[go: up one dir, main page]

JPH10270246A - Magnetic thin film - Google Patents

Magnetic thin film

Info

Publication number
JPH10270246A
JPH10270246A JP10803097A JP10803097A JPH10270246A JP H10270246 A JPH10270246 A JP H10270246A JP 10803097 A JP10803097 A JP 10803097A JP 10803097 A JP10803097 A JP 10803097A JP H10270246 A JPH10270246 A JP H10270246A
Authority
JP
Japan
Prior art keywords
film
magnetic
thin film
present
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10803097A
Other languages
Japanese (ja)
Inventor
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP10803097A priority Critical patent/JPH10270246A/en
Publication of JPH10270246A publication Critical patent/JPH10270246A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/007Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Magnetic Films (AREA)

Abstract

(57)【要約】 【目的】本発明は、異方性磁界が20Oe以上、電気比
抵抗値が50μΩcm以上および飽和磁束密度が16k
G以上を有する高周波帯域で優れた軟磁性を示す磁性膜
を提供することを目的とする。 【構成】一般式Co100−X−Y−ZFe
(原子%)で示され、それぞれの原子比率が 10<X<50 2<Y<10 6<Z<25 15<X+Y+Z<65 であり、Mは酸化物の生成熱が−1000kJ以上のA
l,Zr,Ti,Hf,Mg,Be,あるいは希土類元
素の中の1種または2種以上の元素であり、異方性磁界
が20Oe以上、電気比抵抗値が50μΩcm以上およ
び飽和磁束密度が16kG以上を有することを特徴とす
る磁性薄膜。
(57) [Abstract] [Object] The present invention provides an anisotropic magnetic field of 20 Oe or more, an electric resistivity of 50 μΩcm or more, and a saturation magnetic flux density of 16 k.
It is an object of the present invention to provide a magnetic film exhibiting excellent soft magnetism in a high frequency band having G or more. [Configuration] formula Co 100-X-Y-Z Fe X M Y O Z
(Atomic%), and the respective atomic ratios are 10 <X <502 2 <Y <10 6 <Z <25 15 <X + Y + Z <65, and M is A where the heat of formation of the oxide is -1000 kJ or more.
1, Zr, Ti, Hf, Mg, Be, or one or more of the rare earth elements, having an anisotropic magnetic field of 20 Oe or more, an electric resistivity of 50 μΩcm or more, and a saturation magnetic flux density of 16 kG. A magnetic thin film having the above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は大きな飽和磁化、一軸磁
気異方性および電気比抵抗とを有する、高周波帯域で優
れた軟磁性を示す膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film having high saturation magnetization, uniaxial magnetic anisotropy and electric resistivity and exhibiting excellent soft magnetism in a high frequency band.

【0002】[0002]

【従来の技術】近年のコンピュータの高速化や高密度記
録化また移動体通信の発展に伴い、電子機器の動作周波
数を高める努力や、それに伴う小型化の試みが盛んに行
われている。この傾向はそれらの中で用いられる磁気デ
バイスにも及んでおり、そのための磁性材料の開発が検
討されているが、充分な特性を有するものはまだ見いだ
されていない。特に、近未来の超高密度記録のハードデ
スクドライブ装置の記録用ヘッド材料で大きな問題にな
ることが考えられる。
2. Description of the Related Art With the recent increase in the speed and recording density of computers and the development of mobile communications, efforts have been made to increase the operating frequency of electronic devices and to reduce the size of electronic devices accordingly. This tendency extends to the magnetic devices used therein, and the development of magnetic materials therefor has been studied, but none having sufficient properties has yet been found. In particular, it is conceivable that the recording head material of a hard disk drive device for ultra-high density recording in the near future will be a major problem.

【0003】一般に、1MHz以上の高周波帯域になる
と、金属系の磁性材料は電気抵抗が小さいために渦電流
が大きくなり、高周波帯域での使用が困難になる。その
ため、従来から高周波軟磁性材料としては軟磁性フェラ
イト等で代表される酸化物の磁性材料が用いられてき
た。フェライトは材料自体の電気抵抗が極めて大きいた
め渦電流による損失が小さい。ただし、フェライトは飽
和磁化が小さいため、透磁率の共鳴周波数がそれほど高
くなく、かつ低周波帯域で異常共鳴なども観察される。
また透磁率の大きさもそれほど大きくないために、その
用途には多くの制限があった。そして磁気デバイスのマ
イクロ化においてフェライトの最も大きな、そして致命
的な欠点は薄膜化が現在、全く出来ないことである。
Generally, in the high frequency band of 1 MHz or higher, eddy currents increase due to the low electrical resistance of metallic magnetic materials, making it difficult to use in the high frequency band. Therefore, an oxide magnetic material represented by a soft magnetic ferrite or the like has been conventionally used as a high-frequency soft magnetic material. Ferrite has a very high electric resistance of the material itself, so that loss due to eddy current is small. However, since the ferrite has a small saturation magnetization, the resonance frequency of the magnetic permeability is not so high, and abnormal resonance is observed in a low frequency band.
Further, since the magnitude of the magnetic permeability is not so large, there are many restrictions on its use. The biggest and fatal drawback of ferrite in microfabrication of magnetic devices is that thinning is not possible at present.

【0004】飽和磁化(Bs)が大きく、かつ高周波帯
域まで優れた透磁率の周波数依存性を示す磁性材料に対
する期待は、特に、高密度記録用の磁気ヘッドの分野や
高周波帯域でのマイクロトランス材の領域で大きく、こ
れまでに数多くの磁性材料、例えば、Fe−Hf−C
(長谷川、斎藤:電子情報通信学会技術研究報告:MR
89−12(1989))そしてFe−Ta−N(名
古、榊間、井原:日本応用磁気学会誌、15、365
(1991))などのFe系微結晶軟磁性膜が提案され
てきた。これらの材料はBsが大きいため、例えば、記
録用磁気ヘッド等においてオーバーライト特性の面で優
れており、現状での書き込み速度には十分対応できてい
る。しかし、年40%の割合で記録密度が上昇している
ハードデスクの昨今、数年後のさらなる高い記録密度の
記録システムでは、記録密度の上昇に伴い、ハードデス
クの速度は100MHz近傍になるために、現状の軟磁
性材料では対応できなくなることが考えられる。そのた
め飽和磁化が大きいこととともに、さらに高い周波帯域
まで優れた透磁率の周波数依存性を示す磁性材料が期待
されている。
The expectation for a magnetic material having a large saturation magnetization (Bs) and exhibiting an excellent frequency dependence of magnetic permeability up to a high frequency band is particularly demanded in the field of a magnetic head for high density recording and a micro transformer material in a high frequency band. And a large number of magnetic materials such as Fe-Hf-C
(Hasegawa, Saito: IEICE Technical Report: MR
89-12 (1989)) and Fe-Ta-N (Nago, Sakakima, Ihara: Journal of the Japan Society of Applied Magnetics, 15, 365)
(1991)) and other Fe-based microcrystalline soft magnetic films have been proposed. Since these materials have a large Bs, they are excellent in overwrite characteristics in, for example, a recording magnetic head and can sufficiently cope with the current writing speed. However, in recent years, the recording density of the hard disk is increasing at a rate of 40% per year. In the recording system of a higher recording density several years later, the speed of the hard disk becomes close to 100 MHz as the recording density increases. In addition, it is conceivable that the current soft magnetic material cannot be used. For this reason, a magnetic material exhibiting excellent saturation magnetization and excellent frequency dependence of magnetic permeability up to a higher frequency band is expected.

【0005】[0005]

【発明が解決しようとする課題】ハードデスクの記録容
量の高密度化や、高周波で動作するマイクロ磁気デバイ
スへの強い要望は、今後、益々増大していくものと考え
られる。例えば、大容量、超高速磁気記録システムを磁
性材料の点から考えると、記録媒体(磁気デスク)とし
ては大きな保磁力を有する磁性膜、記録用ヘッドとして
は大きな飽和磁化を有する軟磁性体、そして再生用ヘッ
ドとしては応答速度の良い軟磁性材料が求められる。こ
れらの問題の中で、磁気デスクは2000Oe以上の大
きな保磁力を有するCo−Pt−Cr膜で、再生ヘッド
はスピンバルブやトンネル接合タイプのMRヘッドの開
発などでクリヤ出来る見通しがでてきた。しかし、記録
ヘッド用軟磁性膜についてはまだ適切な材料が見いださ
れていない。同様の軟磁性材料に関する問題は高周波帯
域で動作するマイクロトランスやインダクタなどの分野
でも持ち上がりつつある。
It is considered that a strong demand for a higher density of the recording capacity of the hard disk and a micro magnetic device operating at a high frequency will be further increased in the future. For example, considering a large-capacity, ultra-high-speed magnetic recording system in terms of magnetic materials, a magnetic film having a large coercive force as a recording medium (magnetic desk), a soft magnetic material having a large saturation magnetization as a recording head, and As the reproducing head, a soft magnetic material having a good response speed is required. Among these problems, it is expected that the magnetic disk is a Co—Pt—Cr film having a large coercive force of 2000 Oe or more, and the reproducing head can be cleared by developing a spin valve or a tunnel junction type MR head. However, no suitable material has yet been found for a soft magnetic film for a recording head. Similar problems with soft magnetic materials are also emerging in fields such as micro-transformers and inductors that operate in the high frequency band.

【0006】近年、高密度記録用磁気ヘッド材料として
大きな飽和磁化を有するFe系軟磁性微結晶膜が開発さ
れ、記録ヘッド用軟磁性膜に関する問題は既に解決され
たかに見えた。確かに現有のFe系軟磁性微結晶膜はそ
の大きなBsが有するが故に、大きな保磁力を有する記
録媒体に対しても優れたオーバーライト特性を示す。し
かし、さらに記録密度が高くなると、透磁率の共鳴周波
数が100MHz付近の現在の磁性材料では、その透磁
率の周波数特性が問題となることが考えられる。現在で
も、大型のハードデスクドライブシステムでの外周のス
ピードは100MHzになんなんとしている。従って、
次世代の超高密度の小型ハードデスクシステムの磁気記
録用ヘッド材料に求められる特性は、従来の大きな飽和
磁化の他に、100MHz付近まで優れた透磁率の周波
数依存性を示すことである。そのため、軟磁性材料には
大きな飽和磁化の他に、高い電気抵抗と大きな異方性磁
界とが求められる。先に述べたFe系高Bs軟磁性微結
晶膜は、一軸磁気異方性がほとんど付与されていないた
めにμ’は大きいが、高周波帯域でのμ−f特性は良く
なく、次世代の超高密度磁気記録システムには耐えられ
なくなることが容易に推察できる。以上のことから、電
気比抵抗、異方性磁界、飽和磁化とが大きく、単層膜で
も高周波まで良好な透磁率の周波数依存性を示す軟磁性
薄膜材料が求められている。
In recent years, an Fe-based soft magnetic microcrystalline film having a large saturation magnetization has been developed as a material for a magnetic head for high-density recording, and it seems that the problem relating to the soft magnetic film for a recording head has already been solved. Certainly, since the existing Fe-based soft magnetic microcrystalline film has a large Bs, it exhibits excellent overwrite characteristics even for a recording medium having a large coercive force. However, when the recording density is further increased, it is conceivable that the current magnetic material having a magnetic resonance frequency of about 100 MHz has a problem with the frequency characteristic of the magnetic permeability. Even today, the outer peripheral speed of a large hard disk drive system is at 100 MHz. Therefore,
A characteristic required for a magnetic recording head material of a next-generation ultra-high-density compact hard disk system is that it exhibits excellent frequency dependence of magnetic permeability up to around 100 MHz in addition to the conventional large saturation magnetization. Therefore, in addition to a large saturation magnetization, a high electric resistance and a large anisotropic magnetic field are required for the soft magnetic material. The Fe-based high-Bs soft magnetic microcrystalline film described above has a large μ ′ because it has almost no uniaxial magnetic anisotropy, but does not have good μ-f characteristics in a high-frequency band, and is a next-generation It can easily be inferred that the high-density magnetic recording system cannot be endured. From the above, there is a need for a soft magnetic thin film material having a large electric resistivity, anisotropic magnetic field, and saturation magnetization and exhibiting good frequency dependence of magnetic permeability up to high frequencies even in a single-layer film.

【0007】本発明は上記の点に鑑みてなされたもの
で、高周波域まで優れた軟磁気特性を示す電気抵抗、異
方性磁界および飽和磁化の大きな軟磁性薄膜を提供する
ことを目的とする。
The present invention has been made in view of the above points, and has as its object to provide a soft magnetic thin film having excellent electric resistance, anisotropic magnetic field, and saturation magnetization exhibiting excellent soft magnetic characteristics up to a high frequency range. .

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の事
情を鑑みて鋭意努力した結果、僅かな酸素を含むCo−
Fe−Al系膜に、大きな飽和磁化、電気抵抗そして異
方性磁界を併せ持ち、かつ単層膜でも良好な高周波軟磁
気特性を示す膜が得られることを見いだし、本発明に至
ったものである。
Means for Solving the Problems The present inventors have made intensive efforts in view of the above circumstances, and as a result, have found that Co-containing a small amount of oxygen.
The inventors have found that a film having both high saturation magnetization, electric resistance, and anisotropic magnetic field, and exhibiting good high-frequency soft magnetic properties even with a single-layer film can be obtained with the Fe-Al-based film, which has led to the present invention. .

【0009】第1の発明は、一般式Co
100−X−Y−ZFe(原子%)で示さ
れ、それぞれの原子比率が 10<X<50 2<Y<10 6<Z<25 15<X+Y+Z<65 であり、Mは酸化物の生成熱が−1000kJ以上のA
l,Zr,Ti,Hf,Mg,Be,希土類元素の中の
1種または2種以上の元素であり、異方性磁界が20O
e以上、電気比抵抗値が50μΩcm以上および飽和磁
束密度が16kG以上を有することを特徴とする磁性薄
膜。
The first invention is based on the general formula Co
100-X-Y-Z shown in Fe X M Y O Z (atomic%), are the respective atomic ratios 10 <X <50 2 <Y <10 6 <Z <25 15 <X + Y + Z <65, M Is A whose heat of formation of oxide is -1000 kJ or more.
1, Zr, Ti, Hf, Mg, Be, or one or more of the rare earth elements, and has an anisotropic magnetic field of 200O.
e, an electric resistivity value of 50 μΩcm or more, and a saturation magnetic flux density of 16 kG or more.

【0010】第2の発明は、一般式Co
100−X−Y−ZFeAl(原子%)で示さ
れ、それぞれの原子比率が 10<X<50 2<Y<10 6<Z<25 15<X+Y+Z<65 であり、異方性磁界が20Oe以上、電気比抵抗値が5
0μΩcm以上および飽和磁束密度が16kG以上を有
することを特徴とする磁性薄膜。
The second invention is based on the general formula Co
100-X-Y-Z shown in Fe X Al Y O Z (atomic%), are the respective atomic ratios 10 <X <50 2 <Y <10 6 <Z <25 15 <X + Y + Z <65, different An isotropic magnetic field of 20 Oe or more and an electric resistivity of 5
A magnetic thin film having a magnetic flux density of 0 μΩcm or more and a saturation magnetic flux density of 16 kG or more.

【0011】第3の発明は、第1発明および第2発明に
記載の磁性薄膜とセラミックス薄膜とを交互に積層した
多層構造を有することを特徴とする磁性薄膜。
A third invention is a magnetic thin film having a multilayer structure in which the magnetic thin films and the ceramic thin films according to the first and second inventions are alternately laminated.

【0012】第4の発明は、第1発明および第2発明に
記載の磁性薄膜において、膜中の酸素濃度の40%未満
を窒素原子で置換した、異方性磁界が30Oe以上、電
気比抵抗値が50μΩcm以上および飽和磁束密度が1
5kG以上を有することを特徴とする磁性薄膜。
A fourth invention is the magnetic thin film according to the first and second inventions, wherein less than 40% of the oxygen concentration in the film is replaced by nitrogen atoms, the anisotropic magnetic field is 30 Oe or more, and the electrical resistivity is Value is 50 μΩcm or more and saturation magnetic flux density is 1
A magnetic thin film having 5 kG or more.

【0013】第5の発明は、第1発明ないし第4発明の
いずれか1項に記載の磁性薄膜からなる高密度磁気記録
ヘッド。
A fifth invention is a high-density magnetic recording head comprising the magnetic thin film according to any one of the first to fourth inventions.

【0014】第6の発明は、第1発明ないし第4発明の
いずれか1項に記載の磁性薄膜からなる1MHz以上で
動作するインダクタ。
According to a sixth aspect of the present invention, there is provided an inductor comprising the magnetic thin film according to any one of the first to fourth aspects of the present invention, which operates at 1 MHz or more.

【0015】第7の発明は、第1発明ないし第4発明の
いずれか1項に記載の磁性薄膜からなる1MHz以上で
動作するトランス。
According to a seventh aspect of the present invention, there is provided a transformer, comprising the magnetic thin film according to any one of the first to fourth aspects of the invention, operating at 1 MHz or more.

【0016】[0016]

【作用】[Action]

【0017】本発明の磁性膜が16kG以上の高飽和磁
束密度(Bs)を有するためには磁性原子としてCo単
体だけでは十分でなく、10%以上のFeで置換した合
金系である必要がある。ただし、Fe濃度が50%以上
の膜では、Bsは大きくなるが、Hkが20Oe未満に
なり、最終的には磁気的等方膜になってしまう。また軟
磁性を実現するためには、膜は20nm以下の粒径の結
晶粒から構成されていることが必要であり、そのために
は酸化物の生成熱が約1000kJ以上のM元素(M:
Al,Zr,Hf,Mg,Beあるいは希土類元素)を
2%以上含む必要がある。ただし、M元素濃度が10%
以上になるとBsが16kG以下になってしまう。酸素
濃度が6%以下では、M元素の酸化が不十分であり、粒
径が小さくならず、軟磁性は実現しない。一方、25%
以上では、Co−Fe元素も酸化されてしまい、磁化が
小さくなると共に、垂直磁化膜になってしまう。
In order for the magnetic film of the present invention to have a high saturation magnetic flux density (Bs) of 16 kG or more, it is not sufficient to use Co alone as a magnetic atom, and it is necessary to use an alloy system substituted with 10% or more of Fe. . However, in a film having an Fe concentration of 50% or more, Bs becomes large, but Hk becomes less than 20 Oe, and the film eventually becomes a magnetically isotropic film. Further, in order to realize soft magnetism, the film needs to be composed of crystal grains having a grain size of 20 nm or less. For that purpose, an oxide element has a heat of formation of about 1000 kJ or more.
Al, Zr, Hf, Mg, Be or a rare earth element) must be contained at 2% or more. However, M element concentration is 10%
Above this, Bs becomes 16 kG or less. When the oxygen concentration is 6% or less, the oxidation of the M element is insufficient, the particle size does not become small, and soft magnetism is not realized. On the other hand, 25%
In this case, the Co—Fe element is also oxidized, the magnetization becomes small, and the film becomes a perpendicular magnetization film.

【0018】本発明膜には、16kG以上のBsを示す
膜で、200μΩcm以上の大きな電気比抵抗を示す膜
は得られなかった。しかし、磁気デバイスを作製すると
きに必要とされる膜厚が1〜2μm以下であるために、
渦電流損失はそれほど大きくならない。ただし、それを
補う意味でも透磁率の共鳴周波数を1GHz付近まで高
める必要があり、そのためには高いBsと共に、Hkが
20Oeであることが望ましい。
As the film of the present invention, a film showing Bs of 16 kG or more and having a large electric resistivity of 200 μΩcm or more was not obtained. However, since the film thickness required when manufacturing a magnetic device is 1-2 μm or less,
Eddy current losses are not very large. However, in order to compensate for this, it is necessary to increase the resonance frequency of the magnetic permeability to around 1 GHz. For this purpose, it is desirable that Hk is 20 Oe together with high Bs.

【0019】[0019]

【実施例】以下、従来のFe系微結晶膜やナノグラニュ
ラー構造軟磁性膜の結果などとの比較を加えながら、本
発明の実施例を説明する。
Embodiments of the present invention will be described below by comparing the results with those of a conventional Fe-based microcrystalline film and a nano-granular structure soft magnetic film.

【0020】本発明を具体的実施例を用いてさらに詳し
く説明する。
The present invention will be described in more detail with reference to specific examples.

【実施例−1】RFマグネトロンスパッタ装置を用いて
(Co.Fe.92Al(原子%)ターゲット
を(Ar+O)混合ガス雰囲気中での反応スパッタ法
によりCo−Fe−Al−O薄膜を作製した。成膜条件
は以下に設定した。
Example 1 A (Co. 7 Fe. 3 ) 92 Al 8 (at.%) Target was subjected to a Co—Fe—Al— sputtering by a reactive sputtering method in an (Ar + O 2 ) mixed gas atmosphere using an RF magnetron sputtering apparatus. An O thin film was produced. The film forming conditions were set as follows.

【0021】 スパッタガス圧 6x10−3Torr 投入電力 200W 基板温度 20℃ 基板 Coming#7059(厚さ0.5mm) 膜厚 2.0〜3.0μm 酸素流量比 0.0〜1.0% 印加磁界 130Oe(一対の永久磁石)Sputter gas pressure 6 × 10 −3 Torr Input power 200 W Substrate temperature 20 ° C. Substrate Coming # 7059 (thickness 0.5 mm) Film thickness 2.0-3.0 μm Oxygen flow ratio 0.0-1.0% Applied magnetic field 130 Oe (pair of permanent magnets)

【0022】得られた試料の直流磁気特性を試料振動型
磁力計により測定した。結果を図1に示す。図中の2つ
のデータは、成膜時の磁界の印加方向に平行(//)、
垂直(⊥)に励磁して測定した結果を表わしている。試
料は、成膜時に印加した磁界方向と平行な一軸磁気異方
性を有しており、その異方性磁界の大きさは約45Oe
と十分に大きかった。また、垂直方向の履歴曲線(B−
Hヒステリシスループ)の結果から明らかなように、ル
ープの直進性が良く、膜の異方性分散が小さいことが推
察される。得られた膜の最も大きな特徴は飽和磁束密度
(Bs)の大きさであり、その値は17.8kGと非常
に大きいものであった。この膜の保磁力(Hc)は垂
直、平行共に約1.0Oeと小さく、軟磁性膜であるこ
とを示している。直流4端子法により測定したこの膜の
電気比抵抗(p)は、約100μΩcmとほぼアモルフ
ァス膜と同程度の値を示す。また図2にはパラレルライ
ン法で測定した本発明膜の透磁率の周波数依存性を示
す。破線はランダウ、リフシッツの運動方程式を基本と
した理論式(神保、綱島、内山:日本応用磁気学会誌、
14、289(1990))である。17kG以上の大
きなBsを持っているにもかかわらず、透磁率は400
MHzまで良好な周波数依存性を示し、理論式の結果と
もほぼ一致している。
The direct current magnetic characteristics of the obtained sample were measured by a sample vibration magnetometer. The results are shown in FIG. The two data in the figure are parallel to the direction of application of the magnetic field during film formation (//),
It shows the result of measurement by exciting vertically (⊥). The sample has uniaxial magnetic anisotropy parallel to the direction of the magnetic field applied during film formation, and the magnitude of the anisotropic magnetic field is about 45 Oe.
And it was big enough. In addition, a vertical hysteresis curve (B-
As is clear from the result of (H hysteresis loop), it is inferred that the straightness of the loop is good and the anisotropic dispersion of the film is small. The greatest feature of the obtained film was the magnitude of the saturation magnetic flux density (Bs), and the value was as large as 17.8 kG. The coercive force (Hc) of this film is as small as about 1.0 Oe in both the vertical and parallel directions, indicating that it is a soft magnetic film. The electrical resistivity (p) of this film measured by the DC four-terminal method is about 100 μΩcm, which is almost the same value as that of the amorphous film. FIG. 2 shows the frequency dependence of the magnetic permeability of the film of the present invention measured by the parallel line method. The broken line is a theoretical formula based on Landau and Lifshitz's equation of motion (Jinbo, Tsunashima, Uchiyama: Journal of the Japan Society of Applied Magnetics,
14, 289 (1990)). Despite having a large Bs of 17 kG or more, the permeability is 400
It shows good frequency dependence up to MHz and is almost in agreement with the result of the theoretical formula.

【0023】[0023]

【実施例−2】実施例−1と同一条件で、Co−Feタ
ーゲットにYチップを貼り付けた複合ターゲット
を用いてCo−Fe−Y−O膜を作製した。得られた試
料について直流磁気特性と交流磁気特性とを測定した。
図3には得られた膜の透磁率の周波数依存性の一例を示
す。また図中には直流磁気特性の測定結果も示す。図か
ら明らかなように、得られた膜の透磁率はCo−Fe−
Al−O膜の結果と同様に、約300の値を示し、かつ
良好な周波数依存性を示す。これとほぼ同様の結果が本
発明の他の組成系の膜でも観察された。
EXAMPLE -2] under the same conditions as in Example 1, to prepare a Co-Fe-Y-O film using a composite target in which paste the Y 2 O 3 chips Co-Fe target. DC magnetic characteristics and AC magnetic characteristics of the obtained sample were measured.
FIG. 3 shows an example of the frequency dependence of the magnetic permeability of the obtained film. Also shown in the figure are the measurement results of the DC magnetic characteristics. As apparent from the figure, the magnetic permeability of the obtained film is Co-Fe-
Similar to the result of the Al—O film, the value shows a value of about 300 and shows good frequency dependency. Approximately the same results were observed for films of other composition systems of the present invention.

【0024】[0024]

【実施例−3】従来の高電気抵抗軟磁性膜では、M原子
と酸素原子は優先的に結合して粒界を形成し、膜の磁気
特性特性を大きな影響を与えていることが知られてい
る。本発明膜の磁気特性に及ぼすMの濃度の効果
を明らかにするために、実施例−1と同一条件で、Co
とFeとの比を一定として、N濃度のみを0から15%
まで変化させた合金ターゲットを用いてCo−Fe−A
l−O膜を作製した。直流磁気特性の測定結果から求め
たBsの結果を図4に示す。分析の結果、得られた膜中
のAlと酸素の濃度比はほぼ1:3であり、図面の中で
は(Al.25O.75)として表示した。膜中の(A
l.25O.75)濃度(y+z)が増加しても、Co
−Fe−Al−O膜のBsの減少は(Al−O)原子に
よる単純希釈として計算した場合のそれと比較すると小
さい。本発明膜では生成熱の大きなNが選択的に酸素と
結合し、Al−O化合物を作るためCo−Feは遊離
し、Co−Fe濃度が変わっても大きな磁気モーメント
を維持しているものと推察される。このように本発明膜
はAlと酸素が膜中に共存することによってAlとCo
−Feとの合金化を妨げ、大きなBsを広範囲の(Al
O)濃度で実現している。
Embodiment 3 In a conventional high electric resistance soft magnetic film, it is known that M atoms and oxygen atoms are preferentially bonded to form a grain boundary, which greatly affects the magnetic characteristics of the film. ing. To clarify the effect of M Y O Z of concentration on the magnetic properties of the present invention films, under the same conditions as in Example -1, Co
With the ratio of Fe and Fe constant, only the N concentration is 0 to 15%
Co-Fe-A using an alloy target changed to
An l-O film was produced. FIG. 4 shows the results of Bs obtained from the measurement results of the DC magnetic characteristics. As a result of the analysis, the concentration ratio between Al and oxygen in the obtained film was approximately 1: 3, and was indicated as (Al. 25 O. 75 ) in the drawing. (A in the membrane
l. 25 O. 75 ) Even if the concentration (y + z) increases,
The decrease of Bs in the -Fe-Al-O film is small as compared with that calculated as simple dilution by (Al-O) atoms. In the film of the present invention, N having a large heat of formation is selectively bonded to oxygen to form an Al-O compound, so that Co-Fe is released, and a large magnetic moment is maintained even when the Co-Fe concentration changes. Inferred. Thus, the film of the present invention has Al and Co because Al and oxygen coexist in the film.
Alloying with -Fe to prevent large Bs from spreading over a wide range (Al
- O) is realized by concentration.

【0025】次に、これらの膜の電気比抵抗(p)をA
l濃度で整理した結果を図5に示す。pの増加率は膜の
組成系でそれほど大きな差異は見られない。本発明膜の
pは(AlO)濃度の増加と共にほぼ直線的に増大
し、25%(AlO)以上では100μΩcmを越え
る。このような大きなpには本発明膜のAlとOとが粒
界を形成することと、膜の結晶粒を小さくすることの2
つが寄与しているものと推察される。
Next, the electric resistivity (p) of these films is expressed by A
FIG. 5 shows the results arranged for 1 concentration. The increase rate of p does not show much difference between the composition systems of the films. The p of the film of the present invention increases almost linearly with an increase in the (Al - O) concentration, and exceeds 100 µΩcm at 25% (Al - O) or more. For such a large p, there are two factors: the formation of a grain boundary between Al and O of the film of the present invention and the reduction of the crystal grains of the film.
It is presumed that one of them contributes.

【0026】またCo−Fe−Al−O膜のHcは図6
に示す。図から明らかなように、(Al−O)濃度の増
加と共に、Hcは著しく小さくなり、広い(Al−O)
濃度範囲で20e以下の値を示す。このように、本発明
膜はAlと酸素が膜中に共存することによって良好な軟
磁性が実現しているものと推察される。なお、その起源
については構造の項で考察する。
The Hc of the Co—Fe—Al—O film is shown in FIG.
Shown in As is clear from the figure, Hc is remarkably reduced as the (Al-O) concentration increases, and the Hc becomes wider (Al-O).
It shows a value of 20e or less in the concentration range. As described above, it is presumed that the film of the present invention realizes good soft magnetism due to the coexistence of Al and oxygen in the film. The origin is discussed in the structure section.

【0027】本発明膜の異方性磁界(Hk)を(Al−
O)濃度で整理した結果を図7に示す。軟磁性を示す範
囲での本発明膜のHkは(Al−O)濃度の増加と共に
増大し、例えば、20%以上の(Al−O)を含む膜で
は約30Oe以上のHkが実現する。
The anisotropic magnetic field (Hk) of the film of the present invention is (Al-
FIG. 7 shows the results organized by O) concentration. The Hk of the film of the present invention in the range exhibiting soft magnetism increases with an increase in the (Al-O) concentration. For example, in a film containing 20% or more of (Al-O), Hk of about 30 Oe or more is realized.

【0028】図4、5、7の結果から明らかなように、
本発明膜ではBs,p,Hkの値を膜中の(Al−O)
濃度を選ぶことにより、ほぼ一義的にに決めることが出
来る。
As is clear from the results shown in FIGS.
In the film of the present invention, the values of Bs, p, and Hk are determined by (Al—O) in the film.
By selecting the concentration, it can be determined almost uniquely.

【0029】本発明膜における特性のAlおよびO濃度
の影響を明らかにするために、膜の構造をX線回折法に
より調べた。なお、AlとOのそれぞれの原子の影響を
明らかにする目的で、膜組成の表現を(Co.Fe.
3)100−yAlと(Co.Fe.
100−y−zAlyOzで示す。図8には比較例の
(Co.Fe.100−yAl膜(a)と本発
明膜である(Co.Fe.)100−ZAly
膜(b)の回折図形を示す。(Co.Fe.
00−yAl膜は基本的にBCC構造を有し、Al
濃度を変えても回折図形にはそれほど大きな変化が見ら
れない。一方、本発明膜では(Al−O)濃度によって
結晶配向や線幅に大きな変化が観察される。すなわち、
Al濃度の増加と共に(110)面が優先配向になり、
かつ線幅が広くなる。
In order to clarify the influence of the Al and O concentrations on the characteristics of the film of the present invention, the structure of the film was examined by an X-ray diffraction method. In order to clarify the effect of each atom of Al and O, the expression of the film composition is expressed as (Co. 7 Fe.
3) and 100-y Al y (Co. 7 Fe. 3)
Indicated by 100-yz AlyOz. Of the comparative example in FIG. 8 (Co. 7 Fe 3.) 100-y Al y film (a) and a membrane of the present invention (Co. 7 Fe 3.) 100 - y -Z Aly
Shows the diffraction pattern of O Z film (b). (Co. 7 Fe. 3 )
1 00-y Al y film has an essentially BCC structure, Al
Even if the concentration is changed, the diffraction pattern does not show much change. On the other hand, in the film of the present invention, a large change is observed in the crystal orientation and the line width depending on the (Al-O) concentration. That is,
As the Al concentration increases, the (110) plane becomes the preferred orientation,
In addition, the line width increases.

【0030】これらの回折図形の結果を結晶粒径(D)
と面間隔(d)で整理したのが図9、10である。な
お、DはSherrerの式を用いて計算した値である
(カリテー(松村源太郎訳):X線回折要論、(株)ア
グネ、1980)。Co−Fe−Al膜のDは、Al濃
度の増加と共にしだいに増加するのに対して、酸素を含
む本発明膜のDはCo−Fe−Al膜のそれと比較する
と全体的に小さく、かつAl濃度の増加と共に減少する
傾向を示し、10%Al以上の膜で急激に小さくなり、
その値は50Å以下になる(図9)。このような小さな
粒径を持つことが、Herzerの微結晶モデル(G.
Herzer:IEEE Trans.onMag.2
6 1397(1990))を満足し、軟磁性を示す主
な原因になっているものと考えられる。またCo−Fe
からなる結晶粒がBCC構造を有しているために、膜の
容易磁化方向が面内に存在するようになり、軟磁性化に
寄与しているものと推察できる。このような膜構造はA
lの選択酸化に起因しているものと考えられる。すなわ
ち、本発明でも成膜中にAlがスパッタガス中の酸素と
優先的に結び付き膜中の粒界を形成し、かつAl濃度の
増加と共に粒界が多くなるために結晶粒が微細化するも
のと考えられる。この考えは図10によって支持され
る。本発明膜の面間隔dはAl濃度が増加してもほとん
ど変化しないのに対して、Co−Fe−AlのそれはN
濃度の増加と共に増大する。この増加はAlがCo−F
e格子間に入り、格子間距離を膨張させるためと考えら
れる。一方、本発明膜ではAl濃度が増大しても酸素と
結び付いて粒界を形成し、Co−Fe格子間にはAl原
子が入らないため、格子面間隔は変化しないものと考え
られる。
The results of these diffraction patterns are calculated based on the crystal grain size (D).
FIGS. 9 and 10 show the arrangement by the surface spacing (d). Here, D is a value calculated using the Sherer's formula (Karite (Translated by Matsumura Gentaro): Introduction to X-ray Diffraction, Agne Corporation, 1980). The D of the Co—Fe—Al film gradually increases with the increase of the Al concentration, whereas the D of the film of the present invention containing oxygen is generally smaller than that of the Co—Fe—Al film, and It shows a tendency to decrease with an increase in concentration, and rapidly decreases in a film of 10% Al or more,
That value is less than 50 ° (FIG. 9). Having such a small particle size is based on the Herzer microcrystal model (G.
Herzer: IEEE Trans. onMag. 2
6 1397 (1990)), which is considered to be the main cause of soft magnetism. Co-Fe
Since the crystal grains composed of have a BCC structure, the easy magnetization direction of the film exists in the plane, and it can be inferred that this contributes to soft magnetization. Such a film structure is A
It is thought to be due to the selective oxidation of l. That is, also in the present invention, Al is preferentially linked to oxygen in the sputtering gas during film formation to form a grain boundary in the film, and the grain boundary is increased as the Al concentration increases, so that the crystal grains are refined. it is conceivable that. This idea is supported by FIG. The interplanar spacing d of the film of the present invention hardly changes even when the Al concentration increases, whereas that of Co—Fe—Al
Increases with increasing concentration. This increase is due to the fact that Al is Co-F
It is considered to be between e lattices and expand the lattice distance. On the other hand, in the film of the present invention, even if the Al concentration is increased, it is considered that the grain boundary is formed by combining with oxygen and Al atoms do not enter between Co—Fe lattices, so that the lattice spacing does not change.

【0031】[0031]

【表1】 [Table 1]

【0032】表1はこれまでの実施例とほぼ同様な方法
で作製した本発明の請求範囲の代表的な薄膜の代表例の
測定結果を、Bs,p,Hk,Hcで整理したものであ
る。また比較例として従来の軟磁性膜の結果を示す。従
来の膜でもFe−Ta−N膜のようないくつかの膜は1
7kG以上の大きなBsを示すが、Hkは著しく小さ
い。一方、Co系高電気抵抗膜は大きなHkとpを示す
が、Bsは15kG以下である。これに対して本発明膜
のいずれも適度な大きさのHkとpを有し、かつBs>
16kGが実現している。このように、酸化物の生成熱
の大きな元素を僅かに含むCo−Fe−M−O合金系膜
が軟磁性で、適度の大きさのHkとpを有し、かつ大き
なBsを有する磁性材料であることが確認された。
Table 1 shows the measurement results of typical examples of the typical thin film according to the present invention, which are produced by a method substantially similar to that of the above-described embodiments, and are summarized by Bs, p, Hk, and Hc. . As a comparative example, the result of a conventional soft magnetic film is shown. Some films such as Fe-Ta-N films are 1
It shows a large Bs of 7 kG or more, but Hk is extremely small. On the other hand, the Co-based high electric resistance film shows large Hk and p, but Bs is 15 kG or less. On the other hand, each of the films of the present invention has Hk and p of appropriate sizes, and Bs>
16 kG has been realized. As described above, a Co—Fe—MO alloy based film containing a small amount of an element having a large heat of formation of an oxide is soft magnetic, has a suitable Hk and p, and has a large Bs. Was confirmed.

【0033】既に述べたように、高周波帯域での透磁率
の劣化をもたらす自然共鳴周波数(fr)はHkとBs
との積に比例する。図11には本発明膜のHk、pとB
sから計算で求めたμf特性(a)と、μ−f特性か
ら求めたQ−f特性(b)(Q:性能指数)の結果を示
す。比較例として既存の高Bs軟磁性膜として良く知ら
れているFe−Ta−N膜の結果を併記した。図11
(a)に示すように、Fe−Ta−N膜はHkが小さい
ために、μ′は大きいが、それ以上にμ″も大きくなる
ため、100MHz付近で共鳴を起こしてしまう。一
方、本発明膜は大きなBsとHkとが相乗して、μ′は
ほぼ1GHz付近まで一定の値を維持する。これらの膜
を性能指数で整理した結果が図11(b)である。図か
ら明らかなように、既知のFe−Ta−N膜と比較し
て、本発明膜が約1桁の大きなQと高い共鳴周波数を有
している。
As described above, the natural resonance frequency (fr) that causes the magnetic permeability to deteriorate in the high frequency band is Hk and Bs
Is proportional to the product of FIG. 11 shows Hk, p and B of the film of the present invention.
mu was calculated from s - f characteristics (a), Q-f characteristic obtained from mu-f characteristic (b): shows the results of (Q performance index). As a comparative example, the result of an Fe—Ta—N film well known as an existing high Bs soft magnetic film is also shown. FIG.
As shown in (a), the Fe-Ta-N film has a large H 'due to a small Hk, but also has a large μ', which causes resonance at around 100 MHz. In the films, large Bs and Hk are synergistic, and μ ′ maintains a constant value up to about 1 GHz.The results of organizing these films by the figure of merit are shown in FIG. In addition, as compared with the known Fe-Ta-N film, the film of the present invention has a large Q of about one digit and a high resonance frequency.

【0034】[0034]

【実施例−4】さらなる高い周波数帯域まで優れた透磁
率の周波数依存性を示す膜を得るために、実施例−1と
同一条件で本発明膜とSiO、AlおよびAl
Nとの積層膜を作製した。磁性膜の1層当たりの膜厚を
0.5μm以下とし、磁性層とセラミックス層との層厚
比を4対1以下になるようにした。磁化の大きさが18
kG以上の磁性膜で構成した多層膜では、多層膜化して
も膜全体の磁化の大きさは15kG以下にはならない
し、Hkもほとんど変化しない。多層膜化した効果は渦
電流損失の低減化に現われ、透磁率の共鳴周波数が2G
Hz付近まで高くなる。多層膜化のもう一つの効果は磁
性層間の静磁結合の出現である。この結合力によって軟
磁気特性はさらに改善され、かつ異方性分散が極めて小
さくなる。以上のように、本発明膜を磁性膜として採用
した多層膜では、磁性膜のBsが大きいために、それほ
どBsを減少させること無しに、優れた透磁率の周波数
依存性を示す膜を得ることが出来る。なお、表1には多
層膜化したCo−Fe−A−O/Al膜およびC
o−Fe−Y−O/SiO膜の結果を示している。
Example 4 In order to obtain a film exhibiting excellent frequency dependence of magnetic permeability up to a further higher frequency band, the film of the present invention was mixed with SiO 2 , Al 2 O 3 and Al under the same conditions as in Example 1.
A laminated film with N was produced. The thickness of each magnetic film was set to 0.5 μm or less, and the thickness ratio of the magnetic layer to the ceramic layer was set to 4: 1 or less. Magnitude of 18
In a multilayer film composed of a magnetic film of kG or more, even if the multilayer film is formed, the magnitude of magnetization of the entire film does not become 15 kG or less, and Hk hardly changes. The effect of the multi-layer film appears in the reduction of the eddy current loss, and the resonance frequency of the magnetic permeability is 2G.
Hz. Another effect of the multilayer film is the appearance of magnetostatic coupling between the magnetic layers. The soft magnetic properties are further improved by this coupling force, and the anisotropic dispersion is extremely reduced. As described above, in the multilayer film using the film of the present invention as a magnetic film, since the Bs of the magnetic film is large, it is possible to obtain a film showing excellent frequency dependence of magnetic permeability without reducing Bs so much. Can be done. Table 1 shows a multilayered Co—Fe—A—O / Al 2 O 3 film and C
The result of the o-Fe-YO / SiO 2 film is shown.

【0035】尚、本発明の磁性薄膜Co100−x−y
−zFexMyOzは、上記のように高周波帯域で優れ
た軟磁気特性を示すが、これにV,Nb,Ta,Cr,
Mo,Mn,Ni,Cu,Si,Ge,B,Ca等の1
種または2種以上の元素を、高周波特性を向上する目的
で添加することは本発明の技術的思想の範疇内にあり、
添加しても良いことは当然である。
The magnetic thin film Co100-xy of the present invention is used.
-ZFexMyOz exhibits excellent soft magnetic characteristics in a high frequency band as described above, but this is due to V, Nb, Ta, Cr,
Mo, Mn, Ni, Cu, Si, Ge, B, Ca, etc.
The addition of a species or two or more elements for the purpose of improving high-frequency characteristics is within the scope of the technical idea of the present invention,
Of course, it may be added.

【0036】[0036]

【発明の効果】以上述べたように、本発明によれば、異
方性磁界、飽和磁化そして電気比抵抗が共に大きい軟磁
性薄膜で、高周波特性の優れた薄膜材料を提供すること
が出来る。本発明の薄膜は、飽和磁化が従来のFe基微
結晶膜のそれに勝とも劣らない大きさと、適度の大きさ
の異方性磁界を有するために、共鳴周波数が高く、また
電気比抵抗値も非晶質軟磁性材料と同程度の大きさであ
るために、渦電流損失が小さく、高い周波数まで、良好
な透磁率の周波数特性を維持することが出来る。さらに
本発明膜は、大きな飽和磁化と透磁率の優れた周波数依
存性を有しているために、記録用磁気ヘッドのコア材と
して用いた場合には、大きな保磁力を有する超高記録密
度の記録媒体でも、十分にオーバーライトすることが出
来るものと考えられために、その工業的意義は大きい。
As described above, according to the present invention, it is possible to provide a thin film material which is a soft magnetic thin film having a large anisotropic magnetic field, a saturation magnetization and a large electric resistivity, and which has excellent high frequency characteristics. The thin film of the present invention has a saturation magnetization that is not inferior to that of the conventional Fe-based microcrystalline film and an appropriate anisotropic magnetic field, so that the resonance frequency is high and the electrical resistivity is also high. Since the size is almost the same as that of the amorphous soft magnetic material, the eddy current loss is small, and the frequency characteristics of good magnetic permeability can be maintained up to a high frequency. Further, since the film of the present invention has a large saturation magnetization and excellent frequency dependence of magnetic permeability, when used as a core material of a recording magnetic head, it has an ultra-high recording density having a large coercive force. Since it is considered that a recording medium can be sufficiently overwritten, its industrial significance is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(Co.Fe.92Alターゲットを
用いて作製したCo55Fe23Al16膜のB−
Hヒステリシスループ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the B- of a Co 55 Fe 23 Al 6 O 16 film produced using a (Co. 7 Fe. 3 ) 92 Al 8 target.
H hysteresis loop.

【図2】Co55Fe23Al16膜の透磁率の周
波数依存性を示す特性図。
FIG. 2 is a characteristic diagram showing frequency dependence of magnetic permeability of a Co 55 Fe 23 Al 6 O 16 film.

【図3】Co52Fe22Al19膜の透磁率の周
波数依存性を示す特性図。
FIG. 3 is a characteristic diagram showing the frequency dependence of the magnetic permeability of a Co 52 Fe 22 Al 7 O 19 film.

【図4】(Co.Fe.100−y+z)(A
l.25O.75(y+z)膜のBsと(Al−O)
濃度との関係を示す特性図。
[4] (Co. 7 Fe. 3) 100- (y + z) (A
l. 25 O. 75 ) Bs of (y + z) film and (Al-O)
FIG. 4 is a characteristic diagram showing a relationship with a density.

【図5】(Co.Fe.100−(y+z)(A
l.25O.75(y+z)膜のpと(Al−O)濃
度との関係を示す特性図。
FIG. 5: (Co. 7 Fe. 3 ) 100- (y + z) (A
l. 25 O. 75 ) A characteristic diagram showing a relationship between p of the (y + z) film and (Al-O) concentration.

【図6】(Co.Fe.100−(y+z)(A
l.25O.75(y+z)膜のHcと(Al−O)
濃度との関係を示す特性図。
FIG. 6: (Co. 7 Fe. 3 ) 100- (y + z) (A
l. 25 O. 75 ) Hc of (y + z) film and (Al-O)
FIG. 4 is a characteristic diagram showing a relationship with a density.

【図7】(Co.Fe.100−(y+z)(A
l.25O.75(y+z)膜のHkと(Al−O)
濃度との関係を示す特性図。
FIG. 7: (Co. 7 Fe. 3 ) 100- (y + z) (A
l. 25 O. 75 ) Hk of (y + z) film and (Al-O)
FIG. 4 is a characteristic diagram showing a relationship with a density.

【図8】Al濃度を変えて作製した(Co.
e.100−y−zAlyO膜と(Co.
e.100−yAl膜とのX線回折図形。
FIG. 8 shows a sample (Co. 7 F) manufactured by changing the Al concentration.
e. 3) 100-y-z AlyO z film and (Co. 7 F
e. 3) 100-y Al y film and X-ray diffraction pattern of.

【図9】(Co.Fe.100−y−zAl
膜と(Co.Fe.100Al膜のX線
回折図形から求めた結晶粒径とAl濃度との関係を示す
特性図。
FIG. 9: (Co. 7 Fe. 3 ) 100-yz Al y O
z film and (Co. 7 Fe 3.) 100 - y Al y characteristic diagram showing the relationship between the grain size and the Al concentration determined from the X-ray diffraction pattern of the film.

【図10】(Co.Fe.100−y−zAl
膜と(Co.Fe.100−yAl膜のX
線回折図形から求めた面間隔とAl濃度との関係を示す
特性図。
FIG. 10: (Co. 7 Fe. 3 ) 100-yz Al y
O z layer and (Co. 7 Fe. 3) 100 -y Al y film X
FIG. 4 is a characteristic diagram showing a relationship between a plane interval and an Al concentration obtained from a line diffraction pattern.

【図11】本発明膜(Co50Fe32Al14
とFe−Ta−N膜の計算から求めた透磁率と性能指数
の周波数依存性を示す特性図。
FIG. 11 is a film (Co 50 Fe 32 Al 4 O 14 ) of the present invention.
FIG. 6 is a characteristic diagram showing the frequency dependence of the magnetic permeability and the figure of merit obtained from the calculations of the Fe and Ta-N films.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式Co100−X−Y−ZFe
(原子%)で示され、それぞれの原子比率が 10<X<50 2<Y<10 6<Z<25 15<X+Y+Z<65 であり、Mは酸化物の生成熱が−1000kJ以上のA
l,Zr,Ti,Hf,Mg,Be,および希土類元素
の中の1種または2種以上の元素であり、異方性磁界が
20Oe以上、電気比抵抗値が50μΩcm以上および
飽和磁束密度が16kG以上を有することを特徴とする
磁性薄膜。
1. A general formula Co 100-X-Y-Z Fe X M Y
OZ (atomic%), and the respective atomic ratios are 10 <X <502 2 <Y <10 6 <Z <25 15 <X + Y + Z <65, and M is an oxide having a heat of formation of -1000 kJ or more. A
l, Zr, Ti, Hf, Mg, Be, and one or more of the rare earth elements, having an anisotropic magnetic field of 20 Oe or more, an electrical resistivity of 50 μΩcm or more, and a saturation magnetic flux density of 16 kG. A magnetic thin film having the above.
【請求項2】一般式Co100−X−Y−ZFeAl
(原子%)で示され、それぞれの原子比率が 10<X<50 2<Y<10 6<Z<25 15<X+Y+Z<65 であり、異方性磁界が20Oe以上、電気比抵抗値が5
0μΩcm以上および飽和磁束密度が16kG以上を有
することを特徴とする磁性薄膜。
2. A compound of the general formula Co 100-XYZ Z Fe X Al
Y O Z (atomic%), each atomic ratio is 10 <X <502 2 <Y <10 6 <Z <25 15 <X + Y + Z <65, the anisotropic magnetic field is 20 Oe or more, and the electric resistivity is Value 5
A magnetic thin film having a magnetic flux density of 0 μΩcm or more and a saturation magnetic flux density of 16 kG or more.
【請求項3】請求項1および2に記載の磁性薄膜とセラ
ミックス薄膜とが交互に積層した多層構造を有すること
を特徴とする磁性薄膜。
3. A magnetic thin film having a multilayer structure in which the magnetic thin films and the ceramic thin films according to claim 1 are alternately laminated.
【請求項4】請求項1および2に記載の磁性薄膜におい
て、膜中の酸素濃度の40%未満を窒素原子で置換し
た、異方性磁界が20Oe以上、電気比抵抗値が50μ
Ωcm以上および飽和磁束密度が16kG以上を有する
ことを特徴とする磁性薄膜。
4. The magnetic thin film according to claim 1, wherein less than 40% of the oxygen concentration in the film is replaced by nitrogen atoms, the anisotropic magnetic field is 20 Oe or more, and the electric resistivity is 50 μm.
A magnetic thin film having a Ωcm or more and a saturation magnetic flux density of 16 kG or more.
【請求項5】請求項1ないし4のいずれか1項に記載の
磁性薄膜からなる高密度磁気記録ヘッド。
5. A high-density magnetic recording head comprising the magnetic thin film according to claim 1.
【請求項6】請求項1ないし4のいずれか1項に記載の
磁性薄膜からなる1MHz以上で動作するインダクタ。
6. An inductor, comprising the magnetic thin film according to claim 1, which operates at 1 MHz or higher.
【請求項7】請求項1ないし4のいずれか1項に記載の
磁性薄膜からなる1MHz以上で動作するトランス。
7. A transformer comprising the magnetic thin film according to claim 1 and operating at 1 MHz or higher.
JP10803097A 1997-03-22 1997-03-22 Magnetic thin film Withdrawn JPH10270246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10803097A JPH10270246A (en) 1997-03-22 1997-03-22 Magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10803097A JPH10270246A (en) 1997-03-22 1997-03-22 Magnetic thin film

Publications (1)

Publication Number Publication Date
JPH10270246A true JPH10270246A (en) 1998-10-09

Family

ID=14474185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10803097A Withdrawn JPH10270246A (en) 1997-03-22 1997-03-22 Magnetic thin film

Country Status (1)

Country Link
JP (1) JPH10270246A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020878A1 (en) * 1999-01-18 2000-07-19 Matsushita Electric Industrial Co., Ltd. High electric resistance magnetic film
WO2001054145A1 (en) * 2000-01-24 2001-07-26 Tokin Corporation Magnetic substance with maximum complex permeability in quasi-microwave band and method for production of the same
JP2002158486A (en) * 2000-11-17 2002-05-31 Res Inst Electric Magnetic Alloys Electromagnetic wave absorbing film
WO2002058086A1 (en) * 2001-01-18 2002-07-25 Taiyo Yuden Co. Ltd. Granular thin magnetic film and method of manufacturing the film, laminated magnetic film, magnetic part, and electronic device
US6828046B2 (en) 2001-04-13 2004-12-07 Fujitsu Limited Soft magnetic film of FeCoMO having a high saturation flux density, a moderate soft magnetism and a uniaxial magnetic anisotropy
US6970324B2 (en) 2002-02-04 2005-11-29 Fujitsu Limited Thin film head with nickel-iron alloy non-magnetic substratum between non-magnetic gap layer and upper magnetic pole layer
EP2028690A3 (en) * 2000-04-04 2011-02-09 Nec Tokin Corporation Electromagnetic noise suppressor, semiconductor device using the same, and method of manufacturing the same
JP2017041599A (en) * 2015-08-21 2017-02-23 公益財団法人電磁材料研究所 Ultra-high frequency ferromagnetic thin film and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020878A1 (en) * 1999-01-18 2000-07-19 Matsushita Electric Industrial Co., Ltd. High electric resistance magnetic film
US6379810B1 (en) 1999-01-18 2002-04-30 Matsushita Electric Industrial Co., Ltd. High resistance magnetic film
WO2001054145A1 (en) * 2000-01-24 2001-07-26 Tokin Corporation Magnetic substance with maximum complex permeability in quasi-microwave band and method for production of the same
KR100749679B1 (en) * 2000-01-24 2007-08-16 엔이씨 도낀 가부시끼가이샤 Magnetic material with maximum composite permeability in sub-microwave band and its manufacturing method
EP2028690A3 (en) * 2000-04-04 2011-02-09 Nec Tokin Corporation Electromagnetic noise suppressor, semiconductor device using the same, and method of manufacturing the same
JP2002158486A (en) * 2000-11-17 2002-05-31 Res Inst Electric Magnetic Alloys Electromagnetic wave absorbing film
WO2002058086A1 (en) * 2001-01-18 2002-07-25 Taiyo Yuden Co. Ltd. Granular thin magnetic film and method of manufacturing the film, laminated magnetic film, magnetic part, and electronic device
US7060374B2 (en) 2001-01-18 2006-06-13 Taiyo Yuden Co., Ltd. Granular magnetic thin film and method for making the same, multilayered magnetic film, magnetic components and electronic equipment
US7498088B2 (en) 2001-01-18 2009-03-03 Taiyo Yuden Co., Ltd. Granular magnetic thin film and method for making the same, multilayered magnetic film, magnetic components and electronic equipment
US6828046B2 (en) 2001-04-13 2004-12-07 Fujitsu Limited Soft magnetic film of FeCoMO having a high saturation flux density, a moderate soft magnetism and a uniaxial magnetic anisotropy
US6970324B2 (en) 2002-02-04 2005-11-29 Fujitsu Limited Thin film head with nickel-iron alloy non-magnetic substratum between non-magnetic gap layer and upper magnetic pole layer
JP2017041599A (en) * 2015-08-21 2017-02-23 公益財団法人電磁材料研究所 Ultra-high frequency ferromagnetic thin film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Hayakawa et al. High resistive nanocrystalline Fe-MO (M= Hf, Zr, rare-earth metals) soft magnetic films for high-frequency applications
CA2531373C (en) Magnetic laminated structure and method of making
JPH11340037A (en) SOFT MAGNETIC FILM, SOFT MAGNETIC MULTILAYER FILM, PROCESS FOR PRODUCING THEM, AND MAGNETIC ELEMENT USING THEM
JPH06338410A (en) Soft magnetic multilayer film and magnetic head
Luborsky et al. The role of amorphous materials in the magnetics industry
JPH10270246A (en) Magnetic thin film
JP3970610B2 (en) Magnetic thin film and recording head
Makino et al. Nanocrystalline soft magnetic Fe M B (M= Zr, Hf, Nb), Fe M O (M= Zr, Hf, rare earth) alloys and their applications
Ohnuma et al. Metal–insulator type nano-granular soft magnetic thin films investigations on mechanism and applications
JPH11340036A (en) Soft magnetic film, thin film magnetic head using the same, planar magnetic element, and filter
Kataoka et al. High frequency permeability of nanocrystalline Fe–Cu–Nb–Si–B single and multilayer films
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JP2554444B2 (en) Uniaxial magnetic anisotropic thin film
JPWO2005027154A1 (en) Magnetic thin film for high frequency, its manufacturing method and magnetic element
JP3956061B2 (en) Uniaxial magnetic anisotropic film
KR0177922B1 (en) Soft magnetic thin film
JPH0282601A (en) Multilayer magnetic film
JPH0974016A (en) High frequency low loss magnetic thin film
Couderc et al. FeHfN and FeHfNO soft magnetic films for RF applications
JPH10289821A (en) Magnetic device for high frequency band
JP3810881B2 (en) High frequency soft magnetic film
JP3232592B2 (en) Magnetic head
CN114678185B (en) A kind of multilayer magnetic core film based on amorphous CoNiFe and preparation method thereof
JPH0636928A (en) Soft magnetic material
JP3272738B2 (en) Soft magnetic multilayer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601