[go: up one dir, main page]

JPH10256600A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH10256600A
JPH10256600A JP5922097A JP5922097A JPH10256600A JP H10256600 A JPH10256600 A JP H10256600A JP 5922097 A JP5922097 A JP 5922097A JP 5922097 A JP5922097 A JP 5922097A JP H10256600 A JPH10256600 A JP H10256600A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
carrier concentration
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5922097A
Other languages
Japanese (ja)
Other versions
JP3817322B2 (en
Inventor
Yukio Shakuda
幸男 尺田
Shunji Nakada
俊次 中田
Yukio Matsumoto
幸生 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP5922097A priority Critical patent/JP3817322B2/en
Priority to US09/041,694 priority patent/US6107648A/en
Priority to TW090216322U priority patent/TW497759U/en
Publication of JPH10256600A publication Critical patent/JPH10256600A/en
Application granted granted Critical
Publication of JP3817322B2 publication Critical patent/JP3817322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting device having high light emission efficiency and excellent electric characteristics without lowering film quality and capable of suppressing light absorption in a window layer to the utmost in a semiconductor light emitting device in which a light emitting layer formation part is formed with an AlGaInP compound semiconductor and there is used as the window layer one comprising a laminate structure of a semiconductor layer having higher carrier concentration and a GaP layer having greater band gap energy. SOLUTION: The present device includes a substrate 1, a light emitting layer formation part 11 which comprises an AlGaInP compound semiconductor and in which an n-type layer and a p-type layer are laminated to form a light emitting layer on the substrate 1, and a window layer 7 provided out a surface side of the light emitting layer formation part 11. Herein, the window layer 7 comprises a laminate structure of a greater carrier concentration semiconductor layer 7a and large band gap energy semiconductor layer 7c, and a buffer layer 7b is provided between both layers for moderating lattice distortion of both layers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発光層形成部にAl
GaInP系の化合物半導体が用いられ、発光面側にキ
ャリア濃度の大きい半導体層とバンドギャップエネルギ
ーが大きい半導体層の積層構造からなるウインドウ層が
設けられる可視光の半導体発光素子に関する。さらに詳
しくは、ウインドウ層の半導体結晶層の膜質をよくする
と共に、光の吸収を抑えて発光効率などの電気特性を向
上させる半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a visible light semiconductor light emitting device using a GaInP-based compound semiconductor and having a window layer having a stacked structure of a semiconductor layer having a high carrier concentration and a semiconductor layer having a large band gap energy on a light emitting surface side. More specifically, the present invention relates to a semiconductor light emitting device that improves the film quality of a semiconductor crystal layer of a window layer and suppresses light absorption to improve electrical characteristics such as luminous efficiency.

【0002】[0002]

【従来の技術】従来の可視光の半導体発光素子は、たと
えば発光層形成部にAlGaInP系の化合物半導体材
料を用い、図3に示されるような構造になっている。す
なわち、図3において、n形のGaAsからなる半導体
基板21上に、たとえばn形のAlGaInP系の半導
体材料からなるn形クラッド層22、クラッド層よりバ
ンドギャップエネルギーが小さくなる組成のノンドープ
のAlGaInP系の半導体材料からなる活性層23、
p形のAlGaInP系の半導体材料からなるp形クラ
ッド層24がそれぞれエピタキシャル成長され、ダブル
ヘテロ接合構造の発光層形成部29が形成されている。
さらにその表面にAlGaAs系化合物半導体層25a
およびGaP層25bからなるp形のウィンドウ層(電
流拡散層)25が順次エピタキシャル成長され、その表
面にp側電極27、半導体基板21の裏面側にn側電極
28がそれぞれAu-Zn-Ni合金やAu-Ge-Ni合
金などにより形成されることにより構成されている。
2. Description of the Related Art A conventional visible light semiconductor light emitting device has a structure as shown in FIG. 3, for example, using an AlGaInP-based compound semiconductor material for a light emitting layer forming portion. That is, in FIG. 3, an n-type cladding layer 22 made of, for example, an n-type AlGaInP-based semiconductor material, a non-doped AlGaInP-based composition having a band gap energy smaller than that of the cladding layer are formed on a semiconductor substrate 21 made of an n-type GaAs. Active layer 23 made of a semiconductor material of
A p-type cladding layer 24 made of a p-type AlGaInP-based semiconductor material is epitaxially grown to form a light emitting layer forming portion 29 having a double hetero junction structure.
Further, an AlGaAs-based compound semiconductor layer 25a is formed on the surface thereof.
And a p-type window layer (current diffusion layer) 25 composed of a GaP layer 25b and a GaP layer 25b are sequentially epitaxially grown. A p-side electrode 27 is formed on the surface of the window layer 25, and an n-side electrode 28 is formed on the back side of the semiconductor substrate 21. It is constituted by being formed of an Au-Ge-Ni alloy or the like.

【0003】この構造の発光素子では、積層された半導
体層の表面側、すなわちp側電極27側からの光が利用
され、光を遮断するp側電極27はできるだけ小さい面
積で形成される。一方、両クラッド層22、24により
挟まれた活性層23にキャリアを閉じ込めることにより
発光させるため、電流は発光層の全体に分散して均一に
流れることが望ましい。そのため、電流がチップの全体
に広がるように、ウインドウ層25が設けられている。
このウインドウ層25は、電流を拡散すると共に、活性
層23で発光する光を吸収しないことが望ましく、バン
ドギャップエネルギーの大きい材料であるGaPが用い
られる場合と、図3に示される例のように、電流をでき
るだけ拡散させることができるように、キャリア濃度が
大きいAlGaAs系化合物半導体層25aと、キャリ
ア濃度はやや落ちるがバンドギャップエネルギーが大き
く光の吸収の小さいGaP層25bとの積層構造により
形成される場合とがある。
In the light emitting device having this structure, light from the surface side of the stacked semiconductor layers, that is, light from the p-side electrode 27 side is used, and the p-side electrode 27 for blocking light is formed with an area as small as possible. On the other hand, in order to emit light by confining carriers in the active layer 23 sandwiched between the cladding layers 22 and 24, it is desirable that the current be distributed uniformly throughout the light emitting layer. Therefore, the window layer 25 is provided so that the current spreads over the entire chip.
The window layer 25 desirably diffuses current and does not absorb light emitted from the active layer 23. When the window layer 25 is made of GaP, which is a material having a large band gap energy, as shown in FIG. In order to spread the current as much as possible, the AlGaAs-based compound semiconductor layer 25a having a high carrier concentration and the GaP layer 25b having a small carrier absorption but a large band gap energy and a small light absorption are formed by a laminated structure. Sometimes.

【0004】[0004]

【発明が解決しようとする課題】従来の図3に示される
構造の半導体発光素子では、GaAs基板とAlGaI
nP系化合物半導体(格子定数は5.653Å)との格
子整合は(AlGa)とInとの混晶比率により行わ
れ、さらにAlGaAs系化合物半導体とも格子整合は
とられているが、GaP(格子定数は5.451Å)と
の間では格子整合はとれていない。そのため、GaPか
らなるウインドウ層の膜質が低下し、電気抵抗が増加し
て動作電圧が高くなったり、電流の拡散が充分に行われ
なくて、発光効率が低下するなどの電気特性が低下する
という問題がある。
In a conventional semiconductor light emitting device having the structure shown in FIG. 3, a GaAs substrate and an AlGaI
Lattice matching with an nP-based compound semiconductor (lattice constant: 5.653 °) is performed by a mixed crystal ratio of (AlGa) and In. Further, lattice matching with an AlGaAs-based compound semiconductor is achieved. Is not matched with 5.451 °). For this reason, the film quality of the window layer made of GaP is deteriorated, the electric resistance is increased, the operating voltage is increased, or the electric current is not sufficiently diffused, and the electric characteristics such as the luminous efficiency are reduced. There's a problem.

【0005】さらに、GaP層はバンドギャップエネル
ギーが大きいといっても、多少は発光層で発光する光を
吸収し、可視光に対して完全な透明体ではない。
Further, even if the GaP layer has a large band gap energy, it absorbs light emitted from the light emitting layer to some extent, and is not completely transparent to visible light.

【0006】本発明は、このような問題を解決するため
になされたもので、AlGaInP系化合物半導体によ
り発光層形成部が形成され、ウインドウ層としてキャリ
ア濃度が高い半導体層とバンドギャップエネルギーが大
きいGaP層との積層構造からなるウインドウ層が用い
られる半導体発光素子において、ウインドウ層の膜質を
低下させないで、発光効率が高く電気特性の優れた発光
素子を提供することを目的とする。
The present invention has been made in order to solve such a problem. A light emitting layer forming portion is formed of an AlGaInP compound semiconductor, a semiconductor layer having a high carrier concentration as a window layer and a GaP having a large band gap energy. It is an object of the present invention to provide a semiconductor light emitting device using a window layer having a layered structure with a layer and having high luminous efficiency and excellent electric characteristics without deteriorating the film quality of the window layer.

【0007】本発明の他の目的は、ウインドウ層での光
の吸収を極力抑えて外部に取り出すことができる光の割
合である外部発光効率の高い半導体発光素子を提供する
ことにある。
Another object of the present invention is to provide a semiconductor light emitting device having a high external luminous efficiency, which is a ratio of light that can be extracted to the outside while minimizing light absorption in a window layer.

【0008】[0008]

【課題を解決するための手段】本発明による半導体発光
素子は、基板と、該基板上に設けられ、AlGaInP
系化合物半導体からなりn形層およびp形層が積層され
発光層を形成する発光層形成部と、該発光層形成部の表
面側に設けられるウインドウ層とを備える半導体発光素
子であって、前記ウインドウ層がキャリア濃度の大きい
半導体層とバンドギャップエネルギーの大きい半導体層
との積層構造からなり、該両層の間に両層の格子歪を緩
和するバッファ層が設けられている。
A semiconductor light emitting device according to the present invention comprises a substrate and an AlGaInP substrate provided on the substrate.
A light-emitting layer forming part comprising a compound semiconductor, wherein an n-type layer and a p-type layer are stacked to form a light-emitting layer, and a window light-emitting layer provided on a surface side of the light-emitting layer forming part; The window layer has a laminated structure of a semiconductor layer having a high carrier concentration and a semiconductor layer having a large band gap energy, and a buffer layer for relaxing lattice distortion of both layers is provided between the two layers.

【0009】ここにAlGaInP系化合物半導体と
は、(Alx Ga1-x 0.51In0.49Pの形で表され、
xの値が0と1との間で種々の値のときの材料を意味す
る。なお、(Alx Ga1-x )とInの混晶比率の0.
51および0.49はAlGaInP系化合物半導体が
積層されるGaAsなどの半導体基板と格子整合される
比率であることを意味する。
Here, the AlGaInP-based compound semiconductor is expressed in the form of (Al x Ga 1 -x ) 0.51 In 0.49 P,
It means the material when the value of x varies between 0 and 1. Note that the mixed crystal ratio of (Al x Ga 1-x ) and In is set to 0.1.
51 and 0.49 mean that the ratio is such that it is lattice-matched with a semiconductor substrate such as GaAs on which an AlGaInP-based compound semiconductor is laminated.

【0010】バッファ層がキャリア濃度の大きい半導体
層とバンドギャップエネルギーの大きい半導体層との間
に挿入されることにより、ウインドウ層の積層構造での
格子定数の差による歪の蓄積が生ぜず、格子定数の差に
よる界面の歪が緩和されるため、ウインド層の膜質が向
上し、発光素子としての電気的特性が向上する。
[0010] Since the buffer layer is inserted between the semiconductor layer having a high carrier concentration and the semiconductor layer having a high band gap energy, no strain is accumulated due to a difference in lattice constant in the laminated structure of the window layer. Since the strain at the interface due to the difference in the constant is reduced, the film quality of the window layer is improved, and the electrical characteristics of the light emitting element are improved.

【0011】具体的には、前記キャリア濃度の大きい半
導体層がAlGaAs系化合物半導体層またはAlGa
InP系化合物半導体層で、前記バンドギャップエネル
ギーの大きい半導体層がGaP層で、前記バッファ層が
GaInP系化合物半導体層で構成され得る。ここに、
AlGaAs系化合物半導体とは、AlとGaの混晶比
率が種々変わり得ることを、またGaInP系化合物半
導体とは、GaとPの混晶比率が種々変わり得ることを
意味する。他の化合物半導体についても同様である。
Specifically, the semiconductor layer having a high carrier concentration is an AlGaAs-based compound semiconductor layer or an AlGa
In the InP-based compound semiconductor layer, the semiconductor layer having a large band gap energy may be a GaP layer, and the buffer layer may be a GaInP-based compound semiconductor layer. here,
An AlGaAs-based compound semiconductor means that the mixed crystal ratio of Al and Ga can be variously changed, and a GaInP-based compound semiconductor means that the mixed crystal ratio of Ga and P can be variously changed. The same applies to other compound semiconductors.

【0012】本発明の半導体発光素子の他の形態は、基
板と、該基板上に設けられ、AlGaInP系化合物半
導体からなりn形層およびp形層が積層されて発光層を
形成する発光層形成部と、該発光層形成部の表面側に設
けられるウインドウ層とを備える半導体発光素子であっ
て、前記ウインドウ層がキャリア濃度の大きい半導体層
とバンドギャップエネルギーの大きい半導体層との積層
構造からなり、前記バンドギャップエネルギーの大きい
半導体層がAlGaP系化合物半導体などの(Alx
1-x 1-z Inz P(0≦x≦1、0≦z<0.4
9)化合物半導体からなっている。前記キャリア濃度が
大きい半導体層としては、たとえばAlGaAs系化合
物半導体層またはAlGaInP系化合物半導体層が用
いられる。
Another embodiment of the semiconductor light-emitting device of the present invention is a light-emitting layer forming a light-emitting layer provided on the substrate and made of an AlGaInP-based compound semiconductor and having an n-type layer and a p-type layer laminated to form a light-emitting layer. And a window layer provided on the surface side of the light emitting layer forming portion, wherein the window layer has a laminated structure of a semiconductor layer having a large carrier concentration and a semiconductor layer having a large band gap energy. The semiconductor layer having a large band gap energy is made of (Al x G) such as an AlGaP-based compound semiconductor.
a 1-x ) 1-z In z P (0 ≦ x ≦ 1, 0 ≦ z <0.4)
9) It is made of a compound semiconductor. As the semiconductor layer having a high carrier concentration, for example, an AlGaAs-based compound semiconductor layer or an AlGaInP-based compound semiconductor layer is used.

【0013】バンドギャップエネルギーの大きい半導体
層として上述の材料が用いられることにより、GaP層
よりバンドギャップエネルギーが大きく、光の吸収を抑
制することができ、外部発光効率が向上する。
By using the above-mentioned material as the semiconductor layer having a large band gap energy, the band gap energy is larger than that of the GaP layer, light absorption can be suppressed, and external luminous efficiency is improved.

【0014】前記バンドギャップエネルギーの大きい半
導体層の表面側にGaP層が設けられることにより、p
側電極とのコンタクトによる電気特性が従来構造より低
下することもない。
By providing a GaP layer on the surface side of the semiconductor layer having a large band gap energy,
The electrical characteristics due to the contact with the side electrode do not lower than the conventional structure.

【0015】[0015]

【発明の実施の形態】つぎに、図面を参照しながら本発
明の半導体発光素子について説明をする。
Next, a semiconductor light emitting device of the present invention will be described with reference to the drawings.

【0016】本発明の半導体発光素子は、図1にその一
例の断面構造が示されるように、n形のGaAs基板1
上にAlGaInP系化合物半導体からなり発光層を形
成する発光層形成部11が堆積され、その表面にキャリ
ア濃度の大きい半導体層7a、バッファ層7b、バンド
ギャップエネルギーの大きい半導体層7cの積層構造か
らなるp形のウインドウ層7が設けられ、その表面にp
側電極8が形成され、GaAs基板1の裏面にn側電極
9が設けられることにより発光素子チップが形成されて
いる。すなわち、本発明ではウインドウ層7のキャリア
濃度の大きい半導体層7aと、バンドギャップエネルギ
ーの大きい半導体層7cとの間に両者の格子定数の中間
の格子定数を有するバッファ層7bを介在させることに
より、格子定数の差に基づく両層間の歪を緩和させてい
る。
The semiconductor light emitting device of the present invention has an n-type GaAs substrate 1 as shown in FIG.
A light emitting layer forming portion 11 made of an AlGaInP-based compound semiconductor and forming a light emitting layer is deposited thereon, and has a stacked structure of a semiconductor layer 7a having a high carrier concentration, a buffer layer 7b, and a semiconductor layer 7c having a large band gap energy on the surface. A p-type window layer 7 is provided.
A side electrode 8 is formed, and an n-side electrode 9 is provided on the back surface of the GaAs substrate 1 to form a light emitting element chip. That is, in the present invention, a buffer layer 7b having a lattice constant intermediate between the semiconductor layer 7a having a large carrier concentration of the window layer 7 and the semiconductor layer 7c having a large band gap energy is interposed between the semiconductor layer 7a and the semiconductor layer 7c having a large band gap energy. The strain between the two layers based on the difference in lattice constant is reduced.

【0017】キャリア濃度の大きい半導体層7aとして
は、AlGaAs系化合物半導体またはAlGaInP
系化合物半導体が用いられ、キャリア濃度が1×1018
〜1×1020cm-3程度で、1〜5μm程度の厚さに形
成される。これらの半導体は、不純物を充分にドープし
てキャリア濃度を高くすることができる。AlGaIn
P系化合物半導体は、発光層形成部11の半導体層と同
種の半導体であるが、発光層形成部11では発光効率の
関係から余りキャリア濃度を高くすることができず、発
光層形成部11とは別に設けられる。この場合、発光層
形成部11のクラッド層よりAlの比率を大きくしてバ
ンドギャップエネルギーを大きくした組成のものが用い
られることもあり、同じ比率の場合もある。
As the semiconductor layer 7a having a high carrier concentration, an AlGaAs compound semiconductor or AlGaInP
-Based compound semiconductor is used and the carrier concentration is 1 × 10 18
It is formed at a thickness of about 1-5 μm at about 1 × 10 20 cm −3 . These semiconductors can be sufficiently doped with impurities to increase the carrier concentration. AlGaIn
The P-based compound semiconductor is a semiconductor of the same type as the semiconductor layer of the light emitting layer forming part 11, but the light emitting layer forming part 11 cannot increase the carrier concentration too much due to luminous efficiency. Is provided separately. In this case, a composition having a higher band gap energy by increasing the ratio of Al than the cladding layer of the light emitting layer forming portion 11 may be used, or the same ratio may be used.

【0018】バンドギャップエネルギーの大きい半導体
層7cとしては、従来と同様のGaP層または後述する
(Alx Ga1-x 1-z Inz P(0≦x≦1、0≦z
<0.49)化合物半導体が用いられ、キャリア濃度が
1×1016〜1×1019 cm -3程度で、0.1〜20μ
m程度の厚さに形成される。バッファ層7bは、GaA
s基板1と格子定数が合されたAlGaAs系またはA
lGaInP系の化合物半導体の格子定数5.653Å
とバンドギャップエネルギーの大きい半導体層7cであ
るGaP層の格子定数5.451Åとの中間の格子定数
を有するものが用いられ、たとえばGaInP層(格子
定数5.491Å)が用いられ、キャリア濃度が1×1
16〜1×1019cm-3程度で、0.1〜20μm程度
の厚さに設けられる。
Semiconductor having a large band gap energy
As the layer 7c, a GaP layer similar to the conventional one or a GaP layer described later
(AlxGa1-x)1-zInzP (0 ≦ x ≦ 1, 0 ≦ z
<0.49) A compound semiconductor is used, and the carrier concentration is
1 × 1016~ 1 × 1019 cm -3About 0.1 ~ 20μ
The thickness is about m. The buffer layer 7b is made of GaAs
AlGaAs or A with lattice constant matched with s substrate 1
Lattice constant of lGaInP-based compound semiconductor 5.653Å
And the semiconductor layer 7c having a large band gap energy.
Lattice constant of the GaP layer with a lattice constant of 5.451 °
Is used. For example, a GaInP layer (grating
Constant is 5.491Å) and the carrier concentration is 1 × 1
016~ 1 × 1019cm-3About 0.1 to 20 μm
It is provided in the thickness of.

【0019】発光層形成部11は、AlGaInP系化
合物半導体からなり、キャリア濃度が1×1017〜1×
1019cm-3程度で、厚さが0.1〜2μm程度のn形
クラッド層3と、ノンドープでクラッド層よりバンドギ
ャップエネルギーが小さくなる組成のAlGaInP系
化合物半導体からなり、0.1〜2μm程度の厚さの活
性層4と、Znがドープされてキャリア濃度が1×10
16〜1×1019cm-3程度、厚さが0.1〜2μm程度
で、n形クラッド層3と同じ組成のAlGaInP系化
合物半導体からなるp形クラッド層5との積層構造から
なっている。なお、GaAs基板1上に図示しないバッ
ファ層を介してこれらの発光層形成部11が積層される
場合もある。その場合、バッファ層は、n形のGaAs
からなり、厚さが0.1〜2μm程度でキャリア濃度が
1×1017〜1×1019cm-3程度に形成される。
The light emitting layer forming section 11 is made of an AlGaInP compound semiconductor and has a carrier concentration of 1 × 10 17 to 1 × 10 17.
An n-type cladding layer 3 of about 10 19 cm -3 and a thickness of about 0.1 to 2 μm, and an AlGaInP-based compound semiconductor which is non-doped and has a composition in which the band gap energy is smaller than that of the cladding layer, is 0.1 to 2 μm. An active layer 4 having a thickness of about 10 nm and a carrier concentration of 1 × 10
It is about 16 to 1 × 10 19 cm −3, has a thickness of about 0.1 to 2 μm, and has a laminated structure of an n-type cladding layer 3 and a p-type cladding layer 5 made of an AlGaInP-based compound semiconductor having the same composition. . These light emitting layer forming portions 11 may be stacked on the GaAs substrate 1 via a buffer layer (not shown). In that case, the buffer layer is made of n-type GaAs.
And a carrier concentration of about 1 × 10 17 to 1 × 10 19 cm −3 with a thickness of about 0.1 to 2 μm.

【0020】前述のウインドウ層7の表面にAu-Ti
合金、またはAu-Zn-Ni合金などからなるp側電極
8が、またGaAs基板1の裏面にAu-Ge-Ni合金
などからなるn側電極9が設けられている。なお、ウイ
ンドウ層7とp側電極8との間にZnが2×1019cm
-3程度のキャリア濃度になるようにドーピングされたG
aAsからなるコンタクト層(図示せず)が0.05〜
0.2μm程度設けられる場合もある。
Au-Ti is applied to the surface of the window layer 7 described above.
A p-side electrode 8 made of an alloy or an Au-Zn-Ni alloy is provided, and an n-side electrode 9 made of an Au-Ge-Ni alloy is provided on the back surface of the GaAs substrate 1. Note that Zn is 2 × 10 19 cm between the window layer 7 and the p-side electrode 8.
G doped to a carrier concentration of about -3
a contact layer (not shown) made of aAs
In some cases, the thickness may be about 0.2 μm.

【0021】このような半導体発光素子を製造するに
は、たとえばn形のGaAs基板1をMOCVD装置内
に入れ、反応ガスのトリエチルガリウム(以下、TEG
という)またはトリメチルガリウム(以下、TMGとい
う)およびアルシン(以下、AsH3 という)、Seの
ドーパントガスであるH2 Seをキャリアガスの水素
(H2 )と共に導入し、500〜800℃程度でエピタ
キシャル成長し、キャリア濃度が1×1018cm-3程度
になるようにSeがドープされたn形のGaAsからな
るバッファ層(図示せず)を0.1μm程度成膜する。
ついで、AsH3 に代えてホスフィン(以下、PH3
いう)を、さらにトリメチルアルミニウム(以下、TM
Aという)およびトリメチルインジウム(以下、TMI
nという)を導入し、n形でキャリア濃度が1×1017
〜1×1019cm-3程度のたとえば(Al0.7
0.3 0.51In0.49Pからなるn形クラッド層3を
0.5μm程度、反応ガスのTMAを減らしてTEGま
たはTMGを増やし、たとえばノンドープの(Al0.25
Ga0.750.51In0.49Pからなる活性層4を0.5μ
m程度、n形クラッド層3と同様の反応ガスで、H2
eの代わりに、Znのドーパントガスとしてのジメチル
亜鉛(DMZn)を導入してキャリア濃度が1×1016
〜1×1019cm-3の(Al0.7 Ga0.3 0.51In
0.49Pからなるp形クラッド層5を0.5μm程度エピ
タキシャル成長する。
In order to manufacture such a semiconductor light emitting device, for example, an n-type GaAs substrate 1 is placed in an MOCVD apparatus, and a reaction gas of triethylgallium (hereinafter referred to as TEG) is used.
) Or trimethylgallium (hereinafter, referred to as TMG), arsine (hereinafter, referred to as AsH 3 ), and H 2 Se, which is a dopant gas for Se, are introduced together with hydrogen (H 2 ) as a carrier gas, and epitaxial growth is performed at about 500 to 800 ° C. Then, a buffer layer (not shown) made of n-type GaAs doped with Se so as to have a carrier concentration of about 1 × 10 18 cm −3 is formed to a thickness of about 0.1 μm.
Next, phosphine (hereinafter, referred to as PH 3 ) is substituted for AsH 3 , and trimethylaluminum (hereinafter, referred to as TM)
A) and trimethylindium (hereinafter referred to as TMI).
n) and an n-type carrier concentration of 1 × 10 17
11 × 10 19 cm −3 , for example (Al 0.7 G
a 0.3 ) 0.51 In 0.49 P n-type cladding layer 3 of about 0.5 μm, TMA of the reaction gas is reduced to increase TEG or TMG, and for example, non-doped (Al 0.25
The active layer 4 made of Ga 0.75 ) 0.51 In 0.49 P has a thickness of 0.5 μm.
about m, a reaction gas similar to that of the n-type cladding layer 3, and H 2 S
In place of e, dimethyl zinc (DMZn) as a dopant gas for Zn is introduced to reduce the carrier concentration to 1 × 10 16
(Al 0.7 Ga 0.3 ) 0.51 In of ~ 1 × 10 19 cm -3
A p-type cladding layer 5 made of 0.49 P is epitaxially grown to about 0.5 μm.

【0022】さらに、ドーパントガスのDMZnを導入
しながら、反応ガスをTEGまたはTMGとTMAとA
sH3 にして、キャリア濃度が1×1017〜1×1019
cm -3程度のp形のAlGaAs層7aを1〜10μm
程度成長する。さらに、反応ガスをTMInとTEGま
たはTMGとPH3 に変えてp形のGaInP層7bを
0.001〜0.1μm程度、反応ガスをTEGまたはT
MGとPH3 に切り変えてp形のGaP層7cを0.0
01〜0.1μm程度の厚さで積層する。そして全体で
0.1〜20μm程度の厚さのウインドウ層7を形成す
る。さらに、必要に応じて、ウインドウ層7の表面にT
EGまたはTMGとAsH3 およびDMZnを導入する
ことにより、キャリア濃度が2×1019cm-3程度のG
aAsからなるコンタクト層(図示せず)を0.05〜
0.2μm程度成膜する。
Further, a dopant gas DMZn is introduced.
While reacting gas, TEG or TMG, TMA and A
sHThreeAnd the carrier concentration is 1 × 1017~ 1 × 1019
cm -3About 10 μm of p-type AlGaAs layer 7a
Grow to a degree. Further, the reaction gas is transferred to TMIn and TEG.
Or TMG and PHThreeAnd replace the p-type GaInP layer 7b with
About 0.001 to 0.1 μm, the reaction gas is TEG or T
MG and PHThreeAnd change the p-type GaP layer 7c to 0.0.
The layers are laminated with a thickness of about 01 to 0.1 μm. And overall
Forming a window layer 7 having a thickness of about 0.1 to 20 μm;
You. Further, if necessary, T
EG or TMG and AsHThreeAnd DMZn
As a result, the carrier concentration becomes 2 × 1019cm-3G of degree
a contact layer (not shown) made of aAs
A film having a thickness of about 0.2 μm is formed.

【0023】このようにエピタキシャル成長された基板
の上面および裏面側に、Au-Ti合金、またはAu-Z
n-Ni合金などからなる上部電極(p側電極)8およ
びAu-Ge-Ni合金などからなる下部電極(n側電
極)9を形成し、ダイシングしてチップ化する。
An Au—Ti alloy or an Au—Z alloy is formed on the upper and lower surfaces of the substrate thus epitaxially grown.
An upper electrode (p-side electrode) 8 made of an n-Ni alloy or the like and a lower electrode (n-side electrode) 9 made of an Au-Ge-Ni alloy or the like are formed, and diced into chips.

【0024】本発明によれば、AlGaAs系もしくは
AlGaInP系化合物半導体からなるキャリア濃度が
大きい半導体層とGaPからなるバンドギャップエネル
ギーの大きい半導体層との間に、GaInP層からなる
バッファ層が介在されることによりウインドウ層が形成
されている。GaInP層の格子定数は、両側に隣接す
る両層の中間に位置し、両者間の格子定数の差に基づく
歪を緩和する。その結果、ウインドウ層をキャリア濃度
の大きい半導体層とバンドギャップエネルギーの大きい
半導体層との積層構造で構成する半導体発光素子におい
ても、半導体層の界面における歪を緩和してウインドウ
層の膜質の低下が生じないで、発光効率の高い半導体発
光素子となる。一方、このバッファ層は、キャリア濃度
やバンドギャップエネルギーがその両側の層の中間的な
性質を有し、発光に支障を来すことはない。
According to the present invention, a buffer layer made of a GaInP layer is interposed between a semiconductor layer made of an AlGaAs-based or AlGaInP-based compound semiconductor and having a high carrier concentration and a semiconductor layer made of GaP and having a high band gap energy. Thus, a window layer is formed. The lattice constant of the GaInP layer is located in the middle between the two layers adjacent on both sides, and relaxes the strain based on the difference in lattice constant between the two. As a result, even in a semiconductor light emitting element in which the window layer has a stacked structure of a semiconductor layer having a high carrier concentration and a semiconductor layer having a high band gap energy, the strain at the interface between the semiconductor layers is relaxed and the film quality of the window layer is reduced. Without this, a semiconductor light emitting device having high luminous efficiency is obtained. On the other hand, this buffer layer has an intermediate property between the layers on both sides in carrier concentration and band gap energy, and does not hinder light emission.

【0025】図2は、本発明の半導体発光素子の他の実
施形態を説明するウインドウ層7部の断面説明図であ
る。この例は、GaPよりさらにバンドギャップエネル
ギーの大きい材料を用いることにより、ウインドウ層に
おける光の吸収をさらに少なくして外部へ取り出すこと
ができる光の割合である外部発光効率を向上させるもの
である。すなわち、図2(a)に示されるように、バン
ドギャップエネルギーの大きい半導体材料として、Al
GaP系化合物半導体など、Inの組成をGaAsと格
子整合をとる値(0.49)より小さくしてバンドギャ
ップエネルギーを大きくした(Alx Ga1-x 1-z
z P(0≦x≦1、0≦z<0.49)化合物半導体
が用いられている。これらの半導体層は、GaPよりバ
ンドギャップエネルギーが大きく、光の吸収を一層抑制
することができる。このようなバンドギャップエネルギ
ーの大きい半導体は、一般的にもキャリア濃度をあまり
大きくすることができないため、前述のようにキャリア
濃度の大きい半導体層7aを発光層形成部11側に介在
させることが好ましい。このキャリア濃度の大きい半導
体層7aは、前述と同様のAlGaAs系化合物半導体
またはキャリア濃度を大きくしたAlGaInP系化合
物半導体が使用される。なお、図2では省略されている
が、図1に示されるように、この両層間に格子歪を緩和
させるバッファ層が介在されることが好ましい。
FIG. 2 is an explanatory sectional view of a window layer 7 for explaining another embodiment of the semiconductor light emitting device of the present invention. In this example, by using a material having a larger band gap energy than that of GaP, external light emission efficiency, which is a ratio of light that can be extracted to the outside while further reducing light absorption in the window layer, is improved. That is, as shown in FIG. 2A, as a semiconductor material having a large band gap energy, Al
For example, in a GaP-based compound semiconductor, the composition of In is made smaller than the value (0.49) that lattice-matches with GaAs, and the band gap energy is increased (Al x Ga 1-x ) 1-z I.
An nzP (0 ≦ x ≦ 1, 0 ≦ z <0.49) compound semiconductor is used. These semiconductor layers have a larger band gap energy than GaP and can further suppress light absorption. Such a semiconductor having a large band gap energy generally cannot have a very high carrier concentration. Therefore, it is preferable to interpose the semiconductor layer 7a having a high carrier concentration on the light emitting layer forming portion 11 side as described above. . As the semiconductor layer 7a having a high carrier concentration, an AlGaAs-based compound semiconductor similar to that described above or an AlGaInP-based compound semiconductor having a high carrier concentration is used. Although not shown in FIG. 2, it is preferable that a buffer layer for relaxing lattice distortion is interposed between the two layers as shown in FIG.

【0026】図2(b)は、バンドギャップエネルギー
の大きい半導体層7cの表面にさらにその層よりはバン
ドギャップエネルギーは小さいが、抵抗が小さいGaP
層7dが設けられている。これは、p側電極8と半導体
層との接触抵抗を下げるためのもので、電気特性改善の
利点がある。
FIG. 2B shows that the surface of the semiconductor layer 7c having a large bandgap energy is further reduced by GaP having a smaller bandgap energy but a smaller resistance than that of the semiconductor layer 7c.
A layer 7d is provided. This is for reducing the contact resistance between the p-side electrode 8 and the semiconductor layer, and has the advantage of improving the electrical characteristics.

【0027】なお、前述の各例では、発光層形成部11
が、活性層4を両クラッド層3、5により挟持し、活性
層4と両クラッド層3、5の材料、たとえばAlの混晶
比を異ならせ、活性層にキャリアや光を閉じ込めやすく
して活性層4を発光層とするダブルヘテロ接合構造であ
るが、活性層4を介さないでpn接合が形成され、pn
接合部に発光層を形成する構造のもでもよい。
In each of the above examples, the light emitting layer forming portion 11
However, the active layer 4 is sandwiched between the cladding layers 3 and 5, and the material of the active layer 4 and the cladding layers 3 and 5, for example, the mixed crystal ratio of Al is made different, so that carriers and light are easily confined in the active layer. Although it has a double hetero junction structure in which the active layer 4 is used as a light emitting layer, a pn junction is formed without the active layer 4 and
A structure in which a light emitting layer is formed at the junction may be used.

【0028】さらに、前述の例では、半導体発光素子を
構成する各半導体層として、具体的な半導体材料を用
い、その厚さやキャリア濃度の特定の例が示されている
ところがあるが、これらの例には限定されない。
Further, in the above-described examples, specific examples of the thickness and the carrier concentration are shown using specific semiconductor materials as the respective semiconductor layers constituting the semiconductor light emitting element. It is not limited to.

【0029】[0029]

【発明の効果】本発明によれば、ウインドウ層にキャリ
ア濃度の大きい半導体層とバンドギャップエネルギーの
大きい半導体層の積層構造が用いられる場合にも、その
間での格子定数の不整合に基づく内部歪が発生しない。
そのため、キャリア濃度の大きい特性と、バンドギャッ
プエネルギーの大きい特性の両方の特性を満たしなが
ら、半導体層の界面における歪が生じることなく良質の
半導体積層構造が得られ、発光効率の高い半導体発光素
子が得られる。
According to the present invention, even when a laminated structure of a semiconductor layer having a large carrier concentration and a semiconductor layer having a large band gap energy is used for a window layer, internal strain due to mismatch of a lattice constant therebetween is obtained. Does not occur.
Therefore, while satisfying both the characteristics of a large carrier concentration and the characteristic of a large band gap energy, a high-quality semiconductor laminated structure can be obtained without distortion at the interface of the semiconductor layers, and a semiconductor light emitting device with high luminous efficiency can be obtained. can get.

【0030】また、バンドギャップエネルギーの大きい
半導体層として、AlGaP系化合物半導体のような
(Alx Ga1-x 1-z Inz P(0≦x≦1、0≦z
<0.49)化合物半導体が用いられることにより、G
aPよりも光の吸収が少なくなり、一層発光効率が向上
する。
As a semiconductor layer having a large band gap energy, (Al x Ga 1 -x ) 1 -z In z P (0 ≦ x ≦ 1, 0 ≦ z
<0.49) By using a compound semiconductor, G
Light absorption is lower than that of aP, and the luminous efficiency is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体発光素子の一実施形態の断面構
造を示す図である。
FIG. 1 is a diagram showing a cross-sectional structure of one embodiment of a semiconductor light emitting device of the present invention.

【図2】本発明の半導体発光素子の他の実施形態の一部
の断面構造を示す図である。
FIG. 2 is a diagram showing a partial cross-sectional structure of another embodiment of the semiconductor light emitting device of the present invention.

【図3】従来の半導体発光素子の断面構造を示す図であ
る。
FIG. 3 is a diagram showing a cross-sectional structure of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 基板 3 n形クラッド層 4 活性層 5 p形クラッド層 7 ウィンドウ層 7a キャリア濃度の大きい半導体層 7b バッファ層 7c バンドギャップエネルギーの大きい半導体層 7d GaP層 11 発光層形成部 Reference Signs List 1 substrate 3 n-type cladding layer 4 active layer 5 p-type cladding layer 7 window layer 7a semiconductor layer with high carrier concentration 7b buffer layer 7c semiconductor layer with high band gap energy 7d GaP layer 11 light emitting layer forming section

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に設けられ、AlGa
InP系化合物半導体からなりn形層およびp形層が積
層され発光層を形成する発光層形成部と、該発光層形成
部の表面側に設けられるウインドウ層とを備える半導体
発光素子であって、前記ウインドウ層がキャリア濃度の
大きい半導体層とバンドギャップエネルギーの大きい半
導体層との積層構造からなり、該両層の間に両層の格子
歪を緩和するバッファ層が設けられてなる半導体発光素
子。
1. A substrate, comprising: a substrate;
A semiconductor light-emitting element comprising a light-emitting layer forming portion formed of an InP-based compound semiconductor and forming a light-emitting layer in which an n-type layer and a p-type layer are stacked, and a window layer provided on a surface side of the light-emitting layer forming portion, A semiconductor light emitting device in which the window layer has a stacked structure of a semiconductor layer having a high carrier concentration and a semiconductor layer having a high band gap energy, and a buffer layer for relaxing lattice distortion of both layers is provided between the two layers.
【請求項2】 前記キャリア濃度の大きい半導体層がA
lGaAs系化合物半導体層またはAlGaInP系化
合物半導体層であり、前記バンドギャップエネルギーの
大きい半導体層がGaP層であり、前記バッファ層がG
aInP系化合物半導体層である請求項1記載の半導体
発光素子。
2. The semiconductor layer having a high carrier concentration comprises A
the semiconductor layer having a large band gap energy is a GaP layer, and the buffer layer is a GGaAs-based compound semiconductor layer or an AlGaInP-based compound semiconductor layer.
2. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is an aInP-based compound semiconductor layer.
【請求項3】 基板と、該基板上に設けられ、AlGa
InP系化合物半導体からなりn形層およびp形層が積
層され発光層を形成する発光層形成部と、該発光層形成
部の表面側に設けられるウインドウ層とを備える半導体
発光素子であって、前記ウインドウ層がキャリア濃度の
大きい半導体層とバンドギャップエネルギーの大きい半
導体層との積層構造からなり、前記バンドギャップエネ
ルギーの大きい半導体層が(Alx Ga1-x 1-z In
z P(0≦x≦1、0≦z<0.49)化合物半導体か
らなる半導体発光素子。
3. A substrate and an AlGa provided on the substrate.
A semiconductor light-emitting element comprising a light-emitting layer forming portion formed of an InP-based compound semiconductor and forming a light-emitting layer in which an n-type layer and a p-type layer are stacked, and a window layer provided on a surface side of the light-emitting layer forming portion, The window layer has a laminated structure of a semiconductor layer having a high carrier concentration and a semiconductor layer having a large band gap energy, and the semiconductor layer having a large band gap energy is composed of (Al x Ga 1-x ) 1-z In.
A semiconductor light emitting device comprising a zP (0 ≦ x ≦ 1, 0 ≦ z <0.49) compound semiconductor.
【請求項4】 前記キャリア濃度の大きい半導体層が、
AlGaAs系化合物半導体層またはAlGaInP系
化合物半導体層である請求項3記載の半導体発光素子。
4. The semiconductor layer having a high carrier concentration,
4. The semiconductor light emitting device according to claim 3, wherein the semiconductor light emitting device is an AlGaAs-based compound semiconductor layer or an AlGaInP-based compound semiconductor layer.
【請求項5】 前記バンドギャップエネルギーの大きい
半導体層の表面側にGaP層が設けられてなる請求項3
または4記載の半導体発光素子。
5. A GaP layer is provided on a surface side of the semiconductor layer having a large band gap energy.
Or the semiconductor light emitting device according to 4.
JP5922097A 1997-03-13 1997-03-13 Semiconductor light emitting device Expired - Fee Related JP3817322B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5922097A JP3817322B2 (en) 1997-03-13 1997-03-13 Semiconductor light emitting device
US09/041,694 US6107648A (en) 1997-03-13 1998-03-13 Semiconductor light emitting device having a structure which relieves lattice mismatch
TW090216322U TW497759U (en) 1997-03-13 1998-03-13 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5922097A JP3817322B2 (en) 1997-03-13 1997-03-13 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH10256600A true JPH10256600A (en) 1998-09-25
JP3817322B2 JP3817322B2 (en) 2006-09-06

Family

ID=13107088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5922097A Expired - Fee Related JP3817322B2 (en) 1997-03-13 1997-03-13 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3817322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518633A (en) * 2014-05-08 2017-07-06 エルジー イノテック カンパニー リミテッド Light emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017518633A (en) * 2014-05-08 2017-07-06 エルジー イノテック カンパニー リミテッド Light emitting element
US10043947B2 (en) 2014-05-08 2018-08-07 Lg Innotek Co., Ltd. Light emitting device

Also Published As

Publication number Publication date
JP3817322B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
JP3063756B1 (en) Nitride semiconductor device
US6838705B1 (en) Nitride semiconductor device
US8183557B2 (en) (Al,In,Ga,B)N device structures on a patterned substrate
EP0702414B1 (en) Semiconductor light-emitting devices
US6337493B1 (en) Nitride semiconductor device
US7947994B2 (en) Nitride semiconductor device
JP4629178B2 (en) Nitride semiconductor device
US6107648A (en) Semiconductor light emitting device having a structure which relieves lattice mismatch
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JPH10223929A (en) Substrate for AlGaInP light emitting device
JPH11340509A (en) Nitride semiconductor element
JP2006332205A (en) Nitride semiconductor light emitting device
US20150115220A1 (en) (Al, In, Ga, B)N DEVICE STRUCTURES ON A PATTERNED SUBSTRATE
US5631475A (en) Semiconductor light emitting element
JPH08139360A (en) Semiconductor heterojunction material
JP3817322B2 (en) Semiconductor light emitting device
JP3253267B2 (en) Semiconductor light emitting device
JPH10256667A (en) Semiconductor light emitting element
JP3635727B2 (en) Semiconductor light emitting diode
JP2004356600A (en) Semiconductor light emitting device
JP3723314B2 (en) Semiconductor light emitting device
JPH10256598A (en) Semiconductor light emitting device
JP3776536B2 (en) Semiconductor light emitting device
JP2000091710A (en) Semiconductor lamination structure and semiconductor light emitting element
JP2001024219A (en) AlGaInP LIGHT EMITTING DIODE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees