[go: up one dir, main page]

JPH10261839A - Semiconductor thin film and manufacture thereof - Google Patents

Semiconductor thin film and manufacture thereof

Info

Publication number
JPH10261839A
JPH10261839A JP6577297A JP6577297A JPH10261839A JP H10261839 A JPH10261839 A JP H10261839A JP 6577297 A JP6577297 A JP 6577297A JP 6577297 A JP6577297 A JP 6577297A JP H10261839 A JPH10261839 A JP H10261839A
Authority
JP
Japan
Prior art keywords
face
carbon
type
plane
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6577297A
Other languages
Japanese (ja)
Inventor
Kouta Tateno
功太 舘野
Yoshitaka Oiso
義孝 大磯
Chikara Amano
主税 天野
Atsushi Wakabi
温 若日
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6577297A priority Critical patent/JPH10261839A/en
Publication of JPH10261839A publication Critical patent/JPH10261839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To deposit favorably a high AlGaAs multilayer film on an Al element and to contrive to apply the multilayer film to the manufacture of a device by a method wherein a p-type AlGaAs film, which is doped with carbon and is specified, is formed on a GaAs substrate with the B-face (311) as its main surface. SOLUTION: A laminated structure constituted by laminating P-type Alx Ga1-x As/P-type Aly Ga1-y As (x>=0.5 and y<0.5) layers is formed on the B-face (311) by a doping of carbon in an organometallic vapor epitaxial growth method. In the conditions of this growth, the amount of the partial pressure of the arsenic is set at an amount less than half of that of the face (100), the temperature of a P-type GaAs substrate 1 is made higher by 50 to 150 deg.C than that of the face (100) and moreover, a halogen-containing and carbon-doped material, such as a CCl4 and a CBr, is used. In this case, a semiconductor film is formed by an organometallic vapor growth method in a state that the ratio of the partial pressure of the arsenic to the partial pressure of a group III element is a ratio of 1 to 10 to 60 and the temperature of the substrate 1 is 700 to 800 deg.C. Thereby, the carbon fully contributes as an acceptor also on the B-face (311) and an activated growth layer can be obtained on the B-face (311).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaAs(31
1)B面上に成長したp型AlX Ga1-X As(x≧0.
5)を含む半導体薄膜及びその製造方法に関するもので
ある。
The present invention relates to GaAs (31)
1) p-type Al x Ga 1 -x As (x ≧ 0.
5) and a method for manufacturing the same.

【0002】[0002]

【従来の技術】通常のGaAs系光デバイスは(10
0)基板上に成長されるが、(311)面上で作製する
とその異方性により偏波制御性の良い面発光レーザや面
型変調器などの光デバイスの作製が可能となる。実際、
面発光レーザの偏波制御のために(311)A面を用い
た面発光レーザがATR,東工大のグループによって作
製されている[ M.Takahashi et al.,IEEE Photonics Te
chnol. Lett.,vol.8 No.6,p737,1996]。
2. Description of the Related Art A typical GaAs optical device is (10
0) Although grown on a substrate, if it is formed on the (311) plane, its anisotropy makes it possible to manufacture an optical device such as a surface emitting laser or a surface modulator having good polarization controllability. In fact,
A surface emitting laser using the (311) A plane for polarization control of a surface emitting laser has been manufactured by ATR and a group of Tokyo Tech [M. Takahashi et al., IEEE Photonics Te.
chnol. Lett., vol. 8 No. 6, p737, 1996].

【0003】また、(311)B面上の面発光レーザも
作製されている[Y.Kaneko et al.,Electron Lett.vol.3
1,No.10.p805,1995] 。
A surface emitting laser on the (311) B plane has also been manufactured [Y. Kaneko et al., Electron Lett. Vol.3.
1, No.10.p805, 1995].

【0004】しかしながら、これらはMBE(Molesula
r Beam epitaxy: 分子線エピタキシャル成長) 法によっ
て結晶成長されており、MOVPE(Metalorganic vap
ourPhase Epitaxy:有機金属気相エピタキシャル成長)
法で(100)面上に成長されるレーザよりも特性が劣
るものと考えられる。
[0004] However, these are MBE (Molesula).
r Beam epitaxy: The crystal is grown by molecular beam epitaxy (MOVPE).
ourPhase Epitaxy)
It is considered that the characteristics are inferior to the laser grown on the (100) plane by the method.

【0005】MOVPE法による成長により結晶性の高
く特性の優れた素子が得られることが期待されるが、
(311)面上の面発光レーザはこれまでMOVPE法
によって成長されて例はない。面発光レーザはAl組成
50%以上の高いAlGaAs層を用いて作製される
が、(311)面上のAlGaAsのドーピング特性や
結晶性はMOVPE法を用いた場合、(100)面とか
なり異なり、適切な成長条件を求めるのが困難であるの
がその理由である。
[0005] It is expected that an element having high crystallinity and excellent characteristics can be obtained by growth by the MOVPE method.
The surface emitting laser on the (311) plane has never been grown by the MOVPE method. The surface emitting laser is manufactured using an AlGaAs layer having a high Al composition of 50% or more. However, the doping characteristics and crystallinity of AlGaAs on the (311) plane are considerably different from those on the (100) plane when the MOVPE method is used. This is because it is difficult to find appropriate growth conditions.

【0006】また、p型のAlGaAs半導体多層膜を
面発光レーザの分布反射鏡(DBR:distributed Brag
g reflector)の一部に用いれば、モノリシックな構造が
実現でき、平坦化や波長制御等の点で有利となるが、
Y.Kaneko らの面発光レーザはp型の半導体多層膜では
なく誘電体により反射鏡を作製している。
In addition, a p-type AlGaAs semiconductor multilayer film is formed by using a distributed Bragg reflector (DBR) of a surface emitting laser.
g reflector), a monolithic structure can be realized, which is advantageous in terms of planarization and wavelength control, but
The surface-emitting laser of Y. Kaneko et al. Uses a dielectric instead of a p-type semiconductor multilayer film to make a reflecting mirror.

【0007】p型のドーパントはB面に入りにくく、し
たがって低抵抗のものが作りにくいことがその理由であ
る。したがって、いままで(311)B面上でAl組成
の高い(50%以上)p型AlGaAsは実現が困難で
あり、ましてや光デバイスに適用した例はなかった。
The reason is that the p-type dopant is less likely to enter the B-plane, and therefore it is difficult to produce a low-resistance dopant. Therefore, it has been difficult to realize p-type AlGaAs having a high Al composition (50% or more) on the (311) B plane, and there has been no example applied to an optical device.

【0008】面発光レーザの偏波面制御のためには、
(311)面(A面又はB面の2種類がある。)を用い
ればよい。しかしながら、高品質の結晶が得られるMO
VPE法による(311)面上への成長には、以下のよ
うな問題がある。即ち、(311)A面上に、面発光レ
ーザに必要なAlX Ga1-X As(x≧0.5)を成長す
ると、成長層の導電性は必ずp型になってしまう。一
方、(311)B面では、導電型はn型になりやすく、
高濃度のp型の半導体層を得ることができない、という
問題がある。
For controlling the plane of polarization of a surface emitting laser,
The (311) plane (there are two types, the A plane and the B plane) may be used. However, MO that can provide high quality crystals
The growth on the (311) plane by the VPE method has the following problems. That is, if Al x Ga 1 -x As (x ≧ 0.5) required for the surface emitting laser is grown on the (311) A plane, the conductivity of the grown layer will always be p-type. On the other hand, on the (311) B plane, the conductivity type is likely to be n-type,
There is a problem that a high-concentration p-type semiconductor layer cannot be obtained.

【0009】[0009]

【発明が解決しようとする課題】上述したように、従来
MBEが用いられ、MOVPE法が用いられなかった理
由はB面上のGaAsやAlX Ga1-X As(x<0.
5)は、p型ドーパントが入りにくく低抵抗になりにく
いためである。
As described above, the reason why the MBE is conventionally used and the MOVPE method is not used is that GaAs or Al x Ga 1 -x As (x <0.
The reason 5) is that the p-type dopant does not easily enter and the resistance does not easily become low.

【0010】また、MOVPE法で(100)面及び
(311)A面において最適な結晶成長条件である、例
えば基板温度650℃,アルシン分圧対III 族原料圧の
比(V/III比)60:1の条件で、(311)B面にAlAs
を1μm成長すると、ホール濃度が(100)面及び
(311)A面のおよそ一桁小さく、さらに表面状態の
著しく劣った成長層が得られることを発見した。
[0010] In addition, the optimum crystal growth conditions for the (100) plane and the (311) A plane by MOVPE are, for example, a substrate temperature of 650 ° C, a ratio of arsine partial pressure to group III source pressure (V / III ratio) of 60. : AlAs on the (311) B surface under the condition of
It has been found that, when 1 .mu.m is grown, the hole concentration is about one order of magnitude lower than that of the (100) plane and the (311) A plane, and a grown layer whose surface state is extremely poor can be obtained.

【0011】また、(100)面と同じ成長条件で(3
11)B面上に面発光レーザを作製しても、AlGaA
sからなるp型DBRのホール濃度は1018cm-3より
も小さく、高抵抗であり、さらに表面状態が著しく劣っ
た特性の悪い素子となること発見した。
Under the same growth conditions as the (100) plane, (3
11) Even if a surface emitting laser is manufactured on the B surface,
It has been discovered that the hole concentration of the p-type DBR made of s is smaller than 10 18 cm −3 , has high resistance, and has an extremely poor surface state and poor characteristics.

【0012】さらに、MBEにおいては、Beが(31
1)B面上AlX Ga1-X As(x<0.5)膜のドーパ
ントとして報告されており(Y.Kaneko et al., Electron
Lett.vol.31,No.10.p805,1995) 、MOCVDではGa
As膜へのZnやCのドーピングで1017cm-3のホー
ル濃度の報告がある( Zn:J.Crystal Growth vol.10
7,p772,1991;C:J.Crystal Growth vol.118,p467,199
2) 。しかしながら、いずれの場合も炭素がドーピング
されたp型AlX Ga1-X As(x≧0.5)の報告はな
い。
Further, in MBE, Be is (31
1) It has been reported as a dopant for Al x Ga 1 -x As (x <0.5) film on B-plane (Y. Kaneko et al., Electron
Lett.vol.31, No.10.p805, 1995).
There is a report of a hole concentration of 10 17 cm -3 when Zn or C is doped into an As film (Zn: J. Crystal Growth vol.10).
7, p772, 1991; C: J. Crystal Growth vol. 118, p467, 199
2) However, in any case, there is no report of carbon-doped p-type Al x Ga 1 -x As (x ≧ 0.5).

【0013】本発明は、従来の方法では(311)B面
上で良好な膜が得られないAl素子の高い(50%以
上)AlGaAsの多層膜を良好に堆積し、デバイスへ
の適用を図った半導体薄膜及びその製造方法を提供する
ことを課題とする。
According to the present invention, a multilayer film of high (50% or more) AlGaAs having a high Al element, which cannot obtain a good film on the (311) B surface by the conventional method, is satisfactorily deposited and applied to a device. It is an object to provide a semiconductor thin film and a manufacturing method thereof.

【0014】[0014]

【課題を解決するための手段】前記課題を解決する本発
明の半導体薄膜は、(311)B面を主面とするGaA
s基板上に形成され、炭素がドーピングされたp型Al
X Ga1-X As(x≧0.5)からなることを特徴とす
る。
According to the present invention, there is provided a semiconductor thin film having a GaAs having a (311) B plane as a main surface.
p-type Al doped on s substrate and doped with carbon
It is characterized by being composed of X Ga 1 -X As (x ≧ 0.5).

【0015】一方、本発明の半導体薄膜の製造方法は、
III 族元素に対する砒素の分圧比が10以上60以下で
あって、基板温度が700℃以上800℃以下にある状
態で、前記半導体薄膜を有機金属気相成長法で形成する
ことを特徴とする。
On the other hand, the method for producing a semiconductor thin film of the present invention comprises:
The semiconductor thin film is formed by a metal organic chemical vapor deposition method in a state where a partial pressure ratio of arsenic to a group III element is 10 or more and 60 or less and a substrate temperature is 700 ° C. or more and 800 ° C. or less.

【0016】前記半導体薄膜の製造方法において、前記
炭素のためのドーピングガスがハロゲン化炭素であるこ
とを特徴とする。
In the method for manufacturing a semiconductor thin film, the doping gas for carbon is a halogenated carbon.

【0017】前記半導体薄膜の製造方法において、前記
ハロゲン化炭素がCCl4 及びCBr4 のいずれか一方
であることを特徴とする。
In the method of manufacturing a semiconductor thin film, the carbon halide is one of CCl 4 and CBr 4 .

【0018】すなわち、本発明では、(311)B面上
にp型Alx Ga1-x As/AlyGa1-y As(x ≧
0.5,y<0.5)の積層構造を有機金属気相エピタキシャ
ル成長法における炭素ドーピングにより作製する。この
成長条件において、砒素分圧を(100)面の半分以下
の量とし、かつ基板温度を(100)面よりも50〜1
50℃高くし、さらに、CCl4 やCBr4 等のハロゲ
ンを含む炭素ドーピング材料を用いる。これより(31
1)B面においても、炭素が十分にアクセプタとして活
性化された成長層を得ることができる。
[0018] That is, in the present invention, (311) B p-type on the surface Al x Ga 1-x As / Al y Ga 1-y As (x ≧
A stacked structure of 0.5, y <0.5) is produced by carbon doping in the metalorganic vapor phase epitaxial growth method. Under these growth conditions, the arsenic partial pressure is set to less than half the amount of the (100) plane, and the substrate temperature is 50 to 1 lower than that of the (100) plane.
The temperature is raised by 50 ° C., and a carbon doping material containing halogen such as CCl 4 or CBr 4 is used. From this (31
1) A growth layer in which carbon is sufficiently activated as an acceptor can be obtained also on the B side.

【0019】[0019]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づき詳細に説明するが、本発明はこれに限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings, but the present invention is not limited thereto.

【0020】[第1の実施の形態]図1は本発明のAl
As層1μm成長における表面ホモロジーの V/III比と
成長温度の関係を図示した図面である。なお、図中、符
号「○」は良好な表面であることを示し、「△」は若干
のうねり(凹凸)のみられる表面であることを示し、
「×」は表面が悪く、三次元成長的で移動度劣化がある
ことを示す。
[First Embodiment] FIG. 1 is a cross-sectional view of an Al alloy according to the present invention.
5 is a diagram illustrating a relationship between a V / III ratio of surface homology and a growth temperature in growing an As layer of 1 μm. In the drawing, the symbol “○” indicates a good surface, and “△” indicates a surface with only a slight undulation (unevenness),
“X” indicates that the surface is poor, three-dimensionally growing, and there is mobility degradation.

【0021】V/III比を小さくし、基板温度を高くする
ほどAlAsの表面は良くなることがわかった。図2
は、図1に対応する位置での、CBr4 の流量が2×1
-6mol/minの時のAlAsのホール濃度を示
す。図2によれば、 V/III比を小さくし、基板温度を高
くするほどホール濃度が高くなることが判明した。ま
た、CBr4 の流量を大きくすることによりエッチング
の効果で III族元素の拡散が促進され、表面状態が改善
されることを確認した。
It has been found that the lower the V / III ratio and the higher the substrate temperature, the better the surface of AlAs. FIG.
Means that the flow rate of CBr 4 at the position corresponding to FIG.
The hole concentration of AlAs at 0 -6 mol / min is shown. According to FIG. 2, it was found that the hole concentration increased as the V / III ratio was reduced and the substrate temperature was increased. Also, it was confirmed that by increasing the flow rate of CBr 4 , diffusion of the group III element was promoted by the effect of etching, and the surface condition was improved.

【0022】[第2の実施の形態]図3は、本発明を用
いて作製した面発光レーザである。p型(311)B面
GaAs基板1を用い、λ=0.85μmの発振波長に対
して光学長λ/4のp型Al0.25Ga0.75As層と同じ
く光学長λ/4のp型Al 0.95Ga0.05As層をペアと
する37.5ペアの繰り返し多層膜からなる第一の反射層2
を全圧76Torr, 基板温度700℃, V/III=15の条件
でCBr4 を用いて成長した。引き続き、三層のGaA
s量子井戸層とAl0.3 Ga0.7 As障壁層からなる活
性層を含む光学波長mλのスペーサ層3、光学長λ/4
のn型Al0.25Ga0. 75As層と同じく光学長λ/4の
n型Al0.95Ga0.05As層をペアとする26ペアの繰り
返し多層膜からなる第二の反射層4よりなる結晶成長構
造を成長した。
[Second Embodiment] FIG. 3 shows an embodiment of the present invention.
Is a surface emitting laser manufactured by the method described above. p type (311) B side
Using a GaAs substrate 1 for an oscillation wavelength of λ = 0.85 μm
And p-type Al with optical length λ / 40.25Ga0.75Same as As layer
P-type Al with optical length λ / 4 0.95Ga0.05As layer as a pair
Reflective layer 2 composed of 37.5 pairs of repeating multilayer films
At a total pressure of 76 Torr, a substrate temperature of 700 ° C, and V / III = 15
And CBrFourGrown using Then, three layers of GaAs
s quantum well layer and Al0.3Ga0.7Activity composed of As barrier layer
Spacer layer 3 having optical wavelength mλ including conductive layer, optical length λ / 4
N-type Al0.25Ga0. 75Like the As layer, the optical length λ / 4
n-type Al0.95Ga0.0526 pairs of pairs with As layer
Crystal growth structure composed of second reflective layer 4 composed of a turned multilayer film
Grew up.

【0023】次に、直径20μmφとなるようにSiO
2 を形成し、反応性の塩素イオンによりエッチングを行
い、素子分離をした。
Next, the SiO 2 is formed so as to have a diameter of 20 μmφ.
2 was formed, and the element was separated by etching with reactive chlorine ions.

【0024】次に、ポリイミド5により平坦化し、素子
上部にのSiO2 を剥離し、再び素子周辺にSiO2
絶縁膜6を5000Å形成した。
Next, the surface was flattened with polyimide 5, the SiO 2 on the top of the device was peeled off, and an insulating film 6 of SiO 2 was formed around the device again at 5000 °.

【0025】最後に、成長層の上部にAuGeNiより
なるn電極7、下部にAuZnNiよりなるp電極8を
形成した。
Finally, an n-electrode 7 made of AuGeNi was formed above the growth layer, and a p-electrode 8 made of AuZnNi was formed below the growth layer.

【0026】このようにして作製された面発光レーザの
チップの特性を調べた。図4は面発光レーザの電流対光
出力特性並びに電流対電圧特性である。破線で示される
従来の(100)面の面発光レーザよりも良好な特性を
示した。さらに、図5に示すように、偏光方向が[01
1]方向に直交するように制御されていることを確認し
た。
The characteristics of the surface emitting laser chip thus manufactured were examined. FIG. 4 shows a current-light output characteristic and a current-voltage characteristic of the surface emitting laser. It exhibited better characteristics than the conventional (100) surface emitting laser indicated by the broken line. Further, as shown in FIG.
1] It was confirmed that the control was performed so as to be orthogonal to the direction.

【0027】[0027]

【発明の効果】前記の説明のように、本発明では、(3
11)B面上に成長したAlX Ga1- X As(x≧0.
5)/Aly Ga1-y As(y<0.5)積層構造により
(311)B面上にp型のDBRを作製することが可能
となり、高特性の面発光レーザを実現することが可能と
なる。
As described above, according to the present invention, (3)
It was grown on 11) B plane Al X Ga 1- X As (x ≧ 0.
5) / Al y Ga 1-y As (y <0.5) stacked structure enables a p-type DBR to be formed on the (311) B plane, realizing a surface emitting laser with high characteristics. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】AlAsの表面ホモロジの分布図である。FIG. 1 is a distribution diagram of the surface homology of AlAs.

【図2】CBr4 を2×mol/min流したときのA
lAsのホール濃度の分布図である。
FIG. 2 shows A when CBr 4 flows at 2 × mol / min.
It is a distribution diagram of the hole concentration of 1As.

【図3】本発明による面発光レーザの断面図である。FIG. 3 is a sectional view of a surface emitting laser according to the present invention.

【図4】本発明による面発光レーザの電流対電圧特性並
びに電流対光出力特性図である。
FIG. 4 is a diagram showing current vs. voltage characteristics and current vs. light output characteristics of a surface emitting laser according to the present invention.

【図5】本発明による8×8面発光レーザアレイのレー
ザ光の偏光方向の図である。
FIG. 5 is a diagram showing a polarization direction of laser light of an 8 × 8 surface emitting laser array according to the present invention.

【符号の説明】[Explanation of symbols]

1 p型(311)B面GaAs基板 2 第一の反射層 3 スペーサ層 4 第二の反射層 5 ポリイミド 6 絶縁膜 7 n電極 8 p電極 Reference Signs List 1 p-type (311) B-plane GaAs substrate 2 first reflective layer 3 spacer layer 4 second reflective layer 5 polyimide 6 insulating film 7 n-electrode 8 p-electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若日 温 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 黒川 隆志 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Wakasada Onn 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Japan Telegraph and Telephone Corporation (72) Takashi Kurokawa 3-19, Nishi-Shinjuku, Shinjuku-ku, Tokyo No. 2 Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (311)B面を主面とするGaAs基
板上に形成され、炭素がドーピングされたp型AlX
1-X As(x≧0.5)からなることを特徴とする半導
体薄膜。
1. A (311) p-type Al x G doped on carbon formed on a GaAs substrate having a B-plane as a main surface.
a 1-x As (x ≧ 0.5).
【請求項2】 請求項1記載の半導体薄膜において、 III 族元素に対する砒素の分圧比が10以上60以下で
あって、基板温度が700℃以上800℃以下にある状
態で、前記半導体薄膜を有機金属気相成長法で形成する
ことを特徴とする半導体薄膜の製造方法。
2. The semiconductor thin film according to claim 1, wherein the partial pressure ratio of arsenic to the group III element is 10 or more and 60 or less, and the semiconductor thin film is A method of manufacturing a semiconductor thin film, wherein the method is formed by a metal vapor deposition method.
【請求項3】 請求項2記載の半導体薄膜の製造方法に
おいて、 前記炭素のためのドーピングガスがハロゲン化炭素であ
ることを特徴とする半導体薄膜の製造方法。
3. The method for manufacturing a semiconductor thin film according to claim 2, wherein the doping gas for carbon is a halogenated carbon.
【請求項4】 請求項3記載の半導体薄膜の製造方法に
おいて、 前記ハロゲン化炭素がCCl4 及びCBr4 のいずれか
一方であることを特徴とする半導体薄膜の製造方法。
4. The method of manufacturing a semiconductor thin film according to claim 3, wherein the halogenated carbon is one of CCl 4 and CBr 4 .
JP6577297A 1997-03-19 1997-03-19 Semiconductor thin film and manufacture thereof Pending JPH10261839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577297A JPH10261839A (en) 1997-03-19 1997-03-19 Semiconductor thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577297A JPH10261839A (en) 1997-03-19 1997-03-19 Semiconductor thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10261839A true JPH10261839A (en) 1998-09-29

Family

ID=13296663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577297A Pending JPH10261839A (en) 1997-03-19 1997-03-19 Semiconductor thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10261839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077772A (en) * 1998-08-31 2000-03-14 Hewlett Packard Co <Hp> Semiconductor laser device
WO2012056648A1 (en) * 2010-10-27 2012-05-03 住友化学株式会社 Semiconductor substrate, method of manufacturing semiconductor substrate, and vertical-cavity surface-emitting laser
WO2013084755A1 (en) 2011-12-06 2013-06-13 シーシーエス株式会社 Lighting device for inspection and lighting method for inspection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077772A (en) * 1998-08-31 2000-03-14 Hewlett Packard Co <Hp> Semiconductor laser device
JP4608040B2 (en) * 1998-08-31 2011-01-05 アバゴ・テクノロジーズ・ファイバー・アイピー(シンガポール)プライベート・リミテッド Semiconductor laser device
WO2012056648A1 (en) * 2010-10-27 2012-05-03 住友化学株式会社 Semiconductor substrate, method of manufacturing semiconductor substrate, and vertical-cavity surface-emitting laser
JP2012109557A (en) * 2010-10-27 2012-06-07 Sumitomo Chemical Co Ltd Semiconductor substrate, method of manufacturing semiconductor substrate, and vertical resonator surface-emitting laser
WO2013084755A1 (en) 2011-12-06 2013-06-13 シーシーエス株式会社 Lighting device for inspection and lighting method for inspection

Similar Documents

Publication Publication Date Title
US7394104B2 (en) Semiconductor optical device having current-confined structure
JP3744988B2 (en) Resonator optical device and manufacturing method thereof
US5956363A (en) Long wavelength vertical cavity surface emitting laser with oxidation layers and method of fabrication
US6278137B1 (en) Semiconductor light-emitting devices
US5805624A (en) Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
JP4663964B2 (en) Long wavelength photonics device comprising a GaAsSb quantum well layer
JPH05251819A (en) Optical device having electronic beam deposited multilayer mirror
US7881359B2 (en) Surface-emission semiconductor laser device
US5625637A (en) Surface emitting semiconductor laser and its manufacturing process
JPH05283808A (en) Surface light-emitting layser having low-resistance bragg reflection layer
US7368316B2 (en) Surface-emission semiconductor laser device
JP2000294872A (en) Surface emitting laser and surface emitting laser array
JP2738194B2 (en) Surface emitting integrated device and method of manufacturing the same
JP2007524253A (en) Strain compensation structure for reducing defects caused by oxides in semiconductor devices
US6900475B2 (en) Surface-emission semiconductor laser device
JPH10261839A (en) Semiconductor thin film and manufacture thereof
JP2003133647A (en) Semiconductor device and method of manufacturing the same
JP4134366B2 (en) Surface emitting laser
JP4124017B2 (en) Manufacturing method of surface emitting semiconductor laser device
JP7043802B2 (en) Method for manufacturing a vertical resonance type surface emitting laser and a vertical resonance type surface emitting laser
EP0133996B1 (en) Semiconductor laser
JPH09266355A (en) Semiconductor light emitting device
JP2002094187A (en) Semiconductor laser and optical communication system using the same
JP2966982B2 (en) Semiconductor laser
JP2595774B2 (en) Manufacturing method of surface emitting semiconductor laser

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030513