JPH10270169A - Solid-state optical function device and method of manufacturing the same - Google Patents
Solid-state optical function device and method of manufacturing the sameInfo
- Publication number
- JPH10270169A JPH10270169A JP9051702A JP5170297A JPH10270169A JP H10270169 A JPH10270169 A JP H10270169A JP 9051702 A JP9051702 A JP 9051702A JP 5170297 A JP5170297 A JP 5170297A JP H10270169 A JPH10270169 A JP H10270169A
- Authority
- JP
- Japan
- Prior art keywords
- solid
- electrode
- state optical
- organic polymer
- transparent electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229920000642 polymer Polymers 0.000 claims abstract description 37
- 230000005281 excited state Effects 0.000 claims abstract description 9
- 229920000620 organic polymer Polymers 0.000 claims description 39
- 239000000758 substrate Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 26
- 239000011882 ultra-fine particle Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 238000005507 spraying Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000007731 hot pressing Methods 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 239000011800 void material Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011521 glass Substances 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 239000012860 organic pigment Substances 0.000 abstract 3
- 239000002245 particle Substances 0.000 abstract 1
- 239000000975 dye Substances 0.000 description 52
- 239000010408 film Substances 0.000 description 19
- 239000007921 spray Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 12
- 239000004973 liquid crystal related substance Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 229920001940 conductive polymer Polymers 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- -1 cyanine iodide compounds Chemical class 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 5
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical compound N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005401 electroluminescence Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229960000956 coumarin Drugs 0.000 description 3
- 235000001671 coumarin Nutrition 0.000 description 3
- VBVAVBCYMYWNOU-UHFFFAOYSA-N coumarin 6 Chemical compound C1=CC=C2SC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 VBVAVBCYMYWNOU-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005459 micromachining Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- MUSLHCJRTRQOSP-UHFFFAOYSA-N rhodamine 101 Chemical compound [O-]C(=O)C1=CC=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MUSLHCJRTRQOSP-UHFFFAOYSA-N 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- QZXAEJGHNXJTSE-UHFFFAOYSA-N 7-(ethylamino)-4,6-dimethylchromen-2-one Chemical compound O1C(=O)C=C(C)C2=C1C=C(NCC)C(C)=C2 QZXAEJGHNXJTSE-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- MASVCBBIUQRUKL-UHFFFAOYSA-N POPOP Chemical compound C=1N=C(C=2C=CC(=CC=2)C=2OC(=CN=2)C=2C=CC=CC=2)OC=1C1=CC=CC=C1 MASVCBBIUQRUKL-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229940043267 rhodamine b Drugs 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical compound C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- YPYPBEGIASEWKA-UHFFFAOYSA-N 5-phenyl-1,3-oxazole Chemical compound O1C=NC=C1C1=CC=CC=C1 YPYPBEGIASEWKA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- JRUYYVYCSJCVMP-UHFFFAOYSA-N coumarin 30 Chemical compound C1=CC=C2N(C)C(C=3C4=CC=C(C=C4OC(=O)C=3)N(CC)CC)=NC2=C1 JRUYYVYCSJCVMP-UHFFFAOYSA-N 0.000 description 1
- XHXMPURWMSJENN-UHFFFAOYSA-N coumarin 480 Chemical compound C12=C3CCCN2CCCC1=CC1=C3OC(=O)C=C1C XHXMPURWMSJENN-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- VYXSBFYARXAAKO-UHFFFAOYSA-N ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate;hydron;chloride Chemical compound [Cl-].C1=2C=C(C)C(NCC)=CC=2OC2=CC(=[NH+]CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- OELZFJUWWFRWLC-UHFFFAOYSA-N oxazine-1 Chemical compound C1=CC(N(CC)CC)=CC2=[O+]C3=CC(N(CC)CC)=CC=C3N=C21 OELZFJUWWFRWLC-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
- H10K59/80523—Multilayers, e.g. opaque multilayers
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、携帯用パーソナ
ルコンピュータ等の電子機器において画像情報等の表示
を行う表示装置等に利用可能な固体光機能素子およびそ
の製造方法に関する。さらに詳しくは、この発明は薄膜
内に有機色素を単分子およびこれらの集合体・凝集体か
ら構成される超微粒子の形で含む発光層を備えた固体光
機能素子およびその製造方法に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state optical device which can be used for a display device for displaying image information and the like in an electronic device such as a portable personal computer and a method of manufacturing the same. More specifically, the present invention relates to a solid-state optical functional device having a light-emitting layer in the form of ultrafine particles composed of a single molecule of an organic dye and an aggregate or aggregate thereof in a thin film, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来から、画像表示装置としてCRTデ
ィスプレイが用いられている。CRT(陰極線管)は、
解像度や対応速度等の点で優れていることは言うまでも
ない。しかし、その寸法、重量、製造コスト等の点でフ
ラットパネル型ディスプレイに代替されつつある。2. Description of the Related Art Conventionally, a CRT display has been used as an image display device. CRT (cathode ray tube)
Needless to say, it is excellent in resolution and corresponding speed. However, flat panel displays are being replaced by flat panel displays in terms of size, weight, manufacturing cost and the like.
【0003】フラットパネル型のディスプレイは、特に
携帯型のワードプロセッサ、パーソナルコンピュータ等
の画像表示手段として利用されている。また、最近では
デスク上のスペース確保等を目的として、フラットパネ
ル型ディスプレイをデスクトップ型パーソナルコンピュ
ータ用画像表示手段として利用する傾向も高まってき
た。このようなフラットパネル型ディスプレイとして
は、液晶を利用した液晶ディスプレイや、微小なプラズ
マ放電管を利用したプラズマ・ディスプレイが実用化さ
れている。[0003] Flat panel displays are used as image display means especially for portable word processors and personal computers. Recently, there has been an increasing tendency to use a flat panel display as an image display means for a desktop personal computer for the purpose of securing a space on a desk or the like. As such a flat panel display, a liquid crystal display using a liquid crystal and a plasma display using a minute plasma discharge tube have been put to practical use.
【0004】例えば、液晶ディスプレイは、液晶を挟み
込む2枚の基板ガラスと、一方のガラス板上に設置さ
れ、かつ薄膜トランジスタ等の電子的駆動回路を微細加
工してなる透明電極とを備える。このような構成からな
る液晶ディスプレイは、消費電力が少なく、かつ軽量性
に優れているので、幅広く使用されている。しかし、い
わゆる自己発光形ではないため、バックライト等の照明
光源が必要となる。また、液晶ディスプレイの画面に垂
直な方向から視線がずれると見えにくいという視野角上
の制約や、応答が遅い等の問題点もある。[0004] For example, a liquid crystal display includes two substrate glasses sandwiching liquid crystal, and a transparent electrode provided on one of the glass plates and formed by finely processing an electronic drive circuit such as a thin film transistor. A liquid crystal display having such a configuration is widely used because of its low power consumption and excellent lightness. However, since it is not a so-called self-luminous type, an illumination light source such as a backlight is required. In addition, there are also problems such as a restriction on the viewing angle that it is difficult to see if the line of sight deviates from the direction perpendicular to the screen of the liquid crystal display, and a slow response.
【0005】ところで、画像表示装置の新たな構成要素
として、自己発光形表示装置であるフィールド・エミッ
ション・ディスプレイ(FED)等の真空マイクロ・デ
バイスが注目されるようになってきた。この真空マイク
ロ・デバイスは、マイクロマシニングと真空技術とを駆
使し、数ミクロンのシリコンの針の先端にメタライゼー
ション(金属被膜をかぶせ)を行うことによって作製さ
れた冷陰極を備える全固体表示装置である。したがっ
て、真空マイクロ・デバイスの製造は、上記液晶の製造
工程のような液体を扱う工程がなく、全てドライ・プロ
セスで行われる。また、真空マイクロ・デバイスの応答
時間は数マイクロ秒と高速であり、動画の再生に十分な
速度を示すことから次世代のフラットパネル型ディスプ
レイとして研究が進められている。As a new component of the image display device, a vacuum micro device such as a field emission display (FED), which is a self-luminous display device, has been receiving attention. This vacuum micro device is an all-solid-state display device with a cold cathode made by using micromachining and vacuum technology to perform metallization (metal coating) on the tip of a silicon needle of several microns. is there. Therefore, the manufacturing of the vacuum micro device is entirely performed by a dry process without a step of handling a liquid like the above-described liquid crystal manufacturing process. In addition, the response time of the vacuum micro device is as fast as several microseconds, and the speed is sufficient for reproducing moving images. Therefore, research is being conducted as a next-generation flat panel display.
【0006】[0006]
【発明が解決しようとする課題】しかし、このような真
空マイクロ・デバイスは、真空部があり、また発光体材
料の選択の幅が狭く、主に青色等の短波長側の発光体に
は十分な性能を有するものがないという解決すべき課題
を有する。また、表示素子の電極に円錐状または針状の
電界放射エミッタをもち、ZnS(Ag,Al)等のド
ナー/アクセプタ対発光型の蛍光体膜で交流駆動薄膜エ
レクトロ・ルミネッセンス(EL)を実現する提案がな
されている。例えば、特開平6−13186号公報に開
示された電界放射型固体発光素子は、図7に示すよう
に、Si基板71上に円錐状または針状の電解放射エミ
ッタ72を二次元アレイ状に形成し、その上にドナー/
アクセプタ対発光型の蛍光体膜73、透明絶縁膜74、
および透明電極75を順次積層してなる。しかし、上記
蛍光体膜73は発光効率が低く、輝度は十分でない。However, such a vacuum micro device has a vacuum portion and a narrow range of choice of luminous material, and is not sufficient for luminous materials mainly on the short wavelength side such as blue. There is a problem to be solved that there is no one having an excellent performance. In addition, the electrode of the display element has a conical or needle-shaped field emission emitter, and AC-driven thin-film electroluminescence (EL) is realized by a donor / acceptor pair emission type phosphor film such as ZnS (Ag, Al). A proposal has been made. For example, in a field emission type solid state light emitting device disclosed in Japanese Patent Application Laid-Open No. 6-13186, a conical or needle-shaped electrolytic radiation emitter 72 is formed in a two-dimensional array on a Si substrate 71 as shown in FIG. And the donor /
Acceptor pair emission type phosphor film 73, transparent insulating film 74,
And the transparent electrode 75 are sequentially laminated. However, the phosphor film 73 has low luminous efficiency and insufficient luminance.
【0007】さらに、化合物選択の観点からは有利とさ
れる有機化合物を用いた多層構造からなるエレクトロ・
ルミネッセンスの研究開発が実用化に向けて続けられて
いる。しかし、複数の層を接合させるプロセスの難し
さ、電流注入による接合部の劣化等、解決すべき種々の
課題がある。これらを解決する方法として真空中プロセ
スを採用し、高品位な接合の作製、残留不純物の除去等
の改善が行われているが、そのような課題を解決するに
は至っていない。Further, an electro-optical device having a multilayer structure using an organic compound which is advantageous from the viewpoint of compound selection.
Luminescence research and development is continuing toward commercialization. However, there are various problems to be solved, such as difficulty in a process of bonding a plurality of layers, deterioration of a bonded portion due to current injection, and the like. As a method for solving these problems, a process in vacuum has been adopted to improve the production of high-quality junctions and the removal of residual impurities. However, such problems have not been solved.
【0008】したがって、本発明の目的は、上述したよ
うな従来技術の表示素子がもつ解決すべき課題を解決
し、自己発光形で応答速度の速い固体光機能素子および
その製造方法を提供することである。Accordingly, an object of the present invention is to solve the problems to be solved by the prior art display device as described above, and to provide a self-luminous solid-state optical device having a high response speed and a method of manufacturing the same. It is.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、本発明にもとづく固体光機能素子は、板状の透明電
極と、透明電極に対向するようにして設けられた針状電
極と、透明電極および前記針状電極の間に配置され、か
つ有機高分子媒質と該有機高分子媒質中に単分子または
/および超微粒子の形で分散された有機色素とを含有し
た高分子薄膜からなる発光層と、とを有し、さらに透明
電極と針状電極との間に電圧が印加されることによって
有機色素が励起状態となり、該励起状態となった有機色
素からの発光が透明電極を通して外部に出力されること
を特徴とする。Means for Solving the Problems In order to solve the above-mentioned problems, a solid-state optical functional device according to the present invention comprises a plate-like transparent electrode, a needle-like electrode provided so as to face the transparent electrode, and A polymer thin film disposed between a transparent electrode and the needle-shaped electrode and containing an organic polymer medium and an organic dye dispersed in the form of a single molecule or / and ultrafine particles in the organic polymer medium; A light-emitting layer, and further, when a voltage is applied between the transparent electrode and the needle electrode, the organic dye is in an excited state, and light emitted from the excited organic dye is externally transmitted through the transparent electrode. Is output to
【0010】好ましくは、上記超微粒子の大きさは、直
径が50nm以下である。Preferably, the ultrafine particles have a diameter of 50 nm or less.
【0011】好ましくは、上記有機高分子媒質は、導電
性またはキャリア輸送性の有機高分子である。Preferably, the organic polymer medium is a conductive or carrier-transporting organic polymer.
【0012】好ましくは、上記発光層と上記透明電極と
の間に、導電性またはキャリア輸送性の有機高分子層を
有する。Preferably, a conductive or carrier transporting organic polymer layer is provided between the light emitting layer and the transparent electrode.
【0013】好ましくは、針状電極の寸法は、高さ20
0nm以上および先端曲率半径100nm以下である。[0013] Preferably, the size of the needle electrode is height 20
It is 0 nm or more and the tip curvature radius is 100 nm or less.
【0014】好ましくは、電源と電極との間に静電容量
を接続し、直流電流を遮断し、電極に直流電圧のみを印
加するように構成する。Preferably, a capacitance is connected between the power supply and the electrode, a DC current is cut off, and only a DC voltage is applied to the electrode.
【0015】好ましくは、素子内の空隙部は、電気絶縁
性の有機高分子によって充填されている。Preferably, the void in the element is filled with an electrically insulating organic polymer.
【0016】好ましくは、素子内の有機高分子の不揮発
成分の残留分は、10-6Pa以下である。Preferably, the residual amount of the nonvolatile component of the organic polymer in the device is 10 -6 Pa or less.
【0017】また、本発明にもとづく固体光機能素子の
製造方法は、上記固体光機能素子の発光層を、溶液また
は分散液状態の材料を高真空容器内に噴霧して基板上に
堆積させて加熱処理する有機薄膜形成法で形成すること
を特徴とする。Further, in the method for manufacturing a solid-state optical function element according to the present invention, the light-emitting layer of the solid-state optical function element is deposited on a substrate by spraying a material in a solution or dispersion state into a high vacuum container. It is characterized by being formed by an organic thin film forming method of heat treatment.
【0018】好ましくは、上記基板が板状の透明電極で
ある。Preferably, the substrate is a plate-shaped transparent electrode.
【0019】好ましくは、発光層上に、電気絶縁性の有
機高分子層を形成し、該有機高分子層上に針状電極を形
成した電極基板をホットプレスにより接合する。Preferably, an electrically insulating organic polymer layer is formed on the light emitting layer, and an electrode substrate having a needle electrode formed on the organic polymer layer is joined by hot pressing.
【0020】好ましくは、電気絶縁性の有機高分子層を
上記有機薄膜形成法で形成する。Preferably, an electrically insulating organic polymer layer is formed by the above-mentioned organic thin film forming method.
【0021】好ましくは、上記発光層および有機高分子
層の形成、およびホットプレスの工程を10-6Pa以下
の高真空雰囲気下で行い、不揮発成分の残留分を、10
-6Pa以下とする。Preferably, the steps of forming the light emitting layer and the organic polymer layer and performing the hot pressing are performed in a high vacuum atmosphere of 10 −6 Pa or less, and the residual amount of the nonvolatile component is reduced to 10 −6 Pa.
-6 Pa or less.
【0022】このように、本発明の固体光機能素子は、
有機高分子媒質中に有機色素が単分子または/および超
微粒子の形で分散された高分子薄膜からなる発光層を板
状透明電極と針状電極との間に配置し、両電極間に電圧
を印加することにより、該有機色素の励起状態を生成
し、該励起状態からの発光を透明電極を通して外部に取
り出すようにしたことを特徴とするもので、このように
構成されることによって、針状電極から電極近傍の強い
電界により生じるホットキャリアーにより、有機色素が
励起され、発光を生じる。As described above, the solid state optical function device of the present invention
A light-emitting layer composed of a polymer thin film in which an organic dye is dispersed in the form of a single molecule or / and ultrafine particles in an organic polymer medium is arranged between a plate-like transparent electrode and a needle-like electrode, and a voltage is applied between the two electrodes. Is applied to generate an excited state of the organic dye, and light emitted from the excited state is extracted to the outside through a transparent electrode. The organic dye is excited by hot carriers generated by a strong electric field from the electrode in the vicinity of the electrode to emit light.
【0023】[0023]
【発明の実施の形態】本発明にもとづく固体光機能素子
は、板状透明電極と、針状電極と、板状透明電極と針状
電極との間に配置された高分子薄膜の発光層とを備え、
該発光層は、有機高分子媒質中に有機色素を単分子また
は/および超微粒子の形で分散してなる。このような構
成からなる固体光機能素子の発光は、上記板状透明電極
と上記針状電極との間に電圧を印加することによって、
針状電極からホットキャリアーにより上記有機色素の励
起状態を生成し、該励起状態からの発光を透明電極を通
して外部に取り出すことによってなされる。BEST MODE FOR CARRYING OUT THE INVENTION A solid-state optical device according to the present invention comprises a plate-like transparent electrode, a needle-like electrode, and a polymer thin film light emitting layer disposed between the plate-like transparent electrode and the needle-like electrode. With
The light-emitting layer is formed by dispersing an organic dye in the form of a single molecule and / or ultrafine particles in an organic polymer medium. Light emission of the solid-state optical function element having such a configuration is achieved by applying a voltage between the plate-shaped transparent electrode and the needle-shaped electrode,
The excitation state of the organic dye is generated by the hot carrier from the needle-like electrode, and light emission from the excitation state is extracted to the outside through the transparent electrode.
【0024】したがって、針状電極と発光層との位置関
係は針状電極の先端部からのホットキャリアーが発光層
に注入されればよく、先端が発光層に直接接する必要は
なく、ホットキャリアーが消滅することなく通過できる
程度の絶縁薄膜層が存在しても良い。Therefore, the positional relationship between the needle electrode and the light emitting layer is only required that the hot carrier from the tip of the needle electrode is injected into the light emitting layer, and the tip does not need to directly contact the light emitting layer. There may be an insulating thin film layer that can pass through without disappearing.
【0025】上記針状電極は、微小な針状電極からな
る。具体的には、FED等の電極に使われる針状突起電
極であって、その寸法は好ましくは高さ200nm以
上、かつ先端曲率半径100nm以下、さらに好ましく
は高さ500nm以上、かつ先端曲率半径50nm以下
である。針状電極からのホットキャリアーの発生を補助
するためにゲート電極を設け、該ゲート電極に電圧をか
ける構造としても良い。また、針状電極の電極材は、ホ
ットキャリアーの発生が容易なものであれば良く、例え
ばMo,W等が挙げられる。かかる針状電極は微細加工
でも製造できるが、上記FED用電極等、公知のものを
転用することもできる。The above-mentioned needle-like electrode is formed of a minute needle-like electrode. Specifically, it is a needle-shaped protruding electrode used for an electrode such as an FED, the size of which is preferably 200 nm or more in height and 100 nm or less in tip curvature, more preferably 500 nm or more in height, and 50 nm in tip curvature. It is as follows. A structure may be employed in which a gate electrode is provided to assist generation of hot carriers from the needle-like electrode, and a voltage is applied to the gate electrode. The electrode material of the needle-shaped electrode may be any material that can easily generate hot carriers, and examples thereof include Mo and W. Such a needle-shaped electrode can be manufactured by fine processing, but a known electrode such as the above-mentioned FED electrode can also be used.
【0026】上記針状電極に対向する透明電極は、透
明、かつ導電性を有する板状体であれば良く、その材質
は限定されない。しかし、好ましくは透明基板上に、イ
ンジウム錫酸化物(ITO)、酸化スズ等の半導体膜、
あるいは金等の金属薄膜等の透明電極膜を積層した透明
電極性積層体が適用される。The transparent electrode facing the needle electrode may be a transparent and conductive plate-like body, and its material is not limited. However, preferably, on a transparent substrate, a semiconductor film such as indium tin oxide (ITO) or tin oxide,
Alternatively, a transparent electrode laminate in which a transparent electrode film such as a metal thin film of gold or the like is laminated is applied.
【0027】上記透明電極を支持する基板は、透明な支
持体であれば特に限定されるものではないが、好ましく
はガラスや高分子フィルム、シート等が用いられる。The substrate for supporting the transparent electrode is not particularly limited as long as it is a transparent support. Preferably, glass, a polymer film, a sheet or the like is used.
【0028】上記発光層を構成する有機色素は、ホット
キャリアーによる励起によって発光するものであれば良
い。このような有機色素としては以下のようなものが挙
げられるが、もちろんそれらに限定されるものではな
い。固体光機能素子の使用目的等を考慮して選択され
る。The organic dye constituting the light emitting layer may be any organic dye that emits light when excited by hot carriers. Examples of such an organic dye include the following, but are not limited thereto. The selection is made in consideration of the purpose of use of the solid-state optical function device and the like.
【0029】p−ビス[2−(5−フェニルオキサゾー
ル)]ベンゼン(POPOP)等の青色発光のオキサゾ
ール系色素; クマリン2、クマリン6、クマリン7、
クマリン24、クマリン30、クマリン102、クマリ
ン540等の緑色発光のクマリン系色素;ローダミン6
G、ローダミンB、ローダミン101、ローダミン11
0、ローダミン590、ローダミン640等の赤色発光
のローダミン系(赤色)色素;よびオキサジン1、オキ
サジン4、オキサジン9、オキサジン118等の近赤外
領域の発光が得られ、特に光通信に適合した光機能素子
に好適なオキサジン系色素が挙げられる。さらにフタロ
シアニン、ヨウ化シアニン化合物等のシアニン系色素等
も挙げられる。なお、これらの色素を選択する際に、ア
クリル樹脂等の高分子に溶けやすいものを選択すること
が薄膜形成の目的上好ましい。そのような色素として
は、POPOP、クマリン2、クマリン6、クマリン3
0、ローダミン6G、ローダミンB、ローダミン101
等が挙げられる。Oxazole dyes emitting blue light such as p-bis [2- (5-phenyloxazole)] benzene (POPOP); coumarin 2, coumarin 6, coumarin 7,
Coumarin dyes emitting green light, such as coumarin 24, coumarin 30, coumarin 102, and coumarin 540; rhodamine 6
G, rhodamine B, rhodamine 101, rhodamine 11
0, rhodamine-based (red) dyes such as rhodamine 590 and rhodamine 640; and light that emits light in the near infrared region such as oxazine 1, oxazine 4, oxazine 9, and oxazine 118, and is particularly suitable for optical communication. Oxazine-based dyes suitable for the functional element are exemplified. Furthermore, cyanine dyes such as phthalocyanine and cyanine iodide compounds are also included. When these dyes are selected, it is preferable to select a dye that is easily soluble in a polymer such as an acrylic resin for the purpose of forming a thin film. Such pigments include POPOP, Coumarin 2, Coumarin 6, Coumarin 3
0, rhodamine 6G, rhodamine B, rhodamine 101
And the like.
【0030】また、有機エレクトロ・ルミネッセンス
(EL)膜に使われる有機分子、例えば8−ヒドロキシ
キノリンアルミニウム(AlQ3 )、1,4ビス(2,
2ジフェニルビニル)ビフェニル、ポリパラフェニレン
ビニレン(PPV)誘導体、ジスチリルアリレーン誘導
体、スチリルビフェニル誘導体、フェナントロリン誘導
体等、あるいは該有機分子に添加物を加えた媒体であっ
てもよい。Further, organic molecules used in an organic electroluminescence (EL) film, for example, 8-hydroxyquinoline aluminum (AlQ 3 ), 1,4-bis (2,2)
2 Diphenylvinyl) biphenyl, polyparaphenylene vinylene (PPV) derivative, distyryl arylene derivative, styryl biphenyl derivative, phenanthroline derivative, or the like, or a medium in which an additive is added to the organic molecule may be used.
【0031】これらは単独、および/または混合、およ
び/または積層、および/または画素等に対応した膜面
内での多色の2次元配置等で用いられる。またこれらの
効果を妨げない媒質との混合等、形態は制限されないこ
とは言うまでもない。These are used alone, and / or mixed, and / or laminated, and / or in a two-dimensional arrangement of multiple colors in a film plane corresponding to pixels or the like. Needless to say, the form is not limited, such as mixing with a medium that does not hinder these effects.
【0032】本発明の有機色素は、高分子媒質中に単分
子分散されるか、もしくは該色素単分子との共存も含め
て有機色素分子が凝集して形成される超微粒子として分
散させることが必要である。超微粒子のかたちで有機色
素分子が凝集した場合、消光する効果を抑え、かつ強い
発光を起こすことが可能である。このような効果を得る
ためには、超微粒子の直径を50nm以下、特に30n
m以下とすることが好ましい。また、有機色素を高分子
媒質中に分散させるための方法あるいは上記超微粒子の
かたちで分散させる方法は、当業者に既知なものであ
り、さらにこのような構成からなる高分子薄膜を設ける
方法も特に限定されるものでななく、湿式塗工や乾式塗
工等化学的および/または物理的な当業者に既知のいか
なる方法を用いても良い。具体的には、スピンコーター
等の常法による方法が挙げられるが、好ましい膜を得る
方法としては、例えば特開平7−252671号、特開
平7−252670号、特開平6−306181号の各
公報等に開示された有機薄膜形成方法、すなわち溶液ま
たは分散液状態の有機系材料を高真空容器内に噴霧して
基板上に堆積させ、加熱処理することにより熱分解をも
たらすことなく微細構造制御がなされた有機薄膜を形成
する方法がより好ましく用いられよう。The organic dye of the present invention may be dispersed as a single molecule in a polymer medium, or may be dispersed as ultrafine particles formed by agglomeration of organic dye molecules including coexistence with the single dye molecule. is necessary. When the organic dye molecules are aggregated in the form of ultrafine particles, it is possible to suppress the quenching effect and generate strong light emission. In order to obtain such an effect, the diameter of the ultrafine particles should be 50 nm or less, especially 30 nm.
m or less. Further, a method for dispersing an organic dye in a polymer medium or a method for dispersing the organic dye in the form of the ultrafine particles is known to those skilled in the art, and a method of providing a polymer thin film having such a configuration is also available. There is no particular limitation, and any chemical and / or physical method known to those skilled in the art such as wet coating and dry coating may be used. Specifically, a method according to a conventional method such as a spin coater may be used. Examples of a method for obtaining a preferable film include, for example, JP-A-7-252661, JP-A-7-252670, and JP-A-6-306181. The organic thin film forming method disclosed in the above, that is, the organic material in a solution or dispersion state is sprayed into a high vacuum container and deposited on a substrate, and the fine structure control without causing thermal decomposition by performing a heat treatment can be performed. A method of forming an organic thin film thus made may be more preferably used.
【0033】本発明の固体光機能素子の発光層に適用さ
れる有機高分子媒質は、電圧印加によって生ずる有機色
素の帯電を除去し、かつ該有機色素の励起を損なわない
導電性高分子もしくはキャリア輸送性の高分子とするこ
とが好ましい。なお、かかる高分子による有機色素の帯
電の防止は、その帯電を防止できる形態であれば良く、
前記の媒質に用いる場合のほか、発光層の有機色素を含
む高分子薄膜に近接し、またはこれに直接積層した形態
でもよい。本発明における好適な導電性またはキャリア
輸送性の高分子としては、ホットキャリアーによる励起
の際に生じる帯電を除去する効果を示すものが好まし
い。このような効果をもつためには、導電性高分子の固
有電気抵抗は、1015Ω・cm以下、好ましくは1012
Ω・cm以下、より好ましくは109 Ω・cm以下とす
ることが求められる。したがって、本発明の導電性高分
子は、上記の範囲で有機色素の励起を損なわない範囲の
固有電気抵抗をもつものであれば、いかなるものでもよ
い。かかる導電性高分子としては、例えば、主鎖にイオ
ン化された窒素元素をもつポリマー(特開平3−255
139号公報、特開平4−288127号公報、特開平
6−172562号公報)や、ポリスチレンスルホン酸
塩(特開平5−320390号公報)等が知られてい
る。また、酸化スズ等の半導体フィラー、またカーボン
や金属等の導電性フィラーを含むものでも良い。特に好
ましくは、媒質の均質性を得るため、分子内にリン酸エ
ステル塩基をもつ重合体(特開平8−134244号公
報)や、また湿度による導電性の変化が本質的に少なく
発光表示特性を安定化させるポリピロールやポリチオフ
ェン、またポリアニリンおよびこれらの誘導体等、また
はポリパラフェニレンビニレン(PPV)の誘導体等の
導電性高分子が好ましい。また、膜形成と導電性の調整
とを容易にするために、こられらの導電性高分子がさら
に別の媒質となる高分子中に分散された構成、例えばア
クリル系やポリエステル系等の高分子に分散された状態
が好ましい。The organic polymer medium applied to the light emitting layer of the solid-state optical function device of the present invention is a conductive polymer or carrier which removes the charge of the organic dye caused by applying a voltage and does not impair the excitation of the organic dye. It is preferable to use a transportable polymer. Incidentally, the prevention of the charging of the organic dye by such a polymer may be any form that can prevent the charging,
In addition to the above-described medium, the light-emitting layer may be in the form of being close to or directly laminated to a polymer thin film containing an organic dye. As the suitable conductive or carrier-transporting polymer in the present invention, a polymer having an effect of removing charge generated upon excitation by a hot carrier is preferable. In order to have such an effect, the specific electric resistance of the conductive polymer is 10 15 Ω · cm or less, preferably 10 12 Ω · cm or less.
Ω · cm or less, more preferably 10 9 Ω · cm or less. Therefore, the conductive polymer of the present invention may be any conductive polymer as long as it has a specific electric resistance within the above range that does not impair the excitation of the organic dye. As such a conductive polymer, for example, a polymer having an ionized nitrogen element in the main chain (JP-A-3-255)
139, JP-A-4-288127, JP-A-6-172562) and polystyrene sulfonate (JP-A-5-320390). Further, a semiconductor filler such as tin oxide or a conductive filler such as carbon or metal may be included. Particularly preferably, in order to obtain uniformity of the medium, a polymer having a phosphate ester group in the molecule (Japanese Patent Laid-Open No. 8-134244) and the change in conductivity due to humidity is substantially small, and the light emitting display characteristics are improved. Conductive polymers such as polypyrrole, polythiophene, polyaniline and derivatives thereof, and polyparaphenylenevinylene (PPV) derivatives to be stabilized are preferable. In addition, in order to facilitate film formation and conductivity adjustment, a configuration in which these conductive polymers are further dispersed in a polymer serving as another medium, for example, a high-density polymer such as an acrylic or polyester resin is used. It is preferably in a state of being dispersed in molecules.
【0034】ここで、キャリア輸送性の高分子とは、正
孔の輸送機能が高い一方で電子の輸送は妨げる正孔輸送
性の高分子や、電子の輸送機能が高い一方で正孔の輸送
は妨げる電子輸送性の高分子のことである。一般に正孔
輸送性の高分子はイオン化ポテンシャルの小さい特徴が
あり、電子輸送性の高分子は電子親和力が高い特徴があ
る。このキャリア輸送性の高分子としては、キャリア移
動度が10-7cm2 /(V・s)以上のものが好まし
く、さらに好ましくは10-5cm2 /(V・s)以上の
ものである。かかるキャリア輸送性の高分子としては、
ポリビニルカルバゾール、ポリメチルフェニルシラン、
ポリジヘキシルシラン、ポリテトラフェニルアミンメタ
クリルアミド、ポリテトラフェニルジアミンメタクリル
アミドおよびそれらの誘導体が挙げられる。Here, the carrier-transporting polymer is a hole-transporting polymer that has a high hole-transporting function but hinders electron transport, or a hole-transporting polymer that has a high electron-transporting function. Refers to an electron transporting polymer that blocks. Generally, a hole-transporting polymer is characterized by a small ionization potential, and an electron-transporting polymer is characterized by a high electron affinity. The carrier-transporting polymer preferably has a carrier mobility of 10 −7 cm 2 / (V · s) or more, and more preferably has a carrier mobility of 10 −5 cm 2 / (V · s) or more. . As such a carrier-transporting polymer,
Polyvinyl carbazole, polymethylphenylsilane,
Examples include polydihexylsilane, polytetraphenylamine methacrylamide, polytetraphenyldiamine methacrylamide, and derivatives thereof.
【0035】以上説明した構成からなる固体光機能素子
は、当業者に既知の方法および手段によって駆動されて
発光する。すなわち、固体光機能素子の電極(板状透明
電極と針状電極)間に電圧を印加する。その結果、針状
電極から電極近傍の強い電界により生じるホットキャリ
アーにより、発光層の発光層の有機色素分子または/お
よび有機色素超微粒子が励起されて発光を生じる。この
際、微小構造の電極が用いられるので、表示素子として
の応答速度は従来の液晶等に比較して著しく高いものと
なる。有機色素は固体光機能素子を製造する際に、その
使用目的等に応じて選択される。さらに、本発明にもと
づく固体光機能素子を駆動させる際に、電源と素子の間
に静電容量を接続することにより直流電流を遮断し、陰
極と陽極との間に電圧を印加する際に、該素子に電界の
みを加えてもよい。The solid-state optical functional device having the above-described configuration emits light when driven by a method and means known to those skilled in the art. That is, a voltage is applied between the electrodes (plate-shaped transparent electrode and needle-shaped electrode) of the solid-state optical function element. As a result, the organic dye molecules and / or the organic dye ultrafine particles in the light emitting layer of the light emitting layer are excited by the hot carriers generated by the strong electric field near the electrode from the needle-shaped electrode to emit light. At this time, since a microstructured electrode is used, the response speed as a display element is significantly higher than that of a conventional liquid crystal or the like. The organic dye is selected according to the purpose of use when manufacturing the solid-state optical functional device. Further, when driving the solid-state optical function device according to the present invention, when a direct current is cut off by connecting a capacitance between a power supply and the device, and when a voltage is applied between a cathode and an anode, Only an electric field may be applied to the element.
【0036】つぎに、本発明にもとづく固体光機能素子
の製造方法について説明する。Next, a method of manufacturing a solid-state optical functional device according to the present invention will be described.
【0037】この製造方法は、基板上に針状電極を設け
る工程と、板状透明電極を設ける工程とを有し、さら
に、針状電極と板状透明電極との間に発光層を設ける。
この発光層は、有機高分子媒質中に有機色素が単分子ま
たは/および超微粒子の形で分散された高分子薄膜から
なる。上記針状電極を形成する方法としては当業者に既
知の超微細加工(マイクロマシニング)技術を採用する
ことができる。また、基板上に板状透明電極を設ける方
法としては当業者に既知の蒸着法等を採用することがで
きる。ここで、発光層の高分子薄膜を形成する方法とし
ては、前述の当業者に既知の方法が適用される。しか
し、そのような既知の方法のなかでも、前述の特開平7
−252671号公報、特開平7−252670号公
報、あるいは特開平6−306181号公報に開示され
た有機薄膜形成法を適用することが好ましい。この方法
は、2成分以上の有機系材料を溶液または分散液状態で
各成分毎に設けた噴霧ノズルから高真空容器内に噴霧し
て基板上に堆積させ、加熱処理することを特徴としてい
る。さらに好ましくは、加熱処理の後に加圧成形する。
加熱処理手段としては電熱ヒーターや赤外線照射等を採
用することが可能であり、また加圧処理手段としては熱
間圧延処理等の公知手段を採用することが可能である。This manufacturing method includes a step of providing a needle-like electrode on a substrate and a step of providing a plate-like transparent electrode. Further, a light emitting layer is provided between the needle-like electrode and the plate-like transparent electrode.
This light emitting layer is composed of a polymer thin film in which an organic dye is dispersed in the form of a single molecule and / or ultrafine particles in an organic polymer medium. As a method for forming the needle-like electrode, a micro-machining technique known to those skilled in the art can be employed. In addition, as a method for providing a plate-shaped transparent electrode on a substrate, a vapor deposition method known to those skilled in the art can be employed. Here, as a method of forming the polymer thin film of the light emitting layer, the above-mentioned method known to those skilled in the art is applied. However, among such known methods, Japanese Patent Laid-Open No.
It is preferable to apply the organic thin film forming method disclosed in JP-A-2525271, JP-A-7-252670, or JP-A-6-306181. This method is characterized in that an organic material of two or more components is sprayed into a high vacuum vessel from a spray nozzle provided for each component in a solution or dispersion state, deposited on a substrate, and subjected to heat treatment. More preferably, pressure molding is performed after the heat treatment.
As the heat treatment means, an electric heater, infrared irradiation, or the like can be employed, and as the pressure treatment means, a known means such as a hot rolling treatment can be employed.
【0038】また、本発明にもとづく固体光機能素子の
製造方法では、好ましく発光層等の有機化合物を処理す
る工程を全て10-6Pa以下の超高真空下にて行い、素
子内に残留する溶剤等の不揮発成分を1 0-6Pa以下に
することが好ましい。In the method for manufacturing a solid-state optical function device according to the present invention, all the steps of treating an organic compound such as a light-emitting layer are preferably performed under an ultra-high vacuum of 10 −6 Pa or less, so that the device remains in the device. It is preferable that the amount of non-volatile components such as a solvent is 10 -6 Pa or less.
【0039】さらに上記問題の解決および目的の実現
は、本発明の素子内に存在する空間を、超高真空下にお
いて超高真空処理された高分子化合物を充填し、揮発成
分の発生による素子内の純度低下を防止することが好ま
しい。Further, the above problems can be solved and the object can be realized by filling a space existing in the device of the present invention with a polymer compound which has been subjected to ultra-high vacuum processing under ultra-high vacuum, and generating a volatile component in the device. It is preferable to prevent a decrease in purity.
【0040】以下、本発明の詳細を実施例について図面
を参照しながら説明する。また、本発明は以下の実施例
に限定されるものではなく、本発明の技術思想に基づく
各種の変形が可能である。Hereinafter, the present invention will be described in detail with reference to embodiments with reference to the drawings. The present invention is not limited to the following embodiments, and various modifications based on the technical idea of the present invention are possible.
【0041】(実施例1)図1は、本発明にもとづく固
体光機能素子の一例の概略的構成を説明するための模式
的側面断面図である。Embodiment 1 FIG. 1 is a schematic side sectional view for explaining a schematic configuration of an example of a solid-state optical function device according to the present invention.
【0042】本例の固体光機能素子は、シリコンウエハ
1と該シリコンウエハ1上に設けられた針状電極2とか
らなる第1電極部10と、該第1電極部10に対向して
設けられ、かつガラス基板4aおよび該基板4aに透明
導電層4bが積層された透明電極板4からなる第2電極
部20とを備え、その間に発光層5を設け、空隙部に電
気絶縁性の有機高分子6を充填し、封止剤7で封止した
構成である。The solid-state optical function device of this embodiment is provided with a first electrode portion 10 comprising a silicon wafer 1 and a needle-like electrode 2 provided on the silicon wafer 1, and provided opposite to the first electrode portion 10. And a second electrode portion 20 comprising a transparent electrode plate 4 in which a transparent conductive layer 4b is laminated on the glass substrate 4a and the substrate 4a, and a light emitting layer 5 is provided therebetween. The configuration is such that the polymer 6 is filled and sealed with the sealant 7.
【0043】固体光機能素子の第1電極部10を構成す
る針状電極2はモリブデンからなる。また、この第1電
極部10は、図2に示す米国のスタンフォード・リサー
チ・インスティテュート(SRI)製のFED用のカソ
ード電極21を利用した。図に示すように、この電極2
1は、シリコンウエハ22と、該シリコンウエハ22上
に設けられ、かつ微細加工によって形成されたモリブデ
ンからなる円錐形の電極(針状電極)23と、該針状電
極23の周囲に設けられたSiO2 膜24と、該SiO
2 上に設けられ、かつ導電材からなるゲート電極25と
を有する。本実施例では、この図2の電極21のゲート
電極25をエッチングにより除去して、図1に示す針状
電極2(図2の電極23)の先端がSiO2 膜3(図2
のSiO2 膜24)の表面より0.1μm程度突き出た
構造の第1電極部10を得た(図3参照)。なお、第1
電極部10を構成する針状電極2の寸法および形状は、
具体的には高さが2μm、先端曲率半径が10nm、頂
角が10度の円錐形である。なお、SiO2 膜3は本発
明には関係なく、全部削除してもよい。The needle-like electrode 2 constituting the first electrode portion 10 of the solid-state optical function element is made of molybdenum. For the first electrode unit 10, a cathode electrode 21 for FED manufactured by Stanford Research Institute (SRI) in the United States shown in FIG. 2 was used. As shown in FIG.
Reference numeral 1 denotes a silicon wafer 22, a conical electrode (needle electrode) 23 made of molybdenum provided on the silicon wafer 22 and formed by micromachining, and provided around the needle electrode 23. SiO 2 film 24 and the SiO 2
2 and a gate electrode 25 made of a conductive material. In this embodiment, the gate electrode 25 of the electrode 21 of FIG. 2 is removed by etching, the needle electrode 2 tips of (electrode 23 in FIG. 2) is a SiO 2 film 3 shown in FIG. 1 (2
The first electrode portion 10 having a structure protruding about 0.1 μm from the surface of the SiO 2 film 24) was obtained (see FIG. 3). The first
The size and shape of the needle electrode 2 constituting the electrode unit 10 are as follows:
Specifically, it is a cone having a height of 2 μm, a tip radius of curvature of 10 nm, and a vertex angle of 10 degrees. Note that the SiO 2 film 3 may be omitted irrespective of the present invention.
【0044】この第1電極部10の針状電極2に対向し
て設置される第2電極部20は、厚さ1mmのガラス基
板4aと、該ガラス基板4a上に厚さが100nmのイ
ンジウム・錫酸化物(ITO)からなる透明導電層4b
を真空蒸着法により積層してなる公知の透明電極板4か
らなる。The second electrode portion 20 provided opposite to the needle electrode 2 of the first electrode portion 10 has a glass substrate 4a having a thickness of 1 mm and an indium thin film having a thickness of 100 nm on the glass substrate 4a. Transparent conductive layer 4b made of tin oxide (ITO)
Are formed by a known transparent electrode plate 4 laminated by vacuum evaporation.
【0045】さらに、この透明電極板4上に色素含有高
分子薄膜からなる発光層5を設けた。この際、特開平7
−252670号公報等に開示された方法、すなわち2
成分以上の有機系材料を溶液または分散液状態で各成分
毎に設けた噴霧ノズルから高真空容器内に噴霧して基板
上に堆積させ、加熱処理する方法を適用した。Further, on the transparent electrode plate 4, a light emitting layer 5 made of a dye-containing polymer thin film was provided. At this time,
No. 252670, etc.,
A method of spraying an organic material having at least the components in the form of a solution or dispersion from a spray nozzle provided for each component into a high-vacuum vessel, depositing it on a substrate, and performing a heat treatment was applied.
【0046】図4は、本実施例の固体光機能素子を製造
する際に使用した装置の概略的構成を説明するための模
式的構成図である。この装置は、前記の特開平7−25
2671号公報等に開示のものと基本構成が同じ真空ス
プレー室30と、該真空スプレー室30に連通したホッ
トプレス室40と、ホットプレス室40に連通し、かつ
基板の出し入れを行うためのモールド室44と、真空ス
プレー室30、ホットプレス室40、およびモールド室
44の間を基板搬送するための搬送手段42とを備え
る。各室の真空はトラップ排気系35またはターボモレ
キュラーポンプによるターボ・ポンプ排気系36によっ
て行う。なお、図中の参照符号41は、各室の間を遮断
する開閉手段である。このように構成されることによっ
て固体光機能素子の一貫製造が可能となる。FIG. 4 is a schematic configuration diagram for explaining a schematic configuration of an apparatus used for manufacturing the solid-state optical function device of the present embodiment. This apparatus is disclosed in Japanese Patent Laid-Open No. 7-25 / 1990.
No. 2671, etc., a vacuum spray chamber 30 having the same basic configuration as that disclosed in Japanese Patent Application Publication No. 2671, a hot press chamber 40 communicating with the vacuum spray chamber 30, and a mold communicating with the hot press chamber 40 and for taking in and out the substrate. A chamber 44, and a transfer means 42 for transferring a substrate among the vacuum spray chamber 30, the hot press chamber 40, and the mold chamber 44 are provided. The vacuum in each chamber is provided by a trap exhaust system 35 or a turbo pump exhaust system 36 using a turbo molecular pump. Reference numeral 41 in the drawing denotes an opening / closing unit that shuts off the space between the respective rooms. With this configuration, it is possible to manufacture the solid-state optical functional device in an integrated manner.
【0047】この装置において、発光層5等の有機高分
子層は以下のように形成される。図4に示すように、形
成する膜の材料の溶液31が送液ポンプ32を介して真
空スプレー室30のノズル33に送られる。このノズル
から噴出される蒸気を基板(不図示)に噴霧する。この
基板は、加熱機構のある基板回転機構34の基板取付け
部29にセットされており、噴霧の最中回転している。
これによって高分子溶液が均一に基板上に堆積され、高
分子薄膜の形成がなされる。In this device, the organic polymer layers such as the light emitting layer 5 are formed as follows. As shown in FIG. 4, a solution 31 of a material of a film to be formed is sent to a nozzle 33 of a vacuum spray chamber 30 via a liquid sending pump 32. The vapor ejected from the nozzle is sprayed on a substrate (not shown). This substrate is set in the substrate mounting portion 29 of the substrate rotating mechanism 34 having a heating mechanism, and rotates during spraying.
As a result, the polymer solution is uniformly deposited on the substrate, and a polymer thin film is formed.
【0048】発光層5は以下のように形成した。透明電
極板4を真空スプレー室30の噴霧ノズル33に対向し
た基板取り付け部29にセットする。噴霧ノズル33か
ら噴霧される発光層5を形成する噴霧溶液は以下のよう
に調製した。すなわち、色素にローダミン6Gを、高分
子媒質として導電性高分子のポリピロールを70重量%
含むポリメタクリン酸メタクリレート(PMMA)を用
い、色素濃度が8重量%となるように混合した。次いで
この混合物を溶媒(アセトン)に溶解してPMMAの濃
度が10-2モル/リットルの噴霧溶液を調製した。The light emitting layer 5 was formed as follows. The transparent electrode plate 4 is set on the substrate mounting part 29 facing the spray nozzle 33 of the vacuum spray chamber 30. The spray solution for forming the light emitting layer 5 sprayed from the spray nozzle 33 was prepared as follows. That is, rhodamine 6G is used as a dye, and polypyrrole, a conductive polymer, is used as a polymer medium at 70% by weight.
Using polymethacrylic acid methacrylate (PMMA), the mixture was mixed so that the pigment concentration became 8% by weight. Next, this mixture was dissolved in a solvent (acetone) to prepare a spray solution having a PMMA concentration of 10 -2 mol / L.
【0049】このようにして得られた噴霧溶液を毎分1
00μl の割合で噴霧ノズルから噴霧し、40℃に加熱
された透明電極板4のITO膜4b上に厚さ約1μmの
発光層5を形成した。発光層5は、前記の導電性のポリ
ピロールを含みPMMA中に色素のローダミン6Gが単
分子と約20nmの直径の超微粒子が共存して分散する
膜であった次いで、電気絶縁性の有機高分子層6を発光
層5の上に以下のように形成した。基板を40℃に加熱
しながら別の噴霧ノズルからPMMA溶液を噴霧して、
発光層5と同様にして、PMMAのみからなる電気絶縁
性の有機高分子層6を約2μmの厚さに形成した。な
お、この際の噴霧用溶液として、溶媒にアセトンを用い
て、PMMAの濃度が10-2モル/リットルの噴霧用溶
液を調整した。The spray solution thus obtained is applied at 1 / min.
The light emitting layer 5 having a thickness of about 1 μm was formed on the ITO film 4b of the transparent electrode plate 4 which was sprayed from the spray nozzle at a rate of 00 μl and heated to 40 ° C. The light-emitting layer 5 is a film containing the conductive polypyrrole and in which the dye rhodamine 6G is dispersed in PMMA in which a single molecule and ultrafine particles having a diameter of about 20 nm coexist, and then electrically insulating organic polymer. Layer 6 was formed on light emitting layer 5 as follows. Spraying the PMMA solution from another spray nozzle while heating the substrate to 40 ° C.
Similarly to the light emitting layer 5, an electrically insulating organic polymer layer 6 made of only PMMA was formed to a thickness of about 2 μm. In this case, a spray solution having a PMMA concentration of 10 −2 mol / l was prepared using acetone as a solvent.
【0050】次いで、得られた発光層5と有機高分子層
6を積層した第2電極部20を、超高真空のホットプレ
ス室40に設けられたホットプレス機38のプレス台3
7bの対向基板取り付け部39に予めセットした第1電
極部10の針状電極2に対して、その有機高分子層6が
向き合うようにプレス台37aまで移送してセットし
た。圧力が10-6Paの高真空雰囲気下で、プレス温度
が有機高分子層6のガラス転移点温度より高く、かつ発
光層5および有機高分子層6の分解温度より低い温度、
具体的には150℃で、プレス圧力10kg/cm2 で
プレスした。その結果、有機高分子層6の有機高分子6
が加熱溶融して針状電極2の周囲等の両電極を向かい合
わせた時に生じる空隙に充填され、両電極間の該空隙の
全てが有機高分子6で充填された図1に示す積層体を得
た。Next, the obtained second electrode section 20 having the light emitting layer 5 and the organic polymer layer 6 laminated thereon is placed on a press table 3 of a hot press machine 38 provided in an ultra-high vacuum hot press chamber 40.
The needle-like electrode 2 of the first electrode unit 10 previously set in the counter substrate mounting part 39 of 7b was transferred to the press table 37a and set so that the organic polymer layer 6 faced. Under a high vacuum atmosphere at a pressure of 10 −6 Pa, the pressing temperature is higher than the glass transition temperature of the organic polymer layer 6 and lower than the decomposition temperature of the light emitting layer 5 and the organic polymer layer 6;
Specifically, pressing was performed at 150 ° C. and a pressing pressure of 10 kg / cm 2 . As a result, the organic polymer 6 of the organic polymer layer 6
Is filled in a gap generated when both electrodes such as the periphery of the needle-shaped electrode 2 face each other by heating and melting, and all the gaps between the two electrodes are filled with the organic polymer 6 as shown in FIG. Obtained.
【0051】この積層体を室温まで冷却後、このホット
プレス室40に連結したモールド室44に移送し、この
間を開閉手段41で遮断後、窒素ガスで大気圧にし、窒
素雰囲気下で封止剤7でその側面を封止し、図1の素子
サンプルを得た。なお、この実施例では、封止剤7とし
てエピコート828(油化シェル製)を用いた。After the laminate was cooled to room temperature, it was transferred to a mold chamber 44 connected to the hot press chamber 40. The gap was shut off by an opening / closing means 41, and the pressure was increased to atmospheric pressure with nitrogen gas. 7, the side surface was sealed, and an element sample of FIG. 1 was obtained. In this example, Epicoat 828 (made by Yuka Shell) was used as the sealant 7.
【0052】このようにして得られた固体光機能素子の
評価は、暗箱内に集光レンズ系、分光器および光検出器
を配置した評価装置を用いて行った。すなわち、固体光
機能素子を集光レンズ系の前面にセットして、その発光
と共にその波長分布を検出することによって行った。The evaluation of the solid-state optical element thus obtained was performed using an evaluation apparatus in which a condenser lens system, a spectroscope, and a photodetector were arranged in a dark box. That is, the measurement was performed by setting the solid-state optical function element on the front surface of the condenser lens system and detecting the light emission and the wavelength distribution thereof.
【0053】図5は、本実施例によって得られた固体光
機能素子の発光スペクトルを示すグラフである。FIG. 5 is a graph showing an emission spectrum of the solid-state optical device obtained according to the present example.
【0054】固体光機能素子への印加電圧を500Vに
設定した時、すなわち発光層5に5×108 V/mの電
圧を印加した後、固体光機能素子からの発光が観察され
た。そのときの発光スペクトルは図中曲線Aとして表し
た。一方、図中曲線Bは固体光機能素子に用いられたも
のと同一の色素を光照射によって励起した時に観察され
る発光スペクトルである。これにより、固体光機能素子
の発光スペクトルAは、色素の光励起スペクトルBより
短波長側に少しシフトしていることがわかる。これは強
電界の印加により色素の電子準位が変化したことによる
と考えられる。When the voltage applied to the solid-state optical functional device was set to 500 V, that is, after applying a voltage of 5 × 10 8 V / m to the light-emitting layer 5, light emission from the solid-state optical functional device was observed. The emission spectrum at that time was shown as curve A in the figure. On the other hand, curve B in the figure is an emission spectrum observed when the same dye used in the solid-state optical function device is excited by light irradiation. This shows that the emission spectrum A of the solid-state optical function device is slightly shifted to a shorter wavelength side than the photoexcitation spectrum B of the dye. This is considered to be because the electron level of the dye was changed by the application of a strong electric field.
【0055】次に、矩形波パルス電圧を印加して、固体
光機能素子の応答性を評価した。印加電圧500V、時
間幅2.5マイクロ秒の矩形波パルスCを印加した場合
の応答を図6に示す。図示のように、固体光機能素子の
発光Dは、約5マイクロ秒の緩和時間を有する減衰の時
間応答を示した。本発明の素子は、単分子分散された有
機色素および該色素単分子と共存して分散された有機色
素分子の凝集体である超微粒子の有機色素の励起状態か
らの直接遷移であり、間接遷移で発光する無機発光体と
比較して極めて早い応答であることがわかった。Next, a rectangular wave pulse voltage was applied to evaluate the responsiveness of the solid-state optical functional device. FIG. 6 shows a response when a rectangular wave pulse C having an applied voltage of 500 V and a time width of 2.5 μs is applied. As shown, the light emission D of the solid-state optical function device exhibited a time response of decay having a relaxation time of about 5 microseconds. The device of the present invention is a direct transition from the excited state of the organic dye of the organic dye dispersed in a single molecule and an organic fine particle which is an aggregate of the organic dye molecule dispersed and coexisted with the single dye molecule, and an indirect transition. It was found that the response was much faster than that of the inorganic light emitting material that emits light.
【0056】(実施例2)実施例1において、第1電極
部10と第2電極部20とを接合するに際し、実施例1
の窒素雰囲気に代えて、大気下で行った以外は、実施例
1と同様にして同じ構成の固体光機能素子を作成した。(Embodiment 2) In the first embodiment, when the first electrode portion 10 and the second electrode portion 20 are joined together,
A solid-state optical functional device having the same configuration as in Example 1 was prepared, except that the test was performed in the air instead of the nitrogen atmosphere.
【0057】こ固体光機能素子の評価に際しては、素子
の損傷を防ぐ目的で、電源との間に0.47ファラッド
のコンデンサーを接続して電圧を印加した。実施例1と
同様に500Vの直流電圧を印加した時、光強度の安定
した発光が観測された。In the evaluation of the solid-state optical function device, a voltage of 0.47 farad was connected between the device and a power source in order to prevent damage to the device. When a DC voltage of 500 V was applied in the same manner as in Example 1, light emission with stable light intensity was observed.
【0058】以上述べたように、上記実施例によれば、
紫外から赤外領域までの広い範囲で発光体を選択可能な
ように発光体として有機色素を選択し、かつ好ましくは
有機色素にとって過酷な条件である直流通電を避けて電
界印加による発光機構を採用し、また好ましくは有機化
合物の処理を超高真空中にて行うことにより電界印加や
発光に伴う損傷を低減させた固体光機能素子が実現され
る。さらに、微小構造の電極と単分子分散された有機色
素、もしくは該色素と共存して分散された有機色素分子
の凝集体から構成される超微粒子を用いるために、表示
素子としての応答速度は従来の液晶等に比較して十分に
高い表示素子等に好適な固体光機能素子を実現すること
が可能である。As described above, according to the above embodiment,
An organic dye is selected as the illuminant so that the illuminant can be selected in a wide range from the ultraviolet to the infrared region, and a luminous mechanism by applying an electric field is adopted, preferably avoiding direct current, which is a severe condition for organic dyes. Also, preferably, the treatment of the organic compound is performed in an ultra-high vacuum, thereby realizing a solid-state optical device in which damage caused by application of an electric field or light emission is reduced. In addition, the response speed of the display device has been reduced by using ultra-fine particles composed of an electrode with a microstructure and an organic dye dispersed in a single molecule, or an organic dye molecule dispersed together with the dye. It is possible to realize a solid-state optical function element suitable for a display element or the like which is sufficiently higher than liquid crystal or the like.
【0059】[0059]
【発明の効果】以上説明したように、本発明にもとづく
固体光機能素子およびその製造方法は、有機高分子媒質
中に有機色素が単分子または/および超微粒子の形で分
散された高分子薄膜を板状透明電極と針状電極との間に
配置し、両電極間に電圧を印加することにより、該有機
色素の励起状態を生成し、該励起状態からの発光を透明
電極を通して外部に取り出す構成としたので、自己発光
形で、かつ応答速度の速い表示手段等に好適な固体光機
能素子およびその製造方法を提供することが可能とな
る。As described above, the solid-state optical function device and the method of manufacturing the same according to the present invention provide a polymer thin film in which an organic dye is dispersed in the form of a single molecule or / and ultrafine particles in an organic polymer medium. Is disposed between the plate-shaped transparent electrode and the needle-shaped electrode, and by applying a voltage between the two electrodes, an excited state of the organic dye is generated, and light emission from the excited state is extracted to the outside through the transparent electrode. With this configuration, it is possible to provide a self-luminous solid-state functional element suitable for display means having a high response speed and a method for manufacturing the same.
【図1】本発明にもとづく固体光機能素子の一例の概略
的構成を説明するための模式的断面図である。FIG. 1 is a schematic cross-sectional view for explaining a schematic configuration of an example of a solid-state optical function element according to the present invention.
【図2】本発明にもとづく固体光機能素子に適用される
SRI製フィールド・エミッション・カソード電極の構
成を示す断面図である。FIG. 2 is a sectional view showing a configuration of an SRI field emission cathode electrode applied to a solid-state optical function device according to the present invention.
【図3】本発明にもとづく固体光機能素子の一例の構成
の第1電極部を示す模式的斜視図である。FIG. 3 is a schematic perspective view showing a first electrode portion of a configuration of an example of the solid-state optical functional device according to the present invention.
【図4】本発明にもとづく固体光機能素子の製造方法に
適用される有機薄膜形成法を実施するための製造装置の
構成を説明するための構成図である。FIG. 4 is a configuration diagram for explaining a configuration of a manufacturing apparatus for performing an organic thin film forming method applied to a method of manufacturing a solid-state optical function element according to the present invention.
【図5】本発明にもとづく固体光機能素子における発光
スペクトルを示すグラフである。FIG. 5 is a graph showing an emission spectrum of the solid-state optical functional device according to the present invention.
【図6】本発明にもとづく固体光機能素子における発光
強度を示すグラフである。FIG. 6 is a graph showing the light emission intensity of the solid-state optical function device according to the present invention.
【図7】従来の固体光機能素子の一例の概略的構成を説
明するための模式的断面図である。FIG. 7 is a schematic cross-sectional view for explaining a schematic configuration of an example of a conventional solid-state optical function element.
1 シリコン基板 2 針状電極 3 SiO2 膜 4 透明電極板 4a ガラス基板 4b 透明導電層 5 発光層 6 有機高分子層 7 封止剤 10 第1電極部 20 第2電極部 21 FED用カソード電極 22 シリコン基板 23 針状電極 24 SiO2 膜 25 ゲート電極 29 基板取り付け部 30 真空スプレー室 31 色素/ポリマー溶液 32 送液ポンプ 33 ノズル 34 基板回転機構 35 トラップ排気系 36 ターボ・ポンプ排気系 37a アンビル/加熱ヒーター 37b アンビル/加熱ヒーター 38 加圧機構 39 対向基板取り付け部 40 ホットプレス室 41 ゲートバルブ 42 基板搬送機構 43 試料出入り口 44 ロードロック・モールド室1 silicon substrate 2 Needle electrodes 3 SiO 2 film 4 transparent electrode plate 4a glass substrate 4b transparent conductive layer 5 light-emitting layer 6 organic polymer layer 7 sealant 10 first electrode 20 second electrode portion 21 FED for the cathode electrode 22 Silicon substrate 23 Needle electrode 24 SiO 2 film 25 Gate electrode 29 Substrate mounting part 30 Vacuum spray chamber 31 Dye / polymer solution 32 Liquid feed pump 33 Nozzle 34 Substrate rotating mechanism 35 Trap exhaust system 36 Turbo pump exhaust system 37a Anvil / heating Heater 37b Anvil / Heating heater 38 Pressurizing mechanism 39 Counter substrate mounting part 40 Hot press chamber 41 Gate valve 42 Substrate transport mechanism 43 Sample entrance 44 Load lock / mold chamber
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平賀 隆 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 千葉 潔 東京都千代田区内幸町2丁目1番1号 帝 人株式会社内 (72)発明者 金 辰一郎 東京都日野市旭が丘4丁目3番2号 帝人 株式会社東京研究センター内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Takashi Hiraga 1-1-4, Umezono, Tsukuba, Ibaraki Pref. Electronic Technology Research Institute (72) Inventor Kiyoshi Chiba 2-1-1 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Teijin Limited (72) Inventor Shinichiro Kim 4-2-2 Asahigaoka, Hino City, Tokyo Teijin Limited, Tokyo Research Center
Claims (13)
と、 前記透明電極および前記針状電極の間に配置され、かつ
有機高分子媒質と該有機高分子媒質中に単分子または/
および超微粒子の形で分散された有機色素とを含有した
高分子薄膜からなる発光層と、 とを有し、さらに、 前記透明電極と前記針状電極との間に電圧が印加される
ことによって前記有機色素が励起状態となり、該励起状
態となった有機色素からの発光が前記透明電極を通して
外部に出力されることを特徴とする固体光機能素子。A transparent electrode having a plate shape, a needle electrode provided to face the transparent electrode, an organic polymer medium disposed between the transparent electrode and the needle electrode, and an organic polymer medium. A single molecule or / in an organic polymer medium
And a light emitting layer composed of a polymer thin film containing an organic dye dispersed in the form of ultrafine particles, and, further, by applying a voltage between the transparent electrode and the needle electrode. A solid-state optical element, wherein the organic dye is in an excited state, and light emitted from the organic dye in the excited state is output to the outside through the transparent electrode.
m以下であることを特徴とする請求項1に記載の固体光
機能素子。2. The size of the ultrafine particles is 50 n in diameter.
2. The solid-state optical function device according to claim 1, wherein m is equal to or less than m.
ャリア輸送性の有機高分子であることを特徴とする請求
項1または2に記載の固体光機能素子。3. The solid-state optical device according to claim 1, wherein the organic polymer medium is a conductive or carrier-transporting organic polymer.
電性またはキャリア輸送性の有機高分子層を設けたこと
を特徴とする請求項1または2に記載の固体光機能素
子。4. The solid-state optical element according to claim 1, wherein an organic polymer layer having a conductive property or a carrier transport property is provided between the light emitting layer and the transparent electrode.
以上および先端曲率半径100nm以下であることを特
徴とする請求項1〜4のいずれか一項に記載の固体光機
能素子。5. The needle-shaped electrode has a height of 200 nm.
The solid-state optical element according to any one of claims 1 to 4, wherein the radius of curvature is 100 nm or less.
し、直流電流を遮断し、前記電極に直流電圧のみを印加
するようにしたことを特徴とする請求項1〜5のいずれ
か一項に記載の固体光機能素子。6. The apparatus according to claim 1, wherein a capacitance is connected between a power supply and said electrode, a DC current is cut off, and only a DC voltage is applied to said electrode. 9. The solid-state optical function device according to claim 1.
絶縁性の有機高分子によって充填されていることを特徴
とする請求項1〜6のいずれか一項に記載の固体光機能
素子。7. The solid-state optical function device according to claim 1, wherein a void portion in the solid-state optical function device is filled with an electrically insulating organic polymer. .
揮発成分の残留分は、10-6Pa以下であることを特徴
とする請求項1〜7のいずれか一項に記載の固体光機能
素子。8. The solid-state optical device according to claim 1, wherein a residual amount of a nonvolatile component of the organic polymer in the solid-state optical function device is 10 −6 Pa or less. Functional element.
体光機能素子の製造に際し、前記発光層を、溶液または
分散液状態の材料を高真空容器内に噴霧して基板上に堆
積させて加熱処理する有機薄膜形成法で形成することを
特徴とする固体光機能素子の製造方法。9. In producing the solid-state optical function device according to any one of claims 1 to 8, the light-emitting layer is formed by spraying a material in a solution or dispersion state into a high vacuum container and spraying the material on a substrate. A method for manufacturing a solid-state optical functional device, comprising forming an organic thin film by depositing and heating.
を特徴とする請求項9に記載の固体光機能素子の製造方
法。10. The method according to claim 9, wherein the substrate is a plate-shaped transparent electrode.
分子層を形成し、該有機高分子層上に針状電極を形成し
た電極基板をホットプレスにより接合することを特徴と
する請求項9または10に記載の固体光機能素子の製造
方法。11. An electrically insulating organic polymer layer is formed on the light emitting layer, and an electrode substrate having a needle electrode formed on the organic polymer layer is joined by hot pressing. Item 10. The method for producing a solid-state optical function device according to item 9 or 10.
薄膜形成法で形成することを特徴とする請求項11に記
載の固体光機能素子の製造方法。12. The method according to claim 11, wherein an electrically insulating organic polymer layer is formed by the organic thin film forming method.
成、およびホットプレスの工程を10-6Pa以下の高真
空雰囲気下で行い、不揮発成分の残留分を、10-6Pa
以下とすることを特徴とする請求項9〜12のいずれか
一項に記載の固体光機能素子の製造方法。13. The formation of the light-emitting layer and an organic polymer layer, and the step of hot pressing is performed under high vacuum atmosphere below 10 -6 Pa, the residue of the nonvolatile components, 10 -6 Pa
The method for manufacturing a solid-state optical function device according to claim 9, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9051702A JPH10270169A (en) | 1997-01-21 | 1997-03-06 | Solid-state optical function device and method of manufacturing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-8698 | 1997-01-21 | ||
JP869897 | 1997-01-21 | ||
JP9051702A JPH10270169A (en) | 1997-01-21 | 1997-03-06 | Solid-state optical function device and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10270169A true JPH10270169A (en) | 1998-10-09 |
Family
ID=26343263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9051702A Pending JPH10270169A (en) | 1997-01-21 | 1997-03-06 | Solid-state optical function device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10270169A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001113214A (en) * | 1999-10-19 | 2001-04-24 | Casio Comput Co Ltd | Method and apparatus for forming thin film |
JP2002082632A (en) * | 2000-07-07 | 2002-03-22 | Seiko Epson Corp | Organic EL display body and its manufacturing method, perforated substrate, electro-optical device and its manufacturing method, and electronic equipment |
JP2005070754A (en) * | 2003-08-01 | 2005-03-17 | Semiconductor Energy Lab Co Ltd | Display device using dual emission panel |
KR100624422B1 (en) | 2004-06-05 | 2006-09-19 | 삼성전자주식회사 | Light Emitting Diode Using Nano-sized Needle |
JP2007207529A (en) * | 2006-01-31 | 2007-08-16 | Kyocera Corp | Organic EL display |
US7485584B2 (en) | 2001-05-21 | 2009-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing thereof |
US7567031B2 (en) | 2001-06-01 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and light emitting device using the element |
JP2010238673A (en) * | 2002-11-11 | 2010-10-21 | Semiconductor Energy Lab Co Ltd | Method for manufacturing light emitting device |
US8310142B2 (en) | 2003-08-01 | 2012-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device including a dual emission panel |
-
1997
- 1997-03-06 JP JP9051702A patent/JPH10270169A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001113214A (en) * | 1999-10-19 | 2001-04-24 | Casio Comput Co Ltd | Method and apparatus for forming thin film |
JP2002082632A (en) * | 2000-07-07 | 2002-03-22 | Seiko Epson Corp | Organic EL display body and its manufacturing method, perforated substrate, electro-optical device and its manufacturing method, and electronic equipment |
US7485584B2 (en) | 2001-05-21 | 2009-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and method of manufacturing thereof |
US7567031B2 (en) | 2001-06-01 | 2009-07-28 | Semiconductor Energy Laboratory Co., Ltd. | Organic light emitting element and light emitting device using the element |
JP2010238673A (en) * | 2002-11-11 | 2010-10-21 | Semiconductor Energy Lab Co Ltd | Method for manufacturing light emitting device |
JP2012099500A (en) * | 2002-11-11 | 2012-05-24 | Semiconductor Energy Lab Co Ltd | Manufacturing method of light-emitting device |
JP2005070754A (en) * | 2003-08-01 | 2005-03-17 | Semiconductor Energy Lab Co Ltd | Display device using dual emission panel |
US8310142B2 (en) | 2003-08-01 | 2012-11-13 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device including a dual emission panel |
US8796911B2 (en) | 2003-08-01 | 2014-08-05 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device including a dual emission panel |
KR100624422B1 (en) | 2004-06-05 | 2006-09-19 | 삼성전자주식회사 | Light Emitting Diode Using Nano-sized Needle |
JP2007207529A (en) * | 2006-01-31 | 2007-08-16 | Kyocera Corp | Organic EL display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5810529B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP5895583B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT | |
JP5940808B2 (en) | Organic EL element, organic EL element manufacturing method, and organic EL display device | |
WO2011046166A1 (en) | Organic electroluminescent element and lighting device using same | |
KR101368158B1 (en) | Organic light emitting diodde display and method of fabricating the same | |
WO2004078362A1 (en) | Coating apparatus and method for manufacturing organic electronic device | |
CN104233198B (en) | Linear evaporation source and glass deposition equipment for flat panel display having said linear evaporation source | |
JP2004349224A (en) | Organic electroluminescent element, display device and lighting system | |
JP2003068469A (en) | Organic electroluminescence element and its manufacturing method | |
JP2003123990A (en) | Organic electroluminescence device | |
JPH10270169A (en) | Solid-state optical function device and method of manufacturing the same | |
WO2011102249A1 (en) | Method of manufacturing organic electronic device, and organic electronic device | |
JP4941297B2 (en) | Method for manufacturing organic electroluminescence device | |
JP4626391B2 (en) | Method for manufacturing organic electroluminescent element, organic electroluminescent element, and apparatus using organic electroluminescent element | |
JP4230170B2 (en) | Method for manufacturing light emitting device | |
JPH1140370A (en) | Organic EL display | |
JP2004031262A (en) | Organic electroluminescence panel | |
JPH09245964A (en) | Optical element manufacturing method | |
JPWO2008102867A1 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT | |
JP2011034751A (en) | Method of manufacturing electro-optical device | |
JP2007059188A (en) | Manufacturing method of organic electroluminescent element, and the organic electroluminescent element | |
JP2001195012A (en) | Organic electroluminescence display device and method for manufacturing the same | |
JP5472107B2 (en) | Method for manufacturing organic electroluminescent element | |
JP2008060034A (en) | ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE | |
JP2007005177A (en) | Manufacturing method of organic electroluminescent element, and organic electroluminescent display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040223 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040223 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20040223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |