[go: up one dir, main page]

JPH10261441A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH10261441A
JPH10261441A JP9086109A JP8610997A JPH10261441A JP H10261441 A JPH10261441 A JP H10261441A JP 9086109 A JP9086109 A JP 9086109A JP 8610997 A JP8610997 A JP 8610997A JP H10261441 A JPH10261441 A JP H10261441A
Authority
JP
Japan
Prior art keywords
current collector
edge
electrode plate
slit
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9086109A
Other languages
Japanese (ja)
Other versions
JP3804702B2 (en
Inventor
Hiroaki Yoshida
吉田  浩明
Zenzo Hagiwara
善三 萩原
Masanao Terasaki
正直 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP08610997A priority Critical patent/JP3804702B2/en
Publication of JPH10261441A publication Critical patent/JPH10261441A/en
Application granted granted Critical
Publication of JP3804702B2 publication Critical patent/JP3804702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the dispersion of internal resistance of a battery by forming a collector with a slit, and inserting an edge of a projected electrode plate into the slit, and connecting the edge of the electrode plate and the collector to each other through the slit. SOLUTION: A collector 11 is made of the same material with a board of an electrode plate, and formed by pressing a plate material having thickness at 1.5mm. The collector 11 is installed with adjustment so that an edge of the collector is projected at about 0.5mm in relation to the edge of a slit part. After working a space between the slit part and the end of the collector at 0.1mm or less, the slit part of the collector 11 and the edge of the electrode plate are connected to each other by laser welding. (At this stage, optical axis of the laser welding is tilted at 15 degree from a vertical axis in relation to the welding surface). This power generating element is inserted into an elliptic battery container for sealing, and connected to a positive electrode terminal and a negative electrode terminal, and continuously, the battery container is filled with the electrolyte so as to form a battery. With this structure, a collector can be connected to an electrode plate with high reliability without lowering productivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子機器の駆動用電
源もしくは電気自動車用電池として、高率放電性能が要
求される非水電解質二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which is required to have a high rate of discharge performance as a power supply for driving electronic equipment or a battery for electric vehicles.

【0002】[0002]

【従来の技術】駆動機器、携帯電子機器、電気自動車等
の高率放電性能が要求される非水電解質二次電池は、電
解質の抵抗が水溶液系と比較して著しく大きいために、
極板面積を大きくして対向面積を増やす必要がある。こ
のため、極板の基体には5〜50μm程度の金属箔を使
用し、正・負極活物質を塗布している。発電素子は、薄
い帯状の正極および負極をセパレータを介して巻回、ま
たは積層して組み立てられている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries, such as driving equipment, portable electronic equipment, and electric vehicles, which require a high rate of discharge performance, have a significantly higher electrolyte resistance than an aqueous solution.
It is necessary to increase the electrode plate area to increase the facing area. For this reason, a metal foil of about 5 to 50 μm is used for the base of the electrode plate, and the positive and negative electrode active materials are applied. The power generating element is assembled by winding or laminating a thin strip-shaped positive electrode and negative electrode via a separator.

【0003】従来、発電素子の集電は図1に示すよう
に、活物質を塗布していない極板の基体1が露出した部
分(未塗布部4)に端子2を取り出していた。しかし電
気自動車用電池等では高率放電性能が要求されるため、
内部抵抗の低減や電流分布の均一化が必要となった。そ
こで、図2に示すように極板のいづれか一方の端縁部の
長さ方向に連続した未塗布部4に多数の端子2を溶接
し、集電をおこなう方法(多端子集電方式)を用いられ
ていた。しかし、この方法では、端子の溶接個所が多く
なり、かつ、各端子の取付け位置の精度が必要であっ
た。100〜400Wh級の電池の、多端子集電方式で
の端子数は10〜50本が必要とされている。
Conventionally, as shown in FIG. 1, for collecting power from a power generating element, a terminal 2 is taken out from a portion of an electrode plate not coated with an active material where the base 1 is exposed (uncoated portion 4). However, since high-rate discharge performance is required for batteries for electric vehicles,
It became necessary to reduce the internal resistance and make the current distribution uniform. Therefore, as shown in FIG. 2, a method of collecting a large number of terminals 2 on an uncoated portion 4 which is continuous in the length direction of one of the edge portions of one of the electrode plates to perform current collection (multi-terminal current collection method). Was used. However, in this method, the number of welding points of the terminals is increased, and the accuracy of the mounting position of each terminal is required. The number of terminals of a 100 to 400 Wh class battery in a multi-terminal current collection system is required to be 10 to 50.

【0004】[0004]

【発明が解決しようとする課題】これらの対策として、
図3に示すように正負極板の少なくとも一方の極板の電
極ペーストが塗布されていない側の端縁部を他方の極板
の端縁部より突き出させ、セパレータを介して巻回ある
いは積層してなる発電素子の突出した端縁部を所要数ご
とに収束させ、基体同一材質からなる例えば図4に示す
ような断面が略逆V字状が所要数連続した別部品の集電
体のV字状の狭窄部に収束させた端縁部を差込み、集電
体側の薄肉部をレーザー溶接する方法が採用されてい
る。
SUMMARY OF THE INVENTION As these countermeasures,
As shown in FIG. 3, at least one of the positive and negative electrode plates has an edge on the side where the electrode paste is not applied protruding from the edge of the other electrode plate, and is wound or laminated via a separator. The protruding edge portions of the power generating element are converged for each required number, and the V of a current collector of a separate part made of the same material as the base and having a required number of successively inverted V-shaped cross sections as shown in FIG. A method is employed in which the converged edge portion is inserted into a character-shaped narrow portion, and a thin portion on the current collector side is laser-welded.

【0005】しかしこの方法で製作された電池は、電池
の内部抵抗のばらつきが大きいという欠点があった。そ
こで発明者らは、内部抵抗の高い電池を解体し詳細に調
査した結果、発電素子の端縁部と集電体との溶接に不具
合個所があり、接触不良が生じていた。
[0005] However, the battery manufactured by this method has a drawback that the internal resistance of the battery varies greatly. Then, the inventors disassembled the battery having a high internal resistance and conducted a detailed investigation. As a result, there was a defective portion in welding between the edge of the power generation element and the current collector, resulting in poor contact.

【0006】[0006]

【課題を解決するための手段】第一の発明は、正負極板
の少なくとも一方の極板の端縁部を他方の極板の端縁部
より突出させ、セパレータを介して巻回あるいは積層し
てなる発電素子を有し、少なくとも該発電素子の突出し
た極板の端縁部と集電体とを接合して集電する非水電解
質二次電池において、集電体にスリットを形成し該スリ
ットに前記突出した極板の端縁部を差込、該スリット部
で極板の端縁部と集電体とが接合されていることを特徴
とするものであり、第二の発明は、前記集電体のスリッ
ト部の端面に対して、差し込まれた極板の端縁部の先端
が±2〓の範囲内に位置することを特徴とするものであ
り、第三の発明は、集電体のスリット部と差込まれた極
板の端縁部との間の隙間が0.2〓以下であることを特
徴とするものであり、第四の発明は、集電体が、板材に
より成形されたものであり、その板厚みが0.1〓〜2
〓であることを特徴とするものであり、第五の発明は、
集電体が切削加工により成形されたものであることを特
徴とするものであり、第六の発明は、極板の端縁部と集
電体とはレーザー溶接されていることを特徴とするもの
であり、第七の発明は、レーザー溶接の光軸を、溶接面
に対して垂直から5度〜45度傾けて溶接することを特
徴とするものであり、第八の発明は、レーザー溶接のパ
ルス出力波形を段階的に減衰させることによって溶接す
ることを特徴とするものである。
According to a first aspect of the present invention, at least one of the positive and negative electrode plates has an edge protruding from an edge of the other electrode plate, and is wound or laminated via a separator. A non-aqueous electrolyte secondary battery that has at least a power generation element and an edge portion of a protruding electrode plate of the power generation element and a current collector to collect current, wherein a slit is formed in the current collector. The edge portion of the protruding electrode plate is inserted into a slit, and the edge portion of the electrode plate and the current collector are joined at the slit portion, and the second invention, The tip of the edge portion of the inserted electrode plate is located within a range of ± 2 ° with respect to the end face of the slit portion of the current collector. The gap between the slit of the conductor and the edge of the inserted electrode plate is 0.2 mm or less. , Fourth invention, the current collector, which has been shaped by a plate material, is the plate thickness 0.1〓~2
〓, and the fifth invention is characterized in that
The current collector is characterized by being formed by cutting, and the sixth invention is characterized in that the edge of the electrode plate and the current collector are laser-welded. The seventh invention is characterized in that the optical axis of laser welding is inclined by 5 to 45 degrees from the perpendicular to the welding surface and welding is performed. The welding is performed by attenuating the pulse output waveform stepwise.

【0007】[0007]

【発明の実施の形態】以下に、本発明を実施例に基づい
て図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

【0008】[0008]

【実施例】【Example】

実施例1 正極活物質として炭酸リチウム0.5モルと炭酸コバル
ト1モルとを混合して、900℃で空気中にて焼成して
LiCoO2 を得た。このLiCoO2 を91重量%と
導電剤としてグラファイトを6重量%と結着剤としてポ
リフッ化ビニリデン(PVDF)3重量%を混合し正極
合剤とした。この正極合剤にNメチル2ピロリドンを溶
剤として添加し、混合分散してスラリー状にした。極板
の基体として厚さ20μmの帯状アルミニウム箔を用
い、この基体に正極合剤スラリーを均一に塗布し、乾燥
させた後にロールプレス機を用いて厚さを200μmに
調整して長さ9560〓幅171〓の帯状の正極板を作
製した。この極板の長辺の一方の端縁部には、10mm
の幅の未塗布部を設けた。
Example 1 As a positive electrode active material, 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate were mixed and fired at 900 ° C. in air to obtain LiCoO 2 . 91% by weight of this LiCoO 2 , 6% by weight of graphite as a conductive agent, and 3% by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a positive electrode mixture. N-methyl-2-pyrrolidone was added as a solvent to this positive electrode mixture, mixed and dispersed to form a slurry. A 20 μm-thick strip-shaped aluminum foil was used as the base of the electrode plate. The positive electrode mixture slurry was uniformly applied to this base, dried, and then adjusted to a thickness of 200 μm using a roll press to adjust the length to 9560 °. A strip-shaped positive electrode plate having a width of 171 ° was produced. On one edge of the long side of this electrode plate, 10 mm
An uncoated portion having a width of?

【0009】負極には、リチウムのドープ・脱ドープが
可能な炭素材料(グラファイト)粉末を用いた。グラフ
ァイト粉末を90重量%、結着剤としてのPVDFを1
0重量%を混合して負極合剤とした。この負極合剤にN
メチル2ピロリドンを溶剤として添加し、混練してスラ
リー状にした。極板の基体として厚さ20μmの帯状銅
箔を用い、この基体1に負極合剤スラリーを均一に塗布
し、乾燥させた後にロールプレス機を用いて厚さを23
0μmに調整して長さ9900〓幅172〓の帯状の負
極を作製した。この極板の一方の端縁部にも正極と同様
に、10mmの幅の未塗布部を設けた。
For the negative electrode, a carbon material (graphite) powder capable of doping / dedoping lithium was used. 90% by weight of graphite powder and 1 part of PVDF as a binder
0% by weight was mixed to obtain a negative electrode mixture. This negative electrode mixture has N
Methyl 2-pyrrolidone was added as a solvent and kneaded to form a slurry. A 20 μm-thick strip-shaped copper foil was used as the base of the electrode plate, and the negative electrode mixture slurry was uniformly applied to the base 1 and dried, and then the thickness was reduced to 23 using a roll press.
By adjusting the thickness to 0 μm, a strip-shaped negative electrode having a length of 9900 {width 172} was produced. An uncoated portion having a width of 10 mm was provided on one edge of the electrode plate, similarly to the positive electrode.

【0010】このようにして作製した正負極板を図5に
示されるように、ポリエチレン製の微多孔膜よりなるセ
パレータ7を介しポリエチレンテレフタレート製のパイ
プからなる巻芯8を中心として極板の端縁部(未塗布部
4)を他方の極板の端縁部より突出させるように渦巻き
状に巻回して円筒形の発電素子を得た。図において、5
は正極板、6は負極板である。
[0010] As shown in FIG. 5, the positive and negative electrode plates thus manufactured are separated from each other by a separator 7 formed of a microporous film made of polyethylene through a separator 8 formed of a polyethylene terephthalate pipe. The edge (uncoated portion 4) was spirally wound so as to protrude from the edge of the other electrode plate to obtain a cylindrical power generating element. In the figure, 5
Denotes a positive electrode plate and 6 denotes a negative electrode plate.

【0011】次に、円筒形の発電素子の外周部をテープ
で固定し、押し圧を加えて長円形の断面を有する図6に
示すような発電素子に成形した。図において9は固定用
テープである。この発電素子の上下端縁部の直線部を治
具を用いて、図7に示すように極板の端縁部を所用数ご
とに分割して収束するように成形した。この部位に図8
に示す極板の基体と同じ材質で厚さが5mm(スリット
部の隙間は0.2mm)の集電体10を図9に示すよう
にスリット部の端面に対して、集電体の端縁部が約0.
5mm突出するように調整して図10に示すように装着
し、集電体のスリット部から突出した電極の端縁部に沿
って、集電体のスリット部と電極の端縁部とをレーザー
溶接した。このとき、該レーザー溶接の光軸を、溶接面
に対して垂直から15度傾けた。
Next, the outer periphery of the cylindrical power generating element was fixed with tape, and a pressing force was applied to form a power generating element having an oval cross section as shown in FIG. In the figure, reference numeral 9 denotes a fixing tape. Using a jig, the straight line portions at the upper and lower edges of the power generating element were formed so that the edge portions of the electrode plate were divided for each required number and converged as shown in FIG. Fig. 8
As shown in FIG. 9, the current collector 10 having the same material as the base of the electrode plate shown in FIG. The part is about 0.
Adjusted so as to protrude by 5 mm and mounted as shown in FIG. 10, and along the edge of the electrode protruding from the slit of the current collector, the laser was applied to the slit of the current collector and the edge of the electrode. Welded. At this time, the optical axis of the laser welding was inclined by 15 degrees from the perpendicular to the welding surface.

【0012】レーザー溶接には、スラブ型YAGパルス
レーザーを用いておこなった。レーザー溶接は正極の基
体(アルミニウム箔)と集電体(アルミニウム)では出
力:250W,パルス周波数:20pps,パルス幅:
4.0msで、負極の基体(銅箔)と集電体(銅)では
出力:500W,パルス周波数:15pps,パルス
幅:6.0msの条件でおこなった。1パルスのレーザ
ー出力波形(電流変化)を、それぞれ図11及び図12
に示した。
The laser welding was performed using a slab type YAG pulse laser. In laser welding, the output power is 250 W, the pulse frequency is 20 pps, and the pulse width is the positive electrode base (aluminum foil) and current collector (aluminum).
At 4.0 ms, the output was 500 W, the pulse frequency was 15 pps, and the pulse width was 6.0 ms with the negative electrode base (copper foil) and current collector (copper). The laser output waveform (current change) of one pulse is shown in FIGS.
It was shown to.

【0013】この発電素子を長円形の電池容器(縦50
mm×横130mm×高さ210mm)に挿入し封口し
た。このとき、正極集電体及び負極集電体は電池容器に
設けられた正極端子及び負極端子にそれぞれ接続した。
次に、この電池容器内に、エチレンカーボネート及びジ
メチルカーボネートの1:1(体積比)の混合溶液に1
mol/l(リットル)の六フッ化燐酸リチウム(Li
PF6 )を溶解した電解液を減圧注入した。この電池の
容量は100Ahであった。
The power generating element is connected to an oblong battery container (length 50).
(mm × 130 mm × height 210 mm) and sealed. At this time, the positive electrode current collector and the negative electrode current collector were connected to a positive electrode terminal and a negative electrode terminal provided in the battery container, respectively.
Next, a 1: 1 (volume ratio) mixed solution of ethylene carbonate and dimethyl carbonate was added to the battery container.
mol / l (liter) of lithium hexafluorophosphate (Li
An electrolytic solution in which PF 6 ) was dissolved was injected under reduced pressure. The capacity of this battery was 100 Ah.

【0014】実施例2 実施例1と同様に極板の端縁部を分割・収束した後、集
電体10を装着するかわりに、図8に示す波形状の集電
体11を用いた。
Example 2 In the same manner as in Example 1, after the edge of the electrode plate was divided and converged, a current collector 11 having a wave shape shown in FIG. 8 was used instead of mounting the current collector 10.

【0015】集電体11は、極板の基体と同じ材質で厚
さが1.5mmの板材をプレス加工したものである(ス
リット部の隙間は1.0mm)。集電体11を図13に
示すようにスリット部のエッジに対して、集電体の端縁
部が約0.5mm突出するように調整して図14のよう
に装着した。スリット部と集電体端部との隙間が0.1
mm以下になるように加工後、集電体11のスリット部
から突出した極板の端縁部に沿って、集電体のスリット
部と極板の端縁部とをレーザー溶接した(該レーザー溶
接の光軸を、溶接面に対して垂直から15度傾けた)。
この発電素子を実施例1で用いたものと同じ長円形の電
池容器に挿入し封口した。正極及び負極の端子2は電池
容器に設けられた正極端子及び負極端子にそれぞれ接続
した。次に、実施例1と同様に電池容器内に電解液を注
入した。この電池の容量も100Ahであった。
The current collector 11 is formed by pressing a plate material having the same material as the base of the electrode plate and having a thickness of 1.5 mm (a gap of the slit portion is 1.0 mm). The current collector 11 was mounted as shown in FIG. 14 by adjusting the edge of the current collector to protrude by about 0.5 mm with respect to the edge of the slit portion as shown in FIG. The gap between the slit and the end of the current collector is 0.1
mm, the slit of the current collector and the edge of the electrode plate were laser-welded along the edge of the electrode plate protruding from the slit portion of the current collector 11 (the laser The optical axis of the welding was tilted by 15 degrees from perpendicular to the welding surface).
This power generating element was inserted into the same oblong battery container used in Example 1 and sealed. The positive electrode terminal 2 and the negative electrode terminal 2 were connected to a positive electrode terminal and a negative electrode terminal provided on the battery container, respectively. Next, an electrolyte solution was injected into the battery container in the same manner as in Example 1. The capacity of this battery was also 100 Ah.

【0016】比較例(従来例) 比較例として、従来の方法による電池を次のようにして
作製した。実施例1や2と同様に極板の端縁部を分割・
収束した後、図4に示す形状の集電体12を図15に示
すように装着した。集電体12は、極板の基体と同じ材
質で厚さが5mm(溶接部(薄肉部)は500μm)で
あり、切削加工により作製した。集電体12を図16に
示すように装着し、集電体12の溶接部(薄肉部)に沿
ってレーザー溶接を用いて極板の端縁部と集電体12と
を溶接した(該レーザー溶接の光軸は、溶接面に対して
垂直とした)。この発電素子を実施例1や2で用いたも
のと同じ長円形の電池容器に挿入し封口した。正極及び
負極の端子2は電池容器に設けられた正極端子及び負極
端子にそれぞれ接続した。次に、実施例1や2と同様に
電池容器内に電解液を注入した。比較例の電池の容量も
100Ahであった。
Comparative Example (Conventional Example) As a comparative example, a battery according to a conventional method was manufactured as follows. The edge portion of the electrode plate is divided and
After the convergence, the current collector 12 having the shape shown in FIG. 4 was mounted as shown in FIG. The current collector 12 was made of the same material as the base of the electrode plate and had a thickness of 5 mm (the welded portion (thin portion) was 500 μm) and was formed by cutting. The current collector 12 was mounted as shown in FIG. 16, and the edge of the electrode plate and the current collector 12 were welded along the welded portion (thin portion) of the current collector 12 using laser welding. The optical axis of laser welding was perpendicular to the welding surface). This power generating element was inserted and sealed in the same oblong battery container as used in Examples 1 and 2. The positive electrode terminal 2 and the negative electrode terminal 2 were connected to a positive electrode terminal and a negative electrode terminal provided on the battery container, respectively. Next, an electrolytic solution was injected into the battery container in the same manner as in Examples 1 and 2. The battery capacity of the comparative example was also 100 Ah.

【0017】上記実施例1、実施例2、と比較例(従来
例)の電池をそれぞれ100個作製し、電池の内部抵抗
を交流1kHz法で測定した。図16は実施例1、図1
7は実施例2、図18は比較例(従来例)の内部抵抗測
定結果である。
Each of the batteries of Examples 1 and 2, and Comparative Example (conventional example) was manufactured, and the internal resistance of the batteries was measured by an AC 1 kHz method. FIG. 16 shows the first embodiment and FIG.
7 shows the measurement results of Example 2 and FIG. 18 shows the measurement results of the internal resistance of Comparative Example (conventional example).

【0018】図16、図17、図18を比較すれば明ら
かなごとく、本発明による集電構造を有する非水電解質
二次電池は内部抵抗のばらつきを低減することができ、
電池の信頼性を向上させることが明らかである。
As is apparent from comparison of FIGS. 16, 17 and 18, the non-aqueous electrolyte secondary battery having the current collecting structure according to the present invention can reduce the variation in internal resistance.
It is clear that it improves the reliability of the battery.

【0019】なお、実施例では、発電素子を長円状に巻
回したものを用いたが、発電素子の形状はこれに限定さ
れず、円筒状であってもよい。また、集電体10の形状
も実施例のものに限定されるものではなく、電極の端縁
部に適した形状を用いることができる。たとえば、発電
素子の形状が円筒形状の場合はその曲率にあわせた図1
9(a),(b)のような形状を用いることができる。
電極を積層する場合には本実施例1や2と同様の形状の
ものを用いることができる。
In the embodiment, the power generating element is wound in an elliptical shape, but the shape of the power generating element is not limited to this, and may be cylindrical. Further, the shape of the current collector 10 is not limited to that of the embodiment, and a shape suitable for the edge of the electrode can be used. For example, when the shape of the power generation element is cylindrical, FIG.
9 (a) and 9 (b) can be used.
When laminating electrodes, those having the same shape as those of the first and second embodiments can be used.

【0020】本実施例では、集電体のスリット部の端面
に対して、極板の端縁部が0.5mm突出する場合を説
明したが特に限定されない。上記範囲が±2mm以内の
範囲であれば実施例と同様な結果が得られる。しかし、
上記範囲が±2mmを越えると、集電体のスリット部と
極板の端縁部との距離が離れるために、溶接が不十分と
なり、電池内部抵抗のばらつきが大きくなる。
In the present embodiment, the case where the edge of the electrode plate protrudes 0.5 mm from the end face of the slit portion of the current collector is described, but there is no particular limitation. If the above range is within ± 2 mm, the same result as that of the embodiment can be obtained. But,
If the above range exceeds ± 2 mm, the distance between the slit portion of the current collector and the edge portion of the electrode plate becomes large, so that welding becomes insufficient and the variation in the internal resistance of the battery increases.

【0021】また、本実施例では、集電体のスリット部
と極板の端縁部との隙間を0.1mm以下とする場合を
説明したが特に限定されない。上記隙間が0.2mm以
内の範囲であれば実施例と同様な結果が得られる。しか
し、上記範囲が0.2mmを越えると、レーザー光線が
集電体のスリット部と極板の端縁部との隙間を通って正
・負極の活物質塗布部やセパレーターに到達しやすくな
る。レーザー光線がセパレーターに到達すると、セパレ
ーターが熱溶解して、正負極が短絡する。
In the present embodiment, the case where the gap between the slit portion of the current collector and the edge portion of the electrode plate is set to 0.1 mm or less has been described, but the present invention is not particularly limited. If the gap is within the range of 0.2 mm, the same result as that of the embodiment can be obtained. However, when the above range exceeds 0.2 mm, the laser beam easily reaches the active material application portions of the positive and negative electrodes and the separator through the gap between the slit portion of the current collector and the edge portion of the electrode plate. When the laser beam reaches the separator, the separator is melted by heat and the positive and negative electrodes are short-circuited.

【0022】さらに、本実施例では、レーザー光線の光
軸を溶接面に対して垂直から15度傾けた場合を説明し
たが特に限定されない。傾斜角度が5度から45度の範
囲にあれば実施例と同様の効果が得られる。しかし、傾
斜角度が5度未満の場合レーザー光線が集電体のスリッ
ト部と極板の端縁部との隙間を通ってセパレーターに到
達しやすくなり上述と同様の不具合が発生する。この場
合、集電体のスリット部と電極の端縁部との隙間を限り
なくゼロにすることにより上記問題を解決することがで
きるが、量産上制約が多くなり製品のコストアップにつ
ながる。傾斜角度を5度以上にすれば、集電体のスリッ
ト部と極板の端縁部との隙間が0.2mm以下であれ
ば、上記問題は解決される。一方、傾斜角度が45度を
越えると、溶接面でレーザー光線が反射されやすくな
り、十分な溶接が困難となる。
Further, in the present embodiment, the case where the optical axis of the laser beam is inclined by 15 degrees from the perpendicular to the welding surface has been described, but there is no particular limitation. If the inclination angle is in the range of 5 degrees to 45 degrees, the same effect as that of the embodiment can be obtained. However, when the inclination angle is less than 5 degrees, the laser beam easily reaches the separator through the gap between the slit portion of the current collector and the edge portion of the electrode plate, and the same problem as described above occurs. In this case, the above problem can be solved by setting the gap between the slit portion of the current collector and the edge portion of the electrode to zero as much as possible. However, mass production restrictions are increased and the cost of the product is increased. If the inclination angle is set to 5 degrees or more, the above problem is solved if the gap between the slit portion of the current collector and the edge portion of the electrode plate is 0.2 mm or less. On the other hand, if the inclination angle exceeds 45 degrees, the laser beam is likely to be reflected on the welding surface, making it difficult to perform sufficient welding.

【0023】実施例2では、集電体を厚み1.5mmの
板材をプレス加工により作製する場合を説明したが、特
に限定されない。厚みが0.1mm〜2mmの範囲にあ
れば実施例と同様の効果が得られる。板材をプレス加工
により作製した集電体は、実施例1で述べた切削加工し
た集電体と比較して、部品コストが大幅に削減できると
いう効果がある。なぜならば、板材にスリット部の穴開
け加工後、板材を波形に成形するだけで製作が容易とな
るためであり、本発明において最適な集電体形状である
といえる。さらに、製作に用いる板材の厚みが0.1m
m以下の場合集電体の形状を保持する強度が小さいため
に、量産機にかかりにくいという問題が生じ、板材の厚
みが2mmを越えると、集電体の強度が大きくなりすぎ
るために、集電体のスリット部と極板の端縁部との隙間
を0.2mm以下に調整しにくくなるという問題が生じ
る。
In the second embodiment, the case where the current collector is formed by pressing a plate material having a thickness of 1.5 mm is described, but there is no particular limitation. If the thickness is in the range of 0.1 mm to 2 mm, the same effect as in the embodiment can be obtained. The current collector formed by pressing a plate material has an effect that the cost of parts can be greatly reduced as compared with the current collector cut and described in the first embodiment. The reason for this is that it is easy to manufacture simply by shaping the plate material into a corrugated shape after forming a slit portion in the plate material, and it can be said that the current collector shape is optimal in the present invention. Furthermore, the thickness of the plate used for the production is 0.1 m.
When the thickness is less than 2 m, the strength of maintaining the shape of the current collector is low, so that there is a problem that the current collector is not easily applied. When the thickness of the plate material exceeds 2 mm, the strength of the current collector becomes too large. There is a problem that it is difficult to adjust the gap between the slit portion of the electric body and the edge of the electrode plate to 0.2 mm or less.

【0024】また、極板の基体の材質として、アルミニ
ウム及び銅を用いたが、アルミニウムの他にアルミニウ
ム−マンガン合金,アルミニウム−マグネシウム合金等
が、銅の他に銅−亜鉛合金,銅−ニッケル合金,銅−ア
ルミニウム合金等も用いることが可能である。ただし、
これらの合金よりも純アルミニウム及び純銅の方が溶接
は容易であった。
Although aluminum and copper were used as the material of the base of the electrode plate, aluminum-manganese alloy, aluminum-magnesium alloy and the like other than aluminum, copper-zinc alloy and copper-nickel alloy other than copper were used. , Copper-aluminum alloy and the like can also be used. However,
Pure aluminum and pure copper were easier to weld than these alloys.

【0025】集電体の材質は、基本的には基体と同じも
のを用いることが好ましいが、加工性等の理由により基
体と異なる合金等と組み合わせることも可能である。
It is preferable that the material of the current collector is basically the same as that of the base, but it is also possible to combine the current collector with an alloy or the like different from the base for reasons of workability and the like.

【0026】アルミニウム製の基体と集電体をレーザー
溶接する条件は、出力:200〜350W、パルス周波
数:5〜35ppsである。好ましくは出力:250〜
300W、パルス周波数:10〜30ppsである。銅
製の基体1と集電体をレーザー溶接する条件は、出力:
300〜550W、パルス周波数:5〜25ppsであ
る。好ましくは出力:400〜500W、パルス周波
数:10〜20ppsである。また、パルスの出力波形
も実施例のものに限定されるものではなく、基体及び集
電体の材質や厚さを考慮し、段階的に出力を減衰するよ
うな波形で溶接が可能な条件であればよい。出力を段階
的に減衰させることで溶接部のクラックの発生が抑制で
き、電気抵抗の増大及び溶接強度の低下を防止すること
ができる。パルス周波数を落とす(パルス幅を広げる)
ことによって、タクトは低下するが厚い集電体(溶接
部)の溶接も可能である。極板の基体には任意の厚さの
ものを使用することができるが、極板の強度や電池のエ
ネルギー密度、さらにレーザー溶接可能な厚さを考慮し
検討した結果、5〜50μmの範囲において好適な結果
が得られた。
The conditions for laser welding the aluminum base and the current collector are as follows: output: 200 to 350 W, pulse frequency: 5 to 35 pps. Preferably output: 250 ~
300 W, pulse frequency: 10 to 30 pps. The conditions for laser welding the copper base 1 and the current collector are as follows:
300 to 550 W, pulse frequency: 5 to 25 pps. Preferably, the output is 400 to 500 W and the pulse frequency is 10 to 20 pps. In addition, the output waveform of the pulse is not limited to those of the embodiment, and considering the material and the thickness of the base and the current collector, under the condition that welding can be performed with a waveform that attenuates the output stepwise. I just need. By attenuating the output stepwise, generation of cracks in the welded portion can be suppressed, and an increase in electric resistance and a decrease in weld strength can be prevented. Decrease pulse frequency (increase pulse width)
As a result, the tact is reduced, but a thick current collector (welded portion) can be welded. The base of the electrode plate may be of any thickness. Good results have been obtained.

【0027】また、実施例では活物質の未塗布部の幅を
10mmとしたが、レーザー溶接時の熱によってセパレ
ータ及び活物質の合剤が影響を受けない範囲であれば特
に限定はされない。未塗布部の幅を大きくするほど熱の
影響を受けにくくなるが、電池のエネルギー密度は低下
する。よって、実用性を考慮すると1mm〜5cm,好
ましくは3mm〜3cmである。
In the embodiment, the width of the uncoated portion of the active material is set to 10 mm. However, the width is not particularly limited as long as the heat of laser welding does not affect the mixture of the separator and the active material. The larger the width of the uncoated portion, the less affected by heat, but the lower the energy density of the battery. Therefore, considering practicality, it is 1 mm to 5 cm, preferably 3 mm to 3 cm.

【0028】さらに、正極活物質として実施例の他に、
リチウムニッケル複合酸化物,スピネル型リチウムマン
ガン酸化物,五酸化バナジウム,二硫化チタン等を用い
ることができる。また、負極には実施例のグラファイト
粉末の他、低結晶性の炭素材料,アモルファスの炭素材
料,金属酸化物等を用いることができる。
Further, in addition to the examples as the positive electrode active material,
Lithium nickel composite oxide, spinel type lithium manganese oxide, vanadium pentoxide, titanium disulfide and the like can be used. In addition to the graphite powder of the embodiment, a low-crystalline carbon material, an amorphous carbon material, a metal oxide, or the like can be used for the negative electrode.

【0029】また、本発明は、リチウム二次電池に限ら
ず同様な構成すなわち金属箔に活物質を塗布し、その金
属箔から集電する非水電解質二次電池にも適用すること
ができる。
The present invention can be applied not only to a lithium secondary battery but also to a non-aqueous electrolyte secondary battery having a similar structure, that is, a metal foil coated with an active material and collecting current from the metal foil.

【0030】[0030]

【発明の効果】本発明は、以上のごとく生産性を低下さ
せることなく、高信頼に極板に集電体を接合することが
出来、電池の内部抵抗のバラツキが低減できる効果があ
る。
According to the present invention, as described above, the current collector can be bonded to the electrode plate with high reliability without lowering the productivity, and the variation in the internal resistance of the battery can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の極板を示す平面図である。FIG. 1 is a plan view showing a conventional electrode plate.

【図2】従来の多端子集電方式を用いた極板を示す平面
図である。
FIG. 2 is a plan view showing an electrode plate using a conventional multi-terminal current collecting method.

【図3】比較例(従来例)の集電体を装着した発電素子
の要部拡大縦断面図である。
FIG. 3 is an enlarged longitudinal sectional view of a main part of a power generating element equipped with a current collector of a comparative example (conventional example).

【図4】比較例(従来例)の集電体の斜視図である。FIG. 4 is a perspective view of a current collector of a comparative example (conventional example).

【図6】本発明の発電素子の斜視図である。(電極の端
縁部を治具を用いてくせをつけた後の発電素子)
FIG. 6 is a perspective view of a power generating element of the present invention. (Power generation element after the edge of the electrode is habitated using a jig)

【図7】本発明の発電素子の要部拡大縦断面図である。
(電極の端縁部を治具を用いてくせをつけた後の発電素
子)
FIG. 7 is an enlarged longitudinal sectional view of a main part of the power generating element of the present invention.
(Power generation element after the edge of the electrode is habitated using a jig)

【図8】本発明の実施例1および2の集電体の斜視図で
ある。
FIG. 8 is a perspective view of a current collector according to the first and second embodiments of the present invention.

【図9】本発明の実施例1における集電体を装着した発
電素子の溶接条件を示す要部拡大縦断面図である。
FIG. 9 is an enlarged longitudinal sectional view of a main part showing welding conditions of a power generation element with a current collector mounted thereon in Example 1 of the present invention.

【図10】本発明の実施例1における集電体を装着した
発電素子の斜視図である。
FIG. 10 is a perspective view of a power generating element equipped with a current collector according to the first embodiment of the present invention.

【図11】本発明の実施例におけるアルミ製の基体と集
電体とをレーザー溶接したときの出力波形を示す図であ
る。
FIG. 11 is a diagram showing an output waveform when an aluminum base and a current collector are laser-welded in the example of the present invention.

【図12】本発明の実施例における銅製の基体と集電体
とをレーザー溶接したときの出力波形を示す図である。
FIG. 12 is a diagram showing an output waveform when a copper base and a current collector are laser-welded in an example of the present invention.

【図13】本発明の実施例2における集電体を装着した
発電素子の溶接条件を示す要部拡大縦断面図である。
FIG. 13 is an enlarged longitudinal sectional view of a main part showing welding conditions of a power generation element equipped with a current collector in Embodiment 2 of the present invention.

【図14】本発明の実施例2における集電体を装着した
発電素子の斜視図である。
FIG. 14 is a perspective view of a power generating element equipped with a current collector according to Embodiment 2 of the present invention.

【図15】比較例(従来例)における集電体を装着した
発電素子の斜視図である。
FIG. 15 is a perspective view of a power generation element provided with a current collector in a comparative example (conventional example).

【図16】本発明の実施例1における電池の内部抵抗測
定結果である。
FIG. 16 shows measurement results of the internal resistance of the battery in Example 1 of the present invention.

【図17】本発明の実施例2における電池の内部抵抗測
定結果である。
FIG. 17 shows the measurement results of the internal resistance of the battery in Example 2 of the present invention.

【図18】比較例(従来例)における電池の内部抵抗測
定結果である。
FIG. 18 shows a measurement result of an internal resistance of a battery in a comparative example (conventional example).

【図19】本発明の他の実施例における円筒形電池用集
電体の斜視図である。
FIG. 19 is a perspective view of a current collector for a cylindrical battery according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1. 基体 2. 端子 3. 合材層 4. 未塗布部 5. 正極 6. 負極 7. セパレータ 8. 巻芯 9. テープ 10. 集電体 11. 集電体 12. 集電体 1. Substrate 2. Terminal 3. Mixture layer 4. Uncoated part 5. Positive electrode 6. Negative electrode 7. Separator 8. Core 9. Tape 10. Current collector 11. Current collector 12. Current collector

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年5月15日[Submission date] May 15, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の極板を示す図である。FIG. 1 is a view showing a conventional electrode plate.

【図2】従来の多端子集電方式を用いた極板を示す平面
図である。
FIG. 2 is a plan view showing an electrode plate using a conventional multi-terminal current collecting method.

【図3】比較例(従来例)の集電体を装着した発電素子
の要部拡大縦断面図である。
FIG. 3 is an enlarged longitudinal sectional view of a main part of a power generating element equipped with a current collector of a comparative example (conventional example).

【図4】比較例(従来例)の集電体の斜視図である。 FIG. 4 is a perspective view of a current collector of a comparative example (conventional example).

【図5】本発明の渦巻き状に券回した円筒形の発電素子FIG. 5 is a spirally wound cylindrical power generating element of the present invention.
の図である。FIG.

【図6】本発明の発電素子の斜視図である。(電極の端
縁部を治具を用いてくせをつけた後の発電素子)
FIG. 6 is a perspective view of a power generating element of the present invention. (Power generation element after the edge of the electrode is habitated using a jig)

【図7】本発明の発電素子の要部拡大縦断面図である。
(電極の端縁部を治具を用いてくせをつけた後の発電素
子)
FIG. 7 is an enlarged longitudinal sectional view of a main part of the power generating element of the present invention.
(Power generation element after the edge of the electrode is habitated using a jig)

【図8】本発明の実施例1および2の集電体の斜視図で
ある。
FIG. 8 is a perspective view of a current collector according to the first and second embodiments of the present invention.

【図9】本発明の実施例1における集電体を装着した発
電素子の溶接条件を示す要部拡大縦断面図である。
FIG. 9 is an enlarged longitudinal sectional view of a main part showing welding conditions of a power generation element with a current collector mounted thereon in Example 1 of the present invention.

【図10】本発明の実施例1における集電体を装着した
発電素子の斜視図である。
FIG. 10 is a perspective view of a power generating element equipped with a current collector according to the first embodiment of the present invention.

【図11】本発明の実施例におけるアルミ製の基体と集
電体とをレーザー溶接したときの出力波形を示す図であ
る。
FIG. 11 is a diagram showing an output waveform when an aluminum base and a current collector are laser-welded in the example of the present invention.

【図12】本発明の実施例における銅製の基体と集電体
とをレーザー溶接したときの出力波形を示す図である。
FIG. 12 is a diagram showing an output waveform when a copper base and a current collector are laser-welded in an example of the present invention.

【図13】本発明の実施例2における集電体を装着した
発電素子の溶接条件を示す要部拡大縦断面図である。
FIG. 13 is an enlarged longitudinal sectional view of a main part showing welding conditions of a power generation element equipped with a current collector in Embodiment 2 of the present invention.

【図14】本発明の実施例2における集電体を装着した
発電素子の斜視図である。
FIG. 14 is a perspective view of a power generating element equipped with a current collector according to Embodiment 2 of the present invention.

【図15】比較例(従来例)における集電体を装着した
発電素子の斜視図である。
FIG. 15 is a perspective view of a power generation element provided with a current collector in a comparative example (conventional example).

【図16】本発明の実施例1における電池の内部抵抗測
定結果である。
FIG. 16 shows measurement results of the internal resistance of the battery in Example 1 of the present invention.

【図17】本発明の実施例2における電池の内部抵抗測
定結果である。
FIG. 17 shows the measurement results of the internal resistance of the battery in Example 2 of the present invention.

【図18】比較例(従来例)における電池の内部抵抗測
定結果である。
FIG. 18 shows a measurement result of an internal resistance of a battery in a comparative example (conventional example).

【図19】本発明の他の実施例における円筒形電池用集
電体の斜視図である。
FIG. 19 is a perspective view of a current collector for a cylindrical battery according to another embodiment of the present invention.

【符号の説明】 1.基体 2.端子 3.合材層 4.未塗布部 5.正極 6.負極 7.セパレータ 8.巻芯 9.テープ 10.集電体 11.集電体 12.集電体[Explanation of Codes] Substrate 2. Terminal 3. Mixture layer 4. Uncoated part 5. Positive electrode 6. Negative electrode 7. Separator 8. Core 9. Tape 10. Current collector 11. Current collector 12. Current collector

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】正負極板の少なくとも一方の極板の端縁部
を他方の極板の端縁部より突出させ、セパレータを介し
て巻回あるいは積層してなる発電素子を有し、少なくと
も該発電素子の突出した極板の端縁部と集電体とを接合
して集電する非水電解質二次電池において、集電体にス
リットを形成し該スリットに前記突出した極板の端縁部
を差込、該スリット部で極板の端縁部と集電体とが接合
されていることを特徴とする非水電解質二次電池。
1. A power generating element having at least one of the positive and negative electrode plates with an edge protruding from an edge of the other electrode plate and wound or laminated with a separator interposed therebetween. In a non-aqueous electrolyte secondary battery in which current is collected by joining an edge of a protruding electrode plate of a power generating element and a current collector, a slit is formed in the current collector, and the edge of the protruding electrode plate is formed in the slit. A non-aqueous electrolyte secondary battery, wherein an edge portion of an electrode plate and a current collector are joined at the slit portion.
【請求項2】前記集電体のスリット部の端面に対して、
極板の端縁部の先端が±2mmの範囲内に位置すること
を特徴とする請求項1記載の非水電解質二次電池。
2. An end face of a slit portion of the current collector,
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the tip of the edge of the electrode plate is located within a range of ± 2 mm.
【請求項3】前記集電体に形成されたスリット部と極板
の端縁部との間の隙間が0.2mm以下であることを特
徴とする請求項1および2記載の非水電解質二次電池。
3. A non-aqueous electrolyte according to claim 1, wherein a gap between a slit formed in said current collector and an edge of said electrode plate is 0.2 mm or less. Next battery.
【請求項4】前記集電体が、板材により成形されたもの
であり、その板厚みが0.1mm〜2mmであることを
特徴とする請求項1、2、および3記載の非水電解質二
次電池。
4. The non-aqueous electrolyte according to claim 1, wherein the current collector is formed of a plate material, and has a plate thickness of 0.1 mm to 2 mm. Next battery.
【請求項5】前記集電体が、切削加工により成形された
ものであることを特徴とする請求項1、2および3記載
の非水電解質二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector is formed by cutting.
【請求項6】極板の端縁部と集電体とはレーザー溶接さ
れていることを特徴とする請求項1、2、3、4、およ
び5記載の非水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the edge of the electrode plate and the current collector are laser-welded.
【請求項7】前記レーザー溶接の光軸を、溶接面に対し
て垂直から5度〜45度傾けることによって溶接するこ
とを特徴とする請求項1、2、3、4、5、および6記
載の非水電解質二次電池。
7. The laser welding according to claim 1, wherein the laser welding is performed by inclining an optical axis of the laser welding by 5 to 45 degrees from a perpendicular to a welding surface. Non-aqueous electrolyte secondary battery.
【請求項8】前記レーザー溶接のパルス出力波形を段階
的に減衰させることによって溶接することを特徴とする
請求項1、2、3、4、5、6および7記載の非水電解
質二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the welding is performed by attenuating the pulse output waveform of the laser welding stepwise. .
JP08610997A 1997-03-18 1997-03-18 Nonaqueous electrolyte secondary battery Expired - Lifetime JP3804702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08610997A JP3804702B2 (en) 1997-03-18 1997-03-18 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08610997A JP3804702B2 (en) 1997-03-18 1997-03-18 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH10261441A true JPH10261441A (en) 1998-09-29
JP3804702B2 JP3804702B2 (en) 2006-08-02

Family

ID=13877547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08610997A Expired - Lifetime JP3804702B2 (en) 1997-03-18 1997-03-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3804702B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093504A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Battery and manufacturing method thereof
US6692863B1 (en) 1999-08-10 2004-02-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells and process for fabricating same
JP2006172780A (en) * 2004-12-14 2006-06-29 Toyota Motor Corp Battery and battery manufacturing method
WO2008111284A1 (en) 2007-03-15 2008-09-18 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
JP2009087913A (en) * 2007-09-27 2009-04-23 Samsung Sdi Co Ltd Secondary battery
US7736793B2 (en) 2004-05-04 2010-06-15 Samsung Sdi Co., Ltd. Secondary battery with collector plate and electrode package thereof
JP2010135651A (en) * 2008-12-05 2010-06-17 Chiba Inst Of Technology Connection structure of metal foil, connecting method of metal foil, and capacitor
US20100216001A1 (en) * 2009-02-25 2010-08-26 Byun Sang Won Rechargeable battery
US7887946B2 (en) 2005-11-24 2011-02-15 Sanyo Electric Co., Ltd. Prismatic battery having a welding window
WO2011036737A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Battery fabrication method
JP2011113811A (en) * 2009-11-26 2011-06-09 Gs Yuasa Corp Battery and method of manufacturing the same
EP2388847A1 (en) * 2010-05-19 2011-11-23 SB LiMotive Co., Ltd. Secondary battery comprising first and second collector plates that are enmeshed together
JP2014029823A (en) * 2012-06-29 2014-02-13 Toyota Motor Corp Secondary battery
JP2015130295A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method of the same
CN105849938A (en) * 2014-01-31 2016-08-10 弗拉迪米尔·列奥尼多维奇·杜曼诺夫 Electrochemical device
WO2017110247A1 (en) * 2015-12-21 2017-06-29 株式会社豊田自動織機 Manufacturing method for electrode assembly, and electrode assembly
US9698405B2 (en) 2011-11-25 2017-07-04 Shenzhen Byd Auto R&D Company Limited Electric connector and battery comprising the same
US9853294B2 (en) 2013-10-17 2017-12-26 Samsung Sdi Co., Ltd. Secondary battery and manufacturing method thereof
US9876233B2 (en) 2014-01-28 2018-01-23 Samsung Sdi Co., Ltd. Secondary battery
KR20180016843A (en) * 2016-08-08 2018-02-20 삼성에스디아이 주식회사 Rechargeable battery having current collector
US10072876B2 (en) 2009-09-30 2018-09-11 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
WO2019111691A1 (en) * 2017-12-05 2019-06-13 株式会社日立製作所 Secondary battery
US10522871B2 (en) 2017-04-28 2019-12-31 Toyota Jidosha Kabushiki Kaisha Secondary battery and current collector terminal
US10535858B2 (en) 2017-04-28 2020-01-14 Toyota Jidosha Kabushiki Kaisha Secondary battery and current collector terminal
US10615447B2 (en) 2016-03-18 2020-04-07 Toyota Jidosha Kabushiki Kaisha Secondary cell and manufacturing method thereof
CN114833446A (en) * 2022-04-29 2022-08-02 三一技术装备有限公司 Full laser welding manufacturing method for battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746468A (en) * 1980-09-03 1982-03-16 Japan Storage Battery Co Ltd Preparation for an alkali storage battery
JPS59194350A (en) * 1983-04-19 1984-11-05 Yuasa Battery Co Ltd Manufacture of strap for alkaline storage battery
JPS6129066A (en) * 1984-07-19 1986-02-08 Japan Storage Battery Co Ltd Production of strap for alkaline storage battery
JPH10255753A (en) * 1997-03-12 1998-09-25 Toyota Motor Corp Manufacture of electrode for sealed type square battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746468A (en) * 1980-09-03 1982-03-16 Japan Storage Battery Co Ltd Preparation for an alkali storage battery
JPS59194350A (en) * 1983-04-19 1984-11-05 Yuasa Battery Co Ltd Manufacture of strap for alkaline storage battery
JPS6129066A (en) * 1984-07-19 1986-02-08 Japan Storage Battery Co Ltd Production of strap for alkaline storage battery
JPH10255753A (en) * 1997-03-12 1998-09-25 Toyota Motor Corp Manufacture of electrode for sealed type square battery

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692863B1 (en) 1999-08-10 2004-02-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells and process for fabricating same
US6730438B2 (en) 1999-08-10 2004-05-04 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells and process for fabricating same
US6899973B2 (en) 1999-08-10 2005-05-31 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cells
US6995333B2 (en) 1999-08-10 2006-02-07 Sanyo Electric Co., Ltd. Process for fabricating nonaqueous electrolyte secondary cells
JP2001093504A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Battery and manufacturing method thereof
US7736793B2 (en) 2004-05-04 2010-06-15 Samsung Sdi Co., Ltd. Secondary battery with collector plate and electrode package thereof
JP2006172780A (en) * 2004-12-14 2006-06-29 Toyota Motor Corp Battery and battery manufacturing method
US7887946B2 (en) 2005-11-24 2011-02-15 Sanyo Electric Co., Ltd. Prismatic battery having a welding window
WO2008111284A1 (en) 2007-03-15 2008-09-18 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
JP2009087913A (en) * 2007-09-27 2009-04-23 Samsung Sdi Co Ltd Secondary battery
JP2010135651A (en) * 2008-12-05 2010-06-17 Chiba Inst Of Technology Connection structure of metal foil, connecting method of metal foil, and capacitor
US20100216001A1 (en) * 2009-02-25 2010-08-26 Byun Sang Won Rechargeable battery
US8557430B2 (en) * 2009-02-25 2013-10-15 Samsung Sdi Co., Ltd. Rechargeable battery having current collector plate with protrusion
US9136538B2 (en) 2009-02-25 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable battery having current collection plate with protrusion
WO2011036737A1 (en) * 2009-09-28 2011-03-31 トヨタ自動車株式会社 Battery fabrication method
CN102576849A (en) * 2009-09-28 2012-07-11 丰田自动车株式会社 Battery fabrication method
KR101321260B1 (en) * 2009-09-28 2013-10-28 도요타지도샤가부시키가이샤 Battery fabrication method
JP5392352B2 (en) * 2009-09-28 2014-01-22 トヨタ自動車株式会社 Battery manufacturing method
US10072876B2 (en) 2009-09-30 2018-09-11 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
JP2011113811A (en) * 2009-11-26 2011-06-09 Gs Yuasa Corp Battery and method of manufacturing the same
US8617738B2 (en) 2010-05-19 2013-12-31 Samsung Sdi Co., Ltd. Secondary battery
EP2388847A1 (en) * 2010-05-19 2011-11-23 SB LiMotive Co., Ltd. Secondary battery comprising first and second collector plates that are enmeshed together
US9601744B2 (en) 2010-05-19 2017-03-21 Samsung Sdi Co., Ltd. Secondary battery
US9698405B2 (en) 2011-11-25 2017-07-04 Shenzhen Byd Auto R&D Company Limited Electric connector and battery comprising the same
JP2014029823A (en) * 2012-06-29 2014-02-13 Toyota Motor Corp Secondary battery
US9853294B2 (en) 2013-10-17 2017-12-26 Samsung Sdi Co., Ltd. Secondary battery and manufacturing method thereof
US9608295B2 (en) 2014-01-08 2017-03-28 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery and method of manufacturing the same
JP2015130295A (en) * 2014-01-08 2015-07-16 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method of the same
US9876233B2 (en) 2014-01-28 2018-01-23 Samsung Sdi Co., Ltd. Secondary battery
CN105849938A (en) * 2014-01-31 2016-08-10 弗拉迪米尔·列奥尼多维奇·杜曼诺夫 Electrochemical device
WO2017110247A1 (en) * 2015-12-21 2017-06-29 株式会社豊田自動織機 Manufacturing method for electrode assembly, and electrode assembly
US10615447B2 (en) 2016-03-18 2020-04-07 Toyota Jidosha Kabushiki Kaisha Secondary cell and manufacturing method thereof
KR20180016843A (en) * 2016-08-08 2018-02-20 삼성에스디아이 주식회사 Rechargeable battery having current collector
US10522871B2 (en) 2017-04-28 2019-12-31 Toyota Jidosha Kabushiki Kaisha Secondary battery and current collector terminal
US10535858B2 (en) 2017-04-28 2020-01-14 Toyota Jidosha Kabushiki Kaisha Secondary battery and current collector terminal
WO2019111691A1 (en) * 2017-12-05 2019-06-13 株式会社日立製作所 Secondary battery
CN114833446A (en) * 2022-04-29 2022-08-02 三一技术装备有限公司 Full laser welding manufacturing method for battery
CN114833446B (en) * 2022-04-29 2024-04-30 三一技术装备有限公司 Battery full laser welding manufacturing method

Also Published As

Publication number Publication date
JP3804702B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JPH10261441A (en) Non-aqueous electrolyte secondary battery
JP3743781B2 (en) Nonaqueous electrolyte secondary battery
EP1610401B1 (en) Nonaqueous electrolyte secondary cells
EP1076371B1 (en) Nonaqueous electrolyte secondary cells and process for fabricating same
JP3702308B2 (en) Nonaqueous electrolyte secondary battery
JP2025094239A (en) Secondary battery and its manufacturing method
US20110070477A1 (en) Stack type battery
JP2009110751A (en) Secondary battery
JP3777496B2 (en) Non-aqueous electrolyte secondary battery
JPH09306471A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3631132B2 (en) Cylindrical non-aqueous electrolyte secondary battery
US20040247999A1 (en) Secondary battery
JPH11111259A (en) Wound battery
JP3733403B2 (en) Electrode wound type battery
JPH0982305A (en) Secondary battery and manufacture thereof
JP3759577B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP4679046B2 (en) Battery and battery unit using the same
JP4168227B2 (en) Battery and manufacturing method thereof
JPH11167929A (en) Square battery
JPH1116577A (en) Non-aqueous electrolyte battery
JP2001283824A (en) Lithium secondary battery
JP7178633B2 (en) All-solid-state battery and manufacturing method thereof
JP2004253253A (en) Lithium secondary battery and its manufacturing method
JPH0973915A (en) Manufacture of flat secondary battery
JP2002050343A (en) Manufacturing method of secondary cell and secondary cell

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

EXPY Cancellation because of completion of term