[go: up one dir, main page]

JPH10265783A - Device for modifying fuel - Google Patents

Device for modifying fuel

Info

Publication number
JPH10265783A
JPH10265783A JP9088924A JP8892497A JPH10265783A JP H10265783 A JPH10265783 A JP H10265783A JP 9088924 A JP9088924 A JP 9088924A JP 8892497 A JP8892497 A JP 8892497A JP H10265783 A JPH10265783 A JP H10265783A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
polycyclic aromatic
porous body
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9088924A
Other languages
Japanese (ja)
Other versions
JP3262017B2 (en
Inventor
Takenobu Sakai
酒井  武信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08892497A priority Critical patent/JP3262017B2/en
Publication of JPH10265783A publication Critical patent/JPH10265783A/en
Application granted granted Critical
Publication of JP3262017B2 publication Critical patent/JP3262017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject device capable of reducing the contents of polycyclic aromatic compounds in a fuel and not requiring a treatment for regenerating a porous material by carrying a catalyst for decomposing the polycyclic aromatic components on the adsorbing surfaces of the porous material having a specific average pore diameter or on places near to the adsorbing surfaces. SOLUTION: A catalyst for decomposing polycyclic aromatic compounds is carried on the adsorbing surfaces of a porous material having the adsorbing surfaces and having an average pore diameter of 0.5-100 nm or on places near to the adsorbing surfaces. A fuel-modifying device 10 filled with the grains of the porous material carrying the catalyst is disposed between a fuel-supplying system 20 and a combustion system 30, and the retention of a fuel in the fuel- modifying device 10 for 20 min or longer enables to substantially perfectly remove the polycyclic aromatic compounds. When a photo-catalyst is used as the catalyst and irradiated with UV light, substances adsorbed on the catalyst are released from the adsorbing surfaces, thereby enabling to prevent the deterioration in the degree for removing the polycyclic aromatic compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料中の多環芳香
族化合物の含有量を低減するための燃料改質装置に関す
る。
The present invention relates to a fuel reformer for reducing the content of a polycyclic aromatic compound in a fuel.

【0002】[0002]

【従来の技術】大気汚染防止の観点から、種々の燃焼系
からの排出物質を浄化することは、社会的な急務であ
る。ここで対象となる燃焼系は、自動車、航空機、船舶
等の内燃機関、発電所等のボイラー、焼却設備や処理設
備等の燃焼炉、業務用・家庭用の暖房用ヒーター等、極
めて多岐にわたる。また対象となる燃料は主として石油
系燃料であり、重油、軽油、灯油、ガソリン等である。
2. Description of the Related Art From the viewpoint of air pollution control, it is an urgent social need to purify exhaust gases from various combustion systems. The combustion systems to be used here are extremely diverse, such as internal combustion engines such as automobiles, aircraft and ships, boilers such as power plants, combustion furnaces such as incineration facilities and treatment facilities, and heaters for commercial and domestic heating. The target fuels are mainly petroleum fuels, such as heavy oil, light oil, kerosene, and gasoline.

【0003】このような社会的要請に応えて、自動車分
野においても種々の排出物質浄化策が進められており、
ディーゼルエンジンもその重要な対象の一つである。特
にディーゼルエンジンの場合に注目すべき点は、排出ガ
ス中に、一酸化炭素(CO)、炭化水素(HC)、窒素
酸化物(NOX )、二酸化硫黄(SO2 )等のガス状の
汚染物質に加えて、ディーゼル黒煙と呼ばれる粒子状物
質(particulate matter: PM)が含まれていることであ
る。特に粒子状物質については、ディーゼルエンジンか
ら排出されたものは、発癌性が高いとされている多環芳
香族炭化水素(PAH)を含むため、粒子状物質の排出
量を低減することが非常に重要である。
[0003] In response to such social demands, various exhaust gas purification measures have been promoted in the field of automobiles.
Diesel engines are also an important subject. Of particular note in the case of a diesel engine, in the exhaust gas, carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO X), sulfur dioxide (SO 2) gaseous contamination such as In addition to substances, it contains particulate matter (PM) called diesel black smoke. In particular, since particulate matter emitted from a diesel engine contains polycyclic aromatic hydrocarbons (PAH) which are considered to be highly carcinogenic, it is extremely difficult to reduce the amount of particulate matter emitted. is important.

【0004】粒子状物質の発生量は燃料中の多環芳香族
化合物の量と密接な関係があることが既に知られてい
る。したがって、燃料中の多環芳香族化合物量を低減す
ることが粒子状物質の排出量低減に効果的であると考え
られる。燃料中の多環芳香族化合物量を低減する燃料改
質方法として、例えば「環境保全研究成果集」(vol.199
4, 37-II-1〜37-II-15)に報告されているように、芳香
環の触媒処理により燃焼性を高め粒子状物質の発生を低
減する方法や、多環芳香族化合物を吸着分離する方法が
行われている。特に吸着分離による方法は、触媒処理に
対して反応性の低い多環芳香族化合物に対しても有効で
あり、上記成果集にも多孔体により吸着分離を行う方法
が記載されている。
It is already known that the amount of particulate matter generated is closely related to the amount of polycyclic aromatic compound in fuel. Therefore, it is considered that reducing the amount of the polycyclic aromatic compound in the fuel is effective in reducing the emission of the particulate matter. As a fuel reforming method for reducing the amount of polycyclic aromatic compounds in fuel, for example, “Environmental Conservation Research Results Collection” (vol.199
4, 37-II-1 to 37-II-15), a method of increasing flammability by catalytic treatment of aromatic rings to reduce the generation of particulate matter, and adsorption of polycyclic aromatic compounds Separation methods have been implemented. In particular, the method using adsorption separation is effective for polycyclic aromatic compounds having low reactivity to the catalyst treatment, and the above-mentioned collection of results also describes a method for performing adsorption separation using a porous material.

【0005】しかし多孔体による吸着は、多孔体が吸着
物質で飽和してしまうと、吸着による除去効果が消失し
てしまい、これを再生するには400〜500℃で燃焼
させるか、高温で加圧処理する必要がある。そのために
は、例えば自動車内の吸着装置から多孔体を取り外し、
別の炉内に移して高温処理しなくてはならない。このよ
うな高温処理は、ある程度の規模の処理プラントの形で
行う必要があり、車載可能な形で(オンボードで)行う
ことはできない。また、仮にプラント処理により再生を
行うとしても、焼却装置や火源等が必要となりコストが
上昇するばかりでなく、多孔体に吸着した高濃度の多環
芳香族化合物を完全に焼却処理して十分に浄化すること
は、それ自体に高度の技術開発が必要になる。
However, if the porous body is saturated with the adsorbed substance, the effect of the removal by the adsorption is lost. If the porous body is to be regenerated, it is burned at 400 to 500 ° C. or heated at a high temperature. Pressure treatment is required. For that purpose, for example, remove the porous body from the adsorption device in the car,
It must be transferred to another furnace and subjected to high-temperature treatment. Such high-temperature processing must be performed in the form of a processing plant of a certain scale, and cannot be performed in a form that can be mounted on a vehicle (on-board). Even if regeneration is performed by plant treatment, incineration equipment and a fire source are required, which not only increases costs, but also completely incinerates high-concentration polycyclic aromatic compounds adsorbed on the porous body. Purification in itself requires advanced technological development.

【0006】[0006]

【発明が解決しようとする課題】本発明は、多環芳香族
化合物を吸着するための多孔体の再生処理を必要としな
い燃料改質装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel reformer which does not require a porous body for regeneration treatment for adsorbing a polycyclic aromatic compound.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の燃料改質装置は、吸着面を有し且つ平均
空孔径が0.5〜100nmである多孔体と、該吸着面
またはその直近に配設された多環芳香族化合物分解用触
媒とを備えたことを特徴とする。本発明の燃料改質装置
は、燃料中の多環芳香族化合物を多孔体の吸着面に吸着
し、吸着された多環芳香族化合物を吸着面またはその直
近に配設した触媒により分解し脱離させるので、多環芳
香族化合物の吸着により多孔体が飽和せず、もしくは飽
和を直ちに解消できる。多環芳香族化合物の分解により
生成する単環芳香族化合物は容易に燃焼するので、粒子
状物質の発生が低減する。
In order to achieve the above object, a fuel reformer of the present invention comprises a porous material having an adsorption surface and having an average pore diameter of 0.5 to 100 nm; And a catalyst for decomposing a polycyclic aromatic compound disposed on or near the surface. The fuel reformer of the present invention adsorbs the polycyclic aromatic compound in the fuel to the adsorption surface of the porous body, and decomposes and desorbs the adsorbed polycyclic aromatic compound by the catalyst disposed on the adsorption surface or in the immediate vicinity thereof. Since the porous body is separated, the porous body is not saturated by the adsorption of the polycyclic aromatic compound, or the saturation can be eliminated immediately. Since the monocyclic aromatic compound generated by the decomposition of the polycyclic aromatic compound easily burns, the generation of particulate matter is reduced.

【0008】多孔体の平均空孔径は、0.5nm未満で
あると多環芳香族化合物が空孔内に進入し難いために吸
着効果が低下し、100nmを超えると比表面積が小さ
くなり吸着効果が低下する。図1に、種々の平均空孔径
を有するシリカメソポア材料を多孔体として用いて、2
〜3環芳香族炭化水素の吸着除去実験を行った結果を示
す。この結果から分かるように、平均空孔径が0.5n
m〜100nmの範囲であれば、5%以上の除去率が確
保できる。更に、平均空孔径1nm〜50nmで除去率
10%以上、、平均空孔径1.5nm〜10nmで除去
率50%以上、平均空孔径2〜7nmで除去率90%以
上が得られる。
When the average pore diameter of the porous body is less than 0.5 nm, the adsorption effect is reduced because the polycyclic aromatic compound is unlikely to enter the pores. Decrease. FIG. 1 shows that a silica mesopore material having various average pore diameters was used as a porous body.
The result of having performed the adsorption removal experiment of 3 to 3 ring aromatic hydrocarbons is shown. As can be seen from the results, the average pore diameter is 0.5 n
In the range of m to 100 nm, a removal rate of 5% or more can be secured. Furthermore, a removal rate of 10% or more is obtained when the average pore diameter is 1 nm to 50 nm, a removal rate of 50% or more when the average pore diameter is 1.5 nm to 10 nm, and a removal rate of 90% or more when the average pore diameter is 2 to 7 nm.

【0009】[0009]

【発明の実施の形態】本発明の燃料改質装置に用いる多
孔体の材質は、改質の対象とする燃料および分解用触媒
により浸食あるいは分解されない多孔質材料であればよ
く、例えばシリカメソポア材料、燐酸ジルコニウム、ゼ
オライト、セピオライト等のセラミックスあるいは無機
材料が典型的であるが、これらに限定されるものではな
く、多孔質金属や、アセタールコポリマー等の多孔質樹
脂であってもよい。多孔体の形状もしくは形態は特に限
定する必要はなく、粉末、円柱状ペレット、造粒した
球、ブロック状、繊維状等のいずれでもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The material of the porous body used in the fuel reforming apparatus of the present invention may be any porous material that is not eroded or decomposed by the fuel to be reformed and the decomposition catalyst, for example, silica mesopore material. Ceramics and inorganic materials such as zirconium phosphate, zeolite and sepiolite are typical, but not limited thereto, and porous metals such as porous metals and acetal copolymers may be used. The shape or form of the porous body need not be particularly limited, and may be any of powder, columnar pellets, granulated spheres, blocks, fibers, and the like.

【0010】多環芳香族化合物の分解を行う反応は特に
限定しないが、典型的には酸化反応により分解を行うこ
とができる。そのための酸化触媒としては、例えば二酸
化マンガン(MnO2 )、過マンガン酸カリウム(KM
nO4)、硫酸マンガン+アスコルビン酸(MnSO4
6 8 6 )、鉄キレート化合物等を用いることがで
きる。
[0010] The reaction for decomposing the polycyclic aromatic compound is not particularly limited, but typically the decomposition can be carried out by an oxidation reaction. As oxidation catalysts therefor, for example, manganese dioxide (MnO 2 ), potassium permanganate (KM
nO 4 ), manganese sulfate + ascorbic acid (MnSO 4 +
C 6 H 8 O 6 ), iron chelate compounds and the like can be used.

【0011】また、多環芳香族化合物の分解用触媒とし
て、光触媒を用いることができる。この光触媒として
は、例えば酸化チタン(TiO2 )や酸化亜鉛(Zn
O)等を用いることができる。ここに例示した光触媒は
一般に酸化触媒として知られているものであるが、もち
ろん本発明においては、酸化触媒以外の触媒として作用
する光触媒であっても、多環芳香族化合物の分解用触媒
として作用する光触媒であれば用いることができる。
A photocatalyst can be used as a catalyst for decomposing a polycyclic aromatic compound. Examples of the photocatalyst include titanium oxide (TiO 2 ) and zinc oxide (Zn).
O) and the like can be used. Although the photocatalyst exemplified here is generally known as an oxidation catalyst, in the present invention, of course, even if the photocatalyst acts as a catalyst other than the oxidation catalyst, it acts as a catalyst for decomposing the polycyclic aromatic compound. Any photocatalyst can be used.

【0012】特に触媒として光触媒を用いると、光照射
のタイミング制御により、最適期に分解反応を行わせる
ことができるので好ましい。例えば、ディーゼルエンジ
ンを始動し加速した後の走行期すなわち安定燃焼期に同
期させて光触媒に光照射して分解反応を行うと、分解物
質(特に単環芳香族化合物)を最も効率良く燃焼させる
ことができるので、粒子状物質の発生量を最小限に抑制
できる。
In particular, it is preferable to use a photocatalyst as a catalyst because the decomposition reaction can be performed at an optimum period by controlling the timing of light irradiation. For example, if a photocatalyst is irradiated with light in synchronization with a running period after starting and accelerating a diesel engine, that is, a stable combustion period, a decomposition reaction is performed to burn decomposition substances (especially monocyclic aromatic compounds) most efficiently. Therefore, the amount of particulate matter generated can be suppressed to a minimum.

【0013】光触媒を用いる際に、多光体が紫外線透過
性を有すれば、多光体の内部まで紫外線が到達し易いの
で、触媒作用を更に活用できるため好ましい。以下に、
添付図面を参照し実施例により本発明を更に詳細に説明
する。
When a photocatalyst is used, it is preferable that the multi-light body has ultraviolet transmittance, since ultraviolet light can easily reach the inside of the multi-light body, so that the catalytic action can be further utilized. less than,
The present invention will be described in more detail by way of examples with reference to the accompanying drawings.

【0014】[0014]

【実施例】【Example】

〔実施例1〕図2に、本発明による燃料改質装置の一例
を示す。燃料改質装置10は、燃料タンク等の燃料供給
系20とエンジンや燃焼炉等の燃焼系30との間に介在
させて配置する。
Embodiment 1 FIG. 2 shows an example of a fuel reforming apparatus according to the present invention. The fuel reformer 10 is disposed between a fuel supply system 20 such as a fuel tank and a combustion system 30 such as an engine or a combustion furnace.

【0015】燃料改質装置10の密閉容器1内には、本
発明による吸着および分解を行う触媒担持多孔粒子3が
多数収容されている。個々の触媒担持多孔粒子3は、粒
径0.5mm〜1mmのシリカメソポア材料から成る多
孔体を基材とし、その外表面および空孔内壁に光触媒で
ある酸化チタンを塗布し担持させたものである。密閉容
器1は、一端の燃料入口4で燃料供給系20に、他端の
燃料出口5で燃焼系30に、それぞれセパレートフィル
ター2を介して接続されている。
A large number of catalyst-carrying porous particles 3 for adsorbing and decomposing according to the present invention are accommodated in the closed vessel 1 of the fuel reformer 10. Each of the catalyst-supporting porous particles 3 has a porous body made of silica mesopore material having a particle size of 0.5 mm to 1 mm as a base material, and titanium oxide as a photocatalyst is applied and supported on the outer surface and the inner walls of the pores. is there. The closed container 1 is connected to the fuel supply system 20 at one end of the fuel inlet 4 and to the combustion system 30 at the other end of the fuel outlet 5 via the separate filter 2.

【0016】容器1の外部に配置した紫外線ランプ6か
らの紫外光を、密閉容器1の透明窓1Aを透して触媒担
持多孔粒子3に照射できるようになっている。光触媒に
代えて通常の酸化触媒を用いる場合には、紫外線ランプ
6および透明窓1Aは不要である。図2の燃料改質装置
の場合、密閉容器1の容量は次のようにして設定するこ
とができる。
Ultraviolet light from an ultraviolet lamp 6 disposed outside the container 1 can be applied to the catalyst-carrying porous particles 3 through the transparent window 1A of the closed container 1. When a normal oxidation catalyst is used instead of the photocatalyst, the ultraviolet lamp 6 and the transparent window 1A are unnecessary. In the case of the fuel reformer shown in FIG. 2, the capacity of the closed vessel 1 can be set as follows.

【0017】図3に、2gの上記多孔粒子3を軽油20
0cc中に投入した後の経過時間と、軽油中の2〜3環
芳香族炭化水素の除去率との関係を示す。この場合、投
入後20分で2〜3環芳香族炭化水素はほぼ完全に除去
される。したがって、図2の密閉容器1の容量は、容器
内での燃料の滞留時間が20分以上となるように設定す
れば、ほぼ100%の除去率が確保できる。
FIG. 3 shows that 2 g of the porous particles 3 are
The relationship between the elapsed time after charging into 0 cc and the removal rate of the 2- or 3-ring aromatic hydrocarbon in the gas oil is shown. In this case, the two- or three-ring aromatic hydrocarbons are almost completely removed 20 minutes after the introduction. Therefore, if the capacity of the sealed container 1 in FIG. 2 is set so that the residence time of the fuel in the container is 20 minutes or more, a removal rate of almost 100% can be secured.

【0018】例えば、燃料の輸送量が0.1リットル/
分である場合には、0.1リットル/分×20分=2リ
ットルであるから、密閉容器1の容量は2リットル以上
とすればよい。ただし、本発明の燃料改質装置は図2の
ように燃料供給系と別個に設置せず、例えば燃料タンク
20の内部に設置する簡易な形態をとることもできる。
その場合には、燃料タンク内に燃料を供給後の時間経過
に伴い図3の曲線に沿って除去率が上昇し、20分経過
以降にほぼ100%の除去率が得られる。
For example, if the fuel transport rate is 0.1 liter /
In the case of minutes, 0.1 liter / minute × 20 minutes = 2 liters, so that the capacity of the sealed container 1 may be 2 liters or more. However, the fuel reforming apparatus of the present invention does not have to be installed separately from the fuel supply system as shown in FIG.
In this case, the removal rate increases along the curve in FIG. 3 with the lapse of time after the fuel is supplied into the fuel tank, and a removal rate of almost 100% is obtained after the lapse of 20 minutes.

【0019】図2の装置において、輸送量0.1リット
ル/分で軽油の処理実験を行った。図4に、処理開始か
らの経過時間と2〜3環芳香族炭化水素の除去率との関
係を示す。除去率は、処理時間の経過に伴い図4に実線
で示したように上昇し、4時間経過後にほぼ100%と
なった。その後、比較のため紫外線照射を行わなかった
場合には、図4に破線で示したように除去率は急落し、
1時間で0%近くまで低下した。これは、多孔粒子3に
よる吸着が飽和し、吸着が行われなくなったことを示
す。
In the apparatus shown in FIG. 2, an experiment was conducted to treat light oil at a transportation rate of 0.1 liter / min. FIG. 4 shows the relationship between the elapsed time from the start of the treatment and the removal rate of the 2- or 3-ring aromatic hydrocarbon. The removal rate increased as indicated by the solid line in FIG. 4 with the lapse of the processing time, and reached almost 100% after the lapse of 4 hours. Thereafter, when ultraviolet irradiation was not performed for comparison, the removal rate sharply dropped as shown by the broken line in FIG.
It decreased to nearly 0% in one hour. This indicates that the adsorption by the porous particles 3 is saturated and the adsorption is not performed.

【0020】これに対して、本発明により、処理時間4
時間の時点で紫外線ランプ6を点灯し紫外線照射を1時
間継続した場合には、図4の経過時間4時間以降の領域
に実線で示したようにほぼ100%の除去率で一定のま
ま推移した。これは、4時間経過時点で一旦は吸着機能
が飽和したが、その後の紫外線照射で吸着物質(2〜3
環芳香族炭化水素)が分解され吸着面から脱離したこと
により、吸着機能が回復したことを示す。
On the other hand, according to the present invention, the processing time 4
When the ultraviolet lamp 6 was turned on at the time point and the ultraviolet irradiation was continued for one hour, as shown by the solid line in the area after the elapsed time of four hours in FIG. 4, the removal rate remained constant at almost 100%. . This is because the adsorption function was once saturated after 4 hours, but the adsorbed substance (2 to 3
(Aromatic hydrocarbon) was decomposed and desorbed from the adsorption surface, indicating that the adsorption function was restored.

【0021】本実施例に示したように、光触媒を用いる
と、例えばディーゼルエンジンの運転時期に同期させて
適時に光照射して触媒作用を機能させ、多環芳香族化合
物を適時に分解し脱離させることにより、粒子状物質の
発生を効率的に低減することができる。図5に、(1)
燃料の改質処理なしの場合と(2)本発明により光触媒
を用いて燃料改質した場合について、ディーゼルエンジ
ンの始動から加速を経て定常走行までの過程における、
エンジン回転数と粒子状物質の発生量の推移を示す。
As shown in this embodiment, when a photocatalyst is used, for example, light is irradiated in a timely manner in synchronization with the operation time of a diesel engine to cause a catalytic function to function, and the polycyclic aromatic compound is decomposed and decomposed in a timely manner. By separating, the generation of particulate matter can be efficiently reduced. In FIG. 5, (1)
In the case where the fuel reforming process is not performed and the case where (2) the fuel reforming is performed using the photocatalyst according to the present invention, in the process from the start of the diesel engine to the steady running through the acceleration,
5 shows changes in the engine speed and the amount of generated particulate matter.

【0022】図5(1)に示したように、一般に粒子状
物質の発生量は、エンジン始動時と加速時に増大し、安
定走行(安定燃焼)期に入ると減少して一定レベルで推
移する。図5(2)に示したように、本発明の燃料改質
装置において光触媒を用いた場合は、始動時および加速
時には、粒子状物質の生成源である多環芳香族化合物を
多孔体により吸着捕捉し、走行が安定し安定燃焼期に入
った時点(図5(2)のAの時点)で光照射して光触媒
を機能させることにより、吸着していた多環芳香族化合
物を分解して脱離させる。多環芳香族化合物の分解によ
り生成した単環芳香族化合物は燃焼が容易なので、安定
燃焼期に燃焼させることにより、粒子状物質の発生量を
低減できる。
As shown in FIG. 5A, the amount of particulate matter generally increases at the start of the engine and at the time of acceleration, and decreases at a stable running (stable combustion) period and changes at a constant level. . As shown in FIG. 5 (2), when a photocatalyst is used in the fuel reformer of the present invention, the polycyclic aromatic compound, which is a source of particulate matter, is adsorbed by the porous material at the time of startup and acceleration. At the time when the vehicle is trapped, the running is stable and the stable combustion period is started (at the time point A in FIG. 5 (2)), the adsorbed polycyclic aromatic compound is decomposed by operating the photocatalyst by irradiating light. Let go. Since the monocyclic aromatic compound generated by the decomposition of the polycyclic aromatic compound can be easily burned, the amount of particulate matter generated can be reduced by burning it during the stable burning period.

【0023】すなわち、燃料を改質しなかった場合に図
5(1)のようにエンジン始動時および加速時に粒子状
物質が多量発生し、安定走行期に入ってもある程度のレ
ベルで常時発生し続ける。これ対して、本発明により燃
料改質を行うことによって、図5(2)に示したように
エンジン始動時および加速時の粒子状物質発生量を大幅
に低減できると共に、安定走行期における粒子状物質発
生量も低レベルに抑制できるので、エンジン運転の全期
間について粒子状物質発生量が低減される。
That is, when the fuel is not reformed, a large amount of particulate matter is generated at the time of starting and accelerating the engine as shown in FIG. 5 (1). to continue. On the other hand, by performing the fuel reforming according to the present invention, as shown in FIG. 5 (2), the amount of particulate matter generated at the time of starting the engine and at the time of acceleration can be significantly reduced, and the particulate matter during the stable running period can be reduced. Since the amount of generated substances can also be suppressed to a low level, the amount of generated particulates is reduced over the entire period of engine operation.

【0024】図6に、本発明の触媒担持多孔体による多
環芳香族化合物の吸着過程を模式的に示す。図示を容易
にするために、空孔を1個有する模型で多孔体を示す
が、もちろん実際には多孔体は無数の空孔を有してい
る。また説明を簡潔にするために、空孔内壁についての
み言及するが、外表面についても同様の過程である。図
6(1)のように、外表面および空孔内壁に光触媒を担
持した多孔体に、多環成分(図では2環)を含む軽油が
接触し、図6(2)のように空孔内に進入すると、図6
(3)のように多環成分とそれ以外の成分の一部(C15
以上の直鎖パラフィンや枝別れパラフィン等)が、光触
媒を担持した空孔内壁に吸着し、残部(C14以下の直鎖
パラフィン等)はそのまま通過していく。
FIG. 6 schematically shows the adsorption process of a polycyclic aromatic compound by the catalyst-supporting porous material of the present invention. For ease of illustration, the porous body is shown as a model having one hole, but of course, the porous body actually has countless holes. For simplicity, only the inner wall of the hole will be described, but the same applies to the outer surface. As shown in FIG. 6 (1), light oil containing a polycyclic component (two rings in the figure) comes into contact with the porous body having a photocatalyst supported on the outer surface and the inner wall of the pores, and as shown in FIG. Fig. 6
As in (3), the polycyclic component and a part of the other components (C 15
More linear paraffins and branched paraffins, etc.), adsorbed on pores inner wall and the photocatalyst carrying the balance (C 14 or less linear paraffin) goes through it.

【0025】図7に、本発明の触媒担持多孔体による多
環芳香族化合物の分解および脱離過程を模式的に示す。
図7(1)のように触媒担持多孔体の空孔内壁に吸着さ
れている多環成分(図では2環)は、図7(2)のよう
に光照射を行い光触媒を機能させると分解して単環とな
って脱離し、図7(3)のように多孔体から排出され、
空孔内壁が有効な吸着面として解放されて多孔体が再生
される。
FIG. 7 schematically shows the decomposition and elimination processes of the polycyclic aromatic compound by the catalyst-supporting porous material of the present invention.
The polycyclic component (two rings in the figure) adsorbed on the inner wall of the pores of the catalyst-supporting porous body as shown in FIG. 7 (1) is decomposed by irradiating light to make the photocatalyst function as shown in FIG. 7 (2). Then, it is desorbed as a single ring, and is discharged from the porous body as shown in FIG.
The pore inner wall is released as an effective adsorption surface, and the porous body is regenerated.

【0026】多孔体から排出された単環成分は後続の燃
焼系により容易に燃焼するので、粒子状物質の発生が低
減する。図示したように、多環成分以外の成分(C15
上の直鎖パラフィンや枝別れパラフィン等)も、同様に
分解、脱離、排出され、容易に燃焼する。図8に、本発
明による触媒担持多孔体の一例として、酸化チタンを担
持させたシリカメソポア材料の透過電子顕微鏡写真を示
す。図8の写真で観察される無数の白い斑点はシリカメ
ソポア材料の空孔である。図8の写真では識別できない
が、個々の空孔は図9に模式的に示したように六角柱形
状で、外表面および空孔内壁に光触媒としての二酸化チ
タン(TiO2 )が担持されている。本発明の燃料改質
装置においては、このように多孔体の一部または全面に
触媒を担持させた形でもよいし、担持させなくとも、吸
着物質に対して分解触媒として作用できる限りにおいて
直近に配置してもよい。直近に配置する具体的な態様と
して、多孔体と混合した状態とすることができる。
The monocyclic component discharged from the porous body is easily burned by the subsequent combustion system, so that the generation of particulate matter is reduced. As illustrated, the component other than the polycyclic component (C 15 or more linear paraffins and branched paraffins, etc.), as well as decomposition, desorption is discharged, easily burned. FIG. 8 shows a transmission electron micrograph of a silica mesopore material supporting titanium oxide as an example of the catalyst-supporting porous body according to the present invention. The countless white spots observed in the photograph of FIG. 8 are pores of the silica mesopore material. Although not identifiable in the photograph of FIG. 8, the individual holes are hexagonal columns as schematically shown in FIG. 9, and titanium dioxide (TiO 2 ) as a photocatalyst is supported on the outer surface and the inner wall of the holes. . In the fuel reformer of the present invention, the catalyst may be supported on a part or the entire surface of the porous body as described above. It may be arranged. As a specific mode to be disposed immediately, it can be in a state of being mixed with a porous body.

【0027】以上、本発明の燃料改質装置について、典
型的な適用対象としてディーゼルエンジン用の軽油を想
定して説明したが、本発明の適用対象は特にこれに限定
する必要はなく、多環芳香族化合物を多少でも含む燃料
であればその低減効果が得られる。すなわち、自動車、
航空機、船舶等の内燃機関、発電所等のボイラー、焼却
設備や処理設備等の燃焼炉、業務用・家庭用の暖房用ヒ
ーター等に用いる石油系燃料であれば、重油、軽油、灯
油、ガソリンを問わず適用可能である。ガソリンの場合
は、多環芳香族化合物の含有量が僅かであり、燃焼物質
として黒煙を排出する程ではないが、多環芳香族化合物
自体の排出量を低減することができる。 〔実施例2〕図10に、本発明の燃料改質装置を家庭用
石油ファンヒーターに適用した例を示す。燃料である灯
油のタンク20内に本発明の改質装置10を内蔵した形
であり、紫外線ランプ6からの紫外線を透明窓1Aを透
して光触媒担持多孔粒子3に照射する方式である。例え
ば1時間に付き10分紫外線照射することにより、着火
時の黒煙と着火・消火時の異臭を低減することができ
る。
Although the fuel reformer of the present invention has been described above assuming that diesel fuel for a diesel engine is a typical application, the application of the present invention is not particularly limited to this. If the fuel contains at least some aromatic compounds, the effect can be obtained. That is, a car,
For petroleum fuels used in internal combustion engines such as aircraft and ships, boilers such as power plants, combustion furnaces such as incinerators and treatment facilities, and heaters for business and household heating, heavy oil, light oil, kerosene, and gasoline It is applicable regardless of. In the case of gasoline, the content of the polycyclic aromatic compound is small, and the emission of the polycyclic aromatic compound itself can be reduced although the amount of black smoke as a combustion substance is not so large. [Embodiment 2] Fig. 10 shows an example in which the fuel reformer of the present invention is applied to a household oil fan heater. This is a type in which the reformer 10 of the present invention is built in a tank 20 of kerosene as a fuel, and irradiates ultraviolet rays from an ultraviolet lamp 6 to the photocatalyst-supporting porous particles 3 through a transparent window 1A. For example, by irradiating with ultraviolet rays for 10 minutes per hour, it is possible to reduce black smoke at the time of ignition and unpleasant odor at the time of ignition / extinguishing.

【0028】本発明の燃料改質装置は、多環芳香族化合
物分解用触媒を備えたことにより、いわば自己再生能力
を有しているので、取り外して別のプラントに移して再
生処理する必要がないため、特に自動車等の車載用(オ
ンボード使用)に極めて好適である。また、本発明は燃
料改質により粒子状物質発生量を大幅に低減できるとい
う主たる効果に加えて、それに伴い下記のような副次的
な効果も得られる。
Since the fuel reforming apparatus of the present invention has a so-called self-regeneration ability by having a catalyst for decomposing polycyclic aromatic compounds, it is necessary to remove it and transfer it to another plant for regeneration treatment. Since it is not used, it is particularly suitable for in-vehicle use (on-board use) of automobiles and the like. Further, in addition to the main effect that the present invention can greatly reduce the amount of particulate matter generated by fuel reforming, the following secondary effects can be obtained with the main effect.

【0029】すなわち、燃料中の難燃焼成分が低減され
るので、燃焼効率が向上し、燃費が向上する。例えば、
排気量1.8リットルのディーゼルエンジン乗用車に適
用した場合、10%燃費が向上し、灯油を燃料とするゴ
ミ焼却炉に適用した場合、7%燃費が向上した。また、
燃焼火炎に直接接触する部品への燃焼残留物質の付着が
減少するので、初期の燃焼性能を長期間維持することが
できる。
That is, since the difficult-to-burn components in the fuel are reduced, the combustion efficiency is improved, and the fuel efficiency is improved. For example,
When applied to a 1.8-liter diesel engine passenger car, fuel efficiency was improved by 10%, and when applied to a garbage incinerator using kerosene as fuel, fuel efficiency was improved by 7%. Also,
Since the adhesion of residual combustion substances to the parts that come into direct contact with the combustion flame is reduced, the initial combustion performance can be maintained for a long time.

【0030】更に、排出ガス中の未燃焼物質が減少する
ので、排出ガス浄化用触媒の劣化を緩和し長寿命化でき
る。例えば、自動車用ディーゼルエンジンに適用した場
合、NOX 処理用触媒について、硫黄化合物による触媒
有効成分の被毒や、未燃焼物質の触媒表面への付着によ
る浄化性能低下までの時間が2倍に向上した。
Further, since the amount of unburned substances in the exhaust gas is reduced, deterioration of the exhaust gas purifying catalyst can be reduced and the life can be extended. For example, improved when applied to a diesel engine for an automobile, the NO X catalyst for treating poisoning or catalytically active component by the sulfur compounds, the time until purification performance degradation due to adhering to the catalyst surface of the unburnt doubles did.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
多環芳香族化合物を吸着するための多孔体の再生処理を
必要としない燃料改質装置が提供される。
As described above, according to the present invention,
Provided is a fuel reformer that does not require a porous body regeneration treatment for adsorbing a polycyclic aromatic compound.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、多孔体の平均空孔径と、2〜3環芳香
族炭化水素の除去率との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between an average pore diameter of a porous body and a removal rate of a 2- to 3-ring aromatic hydrocarbon.

【図2】図2は、本発明による燃料改質装置の一構成例
を示す断面図である。
FIG. 2 is a cross-sectional view showing one configuration example of a fuel reformer according to the present invention.

【図3】図3は、多孔粒子を軽油中に投入してからの経
過時間と、軽油中の2〜3環多環芳香族化合物の除去率
との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an elapsed time after pouring porous particles into light oil and a removal rate of a 2- to 3-ring polycyclic aromatic compound in the light oil.

【図4】図4は、図2の改質装置における処理開始から
の経過時間と2〜3環芳香族炭化水素の除去率との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between the elapsed time from the start of the treatment in the reformer of FIG. 2 and the removal rate of 2 to 3 ring aromatic hydrocarbons.

【図5】図5は、(1)燃料の改質処理なしの場合と
(2)本発明により光触媒を用いて燃料改質した場合に
ついて、ディーゼルエンジンの始動から加速を経て定常
走行までの過程における、エンジン回転数と粒子状物質
の発生量の推移を示すグラフである。
FIG. 5 is a diagram showing a process from start of a diesel engine to acceleration and steady running after (1) no fuel reforming process and (2) fuel reforming using a photocatalyst according to the present invention. 5 is a graph showing changes in the engine speed and the amount of particulate matter generated in the above.

【図6】図6に、本発明の触媒担持多孔体による多環芳
香族化合物の吸着過程を模式的に示す断面図である。
FIG. 6 is a cross-sectional view schematically showing a process of adsorbing a polycyclic aromatic compound by the catalyst-supporting porous body of the present invention.

【図7】図7は、本発明の触媒担持多孔体による多環芳
香族化合物の分解および脱離過程を模式的に示す断面図
である。
FIG. 7 is a cross-sectional view schematically showing the decomposition and elimination processes of a polycyclic aromatic compound by the catalyst-supporting porous body of the present invention.

【図8】図8は、本発明による触媒担持多孔体の一例と
して、酸化チタンを担持させたシリカメソポア材料の透
過電子顕微鏡写真である。
FIG. 8 is a transmission electron micrograph of a silica mesopore material supporting titanium oxide as an example of a catalyst-supporting porous body according to the present invention.

【図9】図9は、図8の写真で無数の白い斑点として観
察される空孔と、その外表面および内壁に担持された触
媒とを模式的に示す斜視図である。
FIG. 9 is a perspective view schematically showing pores observed as countless white spots in the photograph of FIG. 8, and a catalyst supported on the outer surface and inner wall thereof.

【図10】図10は、本発明の燃料改質装置を灯油タン
ク内に内蔵させた家庭用石油ファンヒーターの例を示す
断面図である。
FIG. 10 is a sectional view showing an example of a household petroleum fan heater in which the fuel reformer of the present invention is incorporated in a kerosene tank.

【符号の説明】[Explanation of symbols]

1…密閉容器 1A…透明窓 2…セパレートフィルター 3…触媒を担持させた多孔粒子 4…燃料入口 5…燃料出口 6…紫外線ランプ 10…燃料改質装置 20…燃料供給系(燃料タンク等) 30…燃焼系(エンジン、燃焼炉等) DESCRIPTION OF SYMBOLS 1 ... Closed container 1A ... Transparent window 2 ... Separate filter 3 ... Porous particle which carried the catalyst 4 ... Fuel inlet 5 ... Fuel outlet 6 ... Ultraviolet lamp 10 ... Fuel reformer 20 ... Fuel supply system (fuel tank etc.) 30 … Combustion system (engine, combustion furnace, etc.)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸着面を有し且つ平均空孔径が0.5〜
100nmである多孔体と、該吸着面またはその直近に
配設された多環芳香族化合物分解用触媒とを備えたこと
を特徴とする燃料改質装置。
Claims: 1. An adsorbent surface having an average pore diameter of 0.5 to
A fuel reformer comprising: a porous body having a thickness of 100 nm; and a catalyst for decomposing a polycyclic aromatic compound disposed at or immediately adjacent to the adsorption surface.
【請求項2】 前記触媒が酸化触媒であることを特徴と
する請求項1記載の燃料改質装置。
2. The fuel reformer according to claim 1, wherein the catalyst is an oxidation catalyst.
【請求項3】 前記触媒が光触媒であることを特徴とす
る請求項1記載の燃料改質装置。
3. The fuel reformer according to claim 1, wherein the catalyst is a photocatalyst.
【請求項4】 前記光触媒に光を照射する手段を有する
ことを特徴とする請求項3記載の燃料改質装置。
4. The fuel reformer according to claim 3, further comprising means for irradiating the photocatalyst with light.
JP08892497A 1997-03-24 1997-03-24 Fuel reformer Expired - Fee Related JP3262017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08892497A JP3262017B2 (en) 1997-03-24 1997-03-24 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08892497A JP3262017B2 (en) 1997-03-24 1997-03-24 Fuel reformer

Publications (2)

Publication Number Publication Date
JPH10265783A true JPH10265783A (en) 1998-10-06
JP3262017B2 JP3262017B2 (en) 2002-03-04

Family

ID=13956471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08892497A Expired - Fee Related JP3262017B2 (en) 1997-03-24 1997-03-24 Fuel reformer

Country Status (1)

Country Link
JP (1) JP3262017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121540A1 (en) * 2004-06-09 2005-12-22 Fuji Kihan Co., Ltd. Fuel reformer
WO2007026558A1 (en) * 2005-08-30 2007-03-08 Nissan Motor Co., Ltd. Fuel ignition system for internal combustion engine, method for igniting fuel, fuel reforming system, and fuel reforming method
JP2007064060A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Fuel reforming system and fuel ignition system for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121540A1 (en) * 2004-06-09 2005-12-22 Fuji Kihan Co., Ltd. Fuel reformer
JPWO2005121540A1 (en) * 2004-06-09 2008-04-10 株式会社不二機販 Fuel reformer
WO2007026558A1 (en) * 2005-08-30 2007-03-08 Nissan Motor Co., Ltd. Fuel ignition system for internal combustion engine, method for igniting fuel, fuel reforming system, and fuel reforming method
JP2007064060A (en) * 2005-08-30 2007-03-15 Nissan Motor Co Ltd Fuel reforming system and fuel ignition system for internal combustion engine
US7793631B2 (en) 2005-08-30 2010-09-14 Nissan Motor Co., Ltd. Fuel ignition system, fuel igniting method, fuel reforming system and fuel reforming method, for internal combustion engine

Also Published As

Publication number Publication date
JP3262017B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
RU2597090C2 (en) Dual function catalytic filter
RU2436621C2 (en) Thermally regenerated adsorbent of nitrogen oxides
US7351382B2 (en) Particle filter having a catalytically active coating to accelerate burning off accumulated soot particles during a regeneration phase
EP1049529B1 (en) Combatting air pollution
CN103055694B (en) A kind of method utilizing organic exhaust gas to carry out denitrating flue gas
JP2002527658A (en) Mechanisms and methods for purifying exhaust gases
KR100204257B1 (en) Heat-treated activated carbon for denitration, manufacturing method thereof, denitration method using same and denitration system using same
EP1017477A1 (en) Treatment of gaseous emissions
CN102454453A (en) Emission scr nox aftertreatment system having reduced so3 generation and improved durability
US6767526B1 (en) Method for treating by combustion carbon-containing particles in an internal combustion engine exhaust circuit
US4710487A (en) Diesel exhaust gas catalyst
WO2001051178A1 (en) Process, catalyst system, and apparatus for treating sulfur compound containing effluent
JP2001123823A (en) Mechanism for converting particulate matter in exhaust gas from gasoline engine
JP2006512534A (en) Exhaust mechanism for diesel engine with NOx trap
JP3262017B2 (en) Fuel reformer
EP0502161A1 (en) Reduction of nitrogen oxide and carbon monoxide in effluent gases
US20050022518A1 (en) Process and device for the decontamination of the exhaust gases from an internal combustion engine
WO2009084696A1 (en) Method of removing harmful substances
JP4124321B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
US20220243626A1 (en) The use of ozone with lnt and mno2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion
JP2003516491A (en) Method of treating exhaust gas containing SOx
JP2005337042A (en) Exhaust gas purification muffler for diesel engine
JPH0663411A (en) Exhaust gas cleaning catalyst for diesel engine
JPH0663359A (en) Nitrogen oxide purification method and exhaust gas purification device
JP2013057004A (en) Method and apparatus for desulfurizing sulfur compound in fuel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees