[go: up one dir, main page]

JPH10255828A - Fuel cell and control method therefor - Google Patents

Fuel cell and control method therefor

Info

Publication number
JPH10255828A
JPH10255828A JP9059671A JP5967197A JPH10255828A JP H10255828 A JPH10255828 A JP H10255828A JP 9059671 A JP9059671 A JP 9059671A JP 5967197 A JP5967197 A JP 5967197A JP H10255828 A JPH10255828 A JP H10255828A
Authority
JP
Japan
Prior art keywords
pure water
fuel cell
temperature
gas
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9059671A
Other languages
Japanese (ja)
Inventor
Hidemitsu Ono
秀光 小野
Yuichiro Kosaka
祐一郎 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP9059671A priority Critical patent/JPH10255828A/en
Publication of JPH10255828A publication Critical patent/JPH10255828A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain supply gas in an optimal humidifying condition, and prevent the deterioration of fuel cell performance by controlling a pure water injecting means on the basis of signals from a supply gas flow rate detecting means, a supply gas temperature detecting means, a pure water temperature detecting means, a fuel cell load detecting means and a fuel cell internal temperature detecting means. SOLUTION: A gas flow rate correction value is read in on the basis of a supply gas flow rate detected through a supply gas flow rate detecting means 16, and a basic pure water injection quantity is set in response to the gas flow rate correction value. An operation is performed on an actual pure water injection quantity by multiplying the basic pure water injection quantity by a gas temperature correction value, a fuel cell temperature correction value and a fuel cell load correction value. Pure water set to a pure water injection quantity is injected into supply gas in a gas supply passage 14 from a pure water injecting means 20, and it is humidified. Therefore, a humidifying quantity according to an operating condition of a fuel cell main body 12 is controlled by adding a flow rate and a temperature of the supply gas, and optimal fuel cell output is obtained from the fuel cell main body 12, and drying of an electrolyte film by lack of humidification can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池本体内に
加湿された供給ガスを供給する燃料電池およびその制御
方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a fuel cell for supplying a humidified supply gas into a fuel cell body and a control method thereof.

【0002】[0002]

【従来の技術】例えば、固体高分子電解質膜を挟んでア
ノード側電極とカソード側電極とを対設した燃料電池構
造体をセパレータによって挟持して複数積層することに
より構成された燃料電池が開発され、種々の用途に実用
化されつつある。
2. Description of the Related Art For example, a fuel cell has been developed in which a plurality of fuel cell structures each having an anode electrode and a cathode electrode opposed to each other with a solid polymer electrolyte membrane interposed therebetween are sandwiched by a separator and stacked. Are being put to practical use for various applications.

【0003】この種の燃料電池は、例えば、水素ガス
(燃料ガス)をアノード側電極に供給するとともに、酸
化剤ガス(空気)をカソード側電極に供給することによ
り、前記水素ガスがイオン化して固体高分子電解質膜内
を流れ、これにより外部に電気エネルギが得られるよう
に構成されている。
In this type of fuel cell, for example, hydrogen gas (fuel gas) is supplied to an anode side electrode and oxidizing gas (air) is supplied to a cathode side electrode, so that the hydrogen gas is ionized. It is configured such that it flows through the solid polymer electrolyte membrane, thereby obtaining electric energy outside.

【0004】この場合、上記燃料電池では、有効な発電
機能を発揮させるために、固体高分子電解質膜を所望の
加湿状態に維持する必要がある。このため、水素ガスや
酸化剤ガスである供給ガスを加湿することが行われてお
り、例えば、特開平7−263010号公報に開示され
ている供給ガス加湿装置が知られている。
In this case, in the fuel cell, it is necessary to maintain the solid polymer electrolyte membrane in a desired humidified state in order to exhibit an effective power generation function. For this reason, humidification of a supply gas which is a hydrogen gas or an oxidizing gas is performed. For example, a supply gas humidifier disclosed in Japanese Patent Application Laid-Open No. Hei 7-263010 is known.

【0005】上記の従来技術では、燃料電池の負荷を検
出する負荷検出手段からの信号を受け、この燃料電池の
要求水分量に対応する純水の量を、前記燃料電池に供給
ガスを送るガス供給通路に供給する一方、前記燃料電池
の内部温度を検出する温度検出手段からの信号を受け、
前記純水の温度が該燃料電池の内部温度と略等しくなる
ように前記純水供給通路に設けられた加熱手段を制御す
るように構成されている。すなわち、上記の従来技術で
は、燃料電池の負荷および内部温度を検出し、ガス供給
通路に供給される純水の量および温度を制御するもので
ある。
In the above prior art, a signal from a load detecting means for detecting a load of a fuel cell is received, and an amount of pure water corresponding to a required water amount of the fuel cell is determined by a gas supplied to the fuel cell. While supplying to the supply passage, receiving a signal from temperature detecting means for detecting the internal temperature of the fuel cell,
The heating unit provided in the pure water supply passage is controlled so that the temperature of the pure water becomes substantially equal to the internal temperature of the fuel cell. That is, in the above-described related art, the load and the internal temperature of the fuel cell are detected, and the amount and the temperature of the pure water supplied to the gas supply passage are controlled.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
従来技術では、燃料電池の負荷および内部温度に基づい
て供給ガスの加湿状態を調整するため、時間的に応答遅
れが発生し易い。これにより、特に、過渡期において最
適な加湿量を確保することができず、所望の電池出力を
得ることができないおそれや、加湿量が不足して電解質
膜が乾燥するおそれ等がある。すなわち、供給ガスの流
量が多くなったにもかかわらず、この供給ガスに噴射さ
れる純水の量が変更されなければ、最適な加湿量を得る
ことができず、電解質膜が乾燥して電池出力が大幅に低
下するという問題が指摘されている。
However, in the above prior art, since the humidification state of the supply gas is adjusted based on the load and the internal temperature of the fuel cell, a response delay tends to occur with time. As a result, there is a possibility that an optimum humidification amount cannot be ensured particularly in a transitional period, a desired battery output cannot be obtained, and a humidification amount is insufficient and the electrolyte membrane may be dried. That is, even if the flow rate of the supply gas is increased, if the amount of pure water injected into the supply gas is not changed, an optimal humidification amount cannot be obtained, and the electrolyte membrane is dried and the battery is dried. It has been pointed out that the output is greatly reduced.

【0007】本発明は、この種の問題を解決するもので
あり、燃料電池の作動状態に応じて供給ガスを最適に加
湿することができ、所望の電池出力を確実に得ることが
可能な燃料電池およびその制御方法を提供することを目
的とする。
The present invention solves this kind of problem and provides a fuel that can optimally humidify a supply gas according to the operating state of a fuel cell and can reliably obtain a desired cell output. It is an object to provide a battery and a control method thereof.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明に係る燃料電池およびその制御方法では、
供給ガス流量検出手段、純水温度検出手段、電池負荷検
出手段および電池内部温度検出手段からの検出信号に基
づいて、純水噴射手段が制御されることにより、燃料電
池本体に供給される供給ガスの加湿状態が制御される。
従って、時間的な応答遅れ等を惹起することがなく、燃
料電池の作動状況に応じた最適な供給ガス加湿制御が行
われる。これにより、加湿量不足による電池出力の低下
や、電解質膜の乾燥を可及的に阻止することができ、常
時、有効な電池出力を得ることが可能になる。
In order to solve the above-mentioned problems, a fuel cell and a control method thereof according to the present invention include:
Supply gas supplied to the fuel cell body by controlling the pure water injection means based on detection signals from the supply gas flow rate detection means, the pure water temperature detection means, the battery load detection means and the battery internal temperature detection means Is controlled.
Therefore, optimal supply gas humidification control according to the operating condition of the fuel cell is performed without causing a time response delay or the like. As a result, a decrease in the battery output due to an insufficient humidification amount and the drying of the electrolyte membrane can be prevented as much as possible, and an effective battery output can be always obtained.

【0009】さらに、供給ガス温度検出手段からの検出
信号を付加して純水噴射手段が制御される。このため、
ガス供給通路内での結露の発生を阻止するとともに、供
給ガス温度が高くなった際に該供給ガスの加湿量不足に
よる電池出力の低下を惹起することがない。
Further, a detection signal from the supply gas temperature detection means is added to control the pure water injection means. For this reason,
In addition to preventing the formation of dew in the gas supply passage, when the temperature of the supply gas increases, the battery output does not decrease due to insufficient humidification of the supply gas.

【0010】[0010]

【発明の実施の形態】図1は、本発明の第1の実施形態
に係る燃料電池10の概略構成図を示す。
FIG. 1 is a schematic configuration diagram of a fuel cell 10 according to a first embodiment of the present invention.

【0011】燃料電池10は、燃料電池本体12と、こ
の燃料電池本体12に供給ガス(燃料ガス/酸化剤ガ
ス)を送るガス供給通路14と、このガス供給通路14
を流れる供給ガスの流量を検出する供給ガス流量検出手
段16と、前記ガス供給通路14を流れる前記供給ガス
の温度を検出する供給ガス温度検出手段18と、前記ガ
ス供給通路14を流れる前記供給ガスに純水を供給する
純水噴射手段20と、この純水噴射手段20に供給され
る前記純水の温度を検出する純水温度検出手段22と、
前記燃料電池本体12の電池負荷を検出する電池負荷検
出手段24と、前記燃料電池本体12内の温度を検出す
る電池内部温度検出手段26と、前記燃料電池10を駆
動制御する制御ユニット(制御手段)28とを備える。
The fuel cell 10 includes a fuel cell main body 12, a gas supply passage 14 for supplying a supply gas (fuel gas / oxidant gas) to the fuel cell main body 12, and a gas supply passage 14.
Supply gas flow rate detecting means 16 for detecting the flow rate of the supply gas flowing through the supply gas, supply gas temperature detection means 18 for detecting the temperature of the supply gas flowing through the gas supply passage 14, and the supply gas flowing through the gas supply passage 14. A pure water injection means 20 for supplying pure water to the water; a pure water temperature detection means 22 for detecting a temperature of the pure water supplied to the pure water injection means 20;
A battery load detecting means 24 for detecting a battery load of the fuel cell main body 12, a battery internal temperature detecting means 26 for detecting a temperature inside the fuel cell main body 12, and a control unit (control means for controlling the driving of the fuel cell 10) ) 28.

【0012】制御ユニット28は、例えば、CPU、R
OMおよびRAMを備えたマイクロコンピュータで構成
され、供給ガス流量検出手段16、供給ガス温度検出手
段18、純水温度検出手段22、電池負荷検出手段24
および電池内部温度検出手段26からの信号に基づい
て、純水噴射手段20を制御する機能を有する。
The control unit 28 includes, for example, a CPU, an R
It is composed of a microcomputer having an OM and a RAM, and includes a supply gas flow rate detection means 16, a supply gas temperature detection means 18, a pure water temperature detection means 22, a battery load detection means 24
And a function of controlling the pure water injection means 20 based on a signal from the battery internal temperature detection means 26.

【0013】燃料電池本体12は、固体高分子電解質膜
30を挟んで空気極(カソード側電極)32と、水素極
(アノード側電極)34とを対設した燃料電池構造体3
6を備える。この燃料電池構造体36は、図示しないセ
パレータを介して複数積層されることにより、燃料電池
本体12が構成される。
The fuel cell body 12 has a fuel cell structure 3 in which an air electrode (cathode side electrode) 32 and a hydrogen electrode (anode side electrode) 34 are opposed to each other with a solid polymer electrolyte membrane 30 interposed therebetween.
6 is provided. The fuel cell structure 36 is formed by laminating a plurality of the fuel cell structures 36 via a separator (not shown), thereby forming the fuel cell main body 12.

【0014】このように構成される燃料電池10の動作
について、本発明に係る制御方法との関連で以下に説明
する。
The operation of the fuel cell 10 configured as described above will be described below in relation to the control method according to the present invention.

【0015】先ず、供給ガスの流量と加湿量との関係
が、図2Aに示されており、供給ガスの流量が多くなる
に従って、燃料電池本体12を構成する電解質膜30の
加湿量が減少する傾向にある。このため、図2Bに示す
ように、供給ガスの流量と純水噴射量との関係が設定さ
れる。
First, the relationship between the flow rate of the supply gas and the humidification amount is shown in FIG. 2A. As the flow rate of the supply gas increases, the humidification amount of the electrolyte membrane 30 constituting the fuel cell body 12 decreases. There is a tendency. Therefore, as shown in FIG. 2B, the relationship between the flow rate of the supply gas and the pure water injection amount is set.

【0016】一方、図3に示すように、供給ガス流量の
変化に対応するガス流量補正値の補正テーブルが予め設
定されている。その他の補正テーブルとして、供給ガス
温度に対応する供給ガス温度補正値(図4参照)、純水
温度に対する純水温度補正値(図5参照)、電池温度に
対する電池温度補正値(図6参照)、および電池負荷に
対応する電池負荷補正値(図7参照)が設定されてい
る。
On the other hand, as shown in FIG. 3, a correction table of the gas flow rate correction value corresponding to the change of the supply gas flow rate is set in advance. Other correction tables include a supply gas temperature correction value corresponding to the supply gas temperature (see FIG. 4), a pure water temperature correction value for the pure water temperature (see FIG. 5), and a battery temperature correction value for the battery temperature (see FIG. 6). , And a battery load correction value (see FIG. 7) corresponding to the battery load.

【0017】そこで、燃料電池10の動作を、図8に示
すフローチャートに基づいて説明する。先ず、供給ガス
がガス供給通路14に供給されると、このガス供給通路
14を流れる前記供給ガスの流量が、供給ガス流量検出
手段16を介して検出される(ステップST1)。さら
に、ステップST2において、ガス供給通路14に供給
ガスが流れていると判断されると(ステップST2中、
YES)、ステップST3に進んでガス流量補正値が読
み込まれる。
The operation of the fuel cell 10 will now be described with reference to the flowchart shown in FIG. First, when the supply gas is supplied to the gas supply passage 14, the flow rate of the supply gas flowing through the gas supply passage 14 is detected via the supply gas flow detection means 16 (step ST1). Further, when it is determined in step ST2 that the supply gas is flowing through the gas supply passage 14 (in step ST2,
YES), the process proceeds to step ST3, and the gas flow rate correction value is read.

【0018】図3に示すガス流量補正値と図2Bに示す
純水噴射量とから、図9中、(b)に示すような基本純
水噴射量Tiwが設定されており、ステップST3で読
み込まれたガス流量補正値に基づいて、前記基本純水噴
射量Tiwが読み込まれる(ステップST4)。
A basic pure water injection amount Tiw as shown in FIG. 9 (b) is set from the gas flow rate correction value shown in FIG. 3 and the pure water injection amount shown in FIG. 2B, and is read in step ST3. The basic pure water injection amount Tiw is read based on the obtained gas flow correction value (step ST4).

【0019】次に、ガス供給通路14を流れる供給ガス
の温度が、供給ガス温度検出手段18により検出される
(ステップST5)。この検出された供給ガス温度に基
づいて、図4に示すように、ガス温度補正値Tgfが読
み込まれる(ステップST6)。ガス供給通路14内の
供給ガスには、純水噴射手段20を介して純水が供給さ
れるとともに、この純水の温度が純水温度検出手段22
により検出され、図5に示すように、純水温度補正値T
wfが読み込まれる(ステップST7、ステップST
8)。
Next, the temperature of the supply gas flowing through the gas supply passage 14 is detected by the supply gas temperature detecting means 18 (step ST5). As shown in FIG. 4, a gas temperature correction value Tgf is read based on the detected supply gas temperature (step ST6). Pure water is supplied to the supply gas in the gas supply passage 14 via the pure water injection means 20, and the temperature of the pure water is detected by the pure water temperature detection means 22.
And the pure water temperature correction value T as shown in FIG.
wf is read (step ST7, step ST7).
8).

【0020】純水により加湿された供給ガスは、燃料電
池本体12内に供給され、各燃料電池構造体36を構成
する空気極32に酸素ガスまたは空気が供給される一
方、水素極34に水素ガスが供給され、発電が行われ
る。
The supply gas humidified by the pure water is supplied into the fuel cell main body 12, and oxygen gas or air is supplied to the air electrode 32 constituting each fuel cell structure 36, while hydrogen gas is supplied to the hydrogen electrode 34. Gas is supplied and power is generated.

【0021】燃料電池本体12の内部温度が電池内部温
度検出手段26を介して検出され(ステップST9)、
図6に示すように、この検出された電池温度に基づい
て、電池温度補正値Tfcfが読み込まれる(ステップ
ST10)。さらに、燃料電池本体12の電池負荷が電
池負荷検出手段24により検出され(ステップST1
1)、図7に示すように、検出された電池負荷に対応す
る電池負荷補正値Tfcffが読み込まれる(ステップ
ST12)。
The internal temperature of the fuel cell main body 12 is detected via the cell internal temperature detecting means 26 (step ST9),
As shown in FIG. 6, a battery temperature correction value Tfcf is read based on the detected battery temperature (step ST10). Further, the battery load of the fuel cell body 12 is detected by the battery load detecting means 24 (step ST1).
1) As shown in FIG. 7, a battery load correction value Tfcff corresponding to the detected battery load is read (step ST12).

【0022】次いで、ステップST13に進み、基本純
水噴射量Tiwとガス温度補正値Tgf、純水温度補正
値Twf、電池温度補正値Tfcfおよび電池負荷補正
値Tfcffとに基づいて、実際の純水噴射量Tiwf
が演算される。そして、純水噴射手段20が制御され
て、演算された純水噴射量Tiwfに設定された純水が
ガス供給通路14を流れる供給ガスに噴射される(ステ
ップST14)。
Then, the process proceeds to step ST13, where the actual pure water injection amount is calculated based on the basic pure water injection amount Tiw, the gas temperature correction value Tgf, the pure water temperature correction value Twf, the battery temperature correction value Tfcf, and the battery load correction value Tfcff. Injection amount Tiwf
Is calculated. Then, the pure water injection means 20 is controlled, and the pure water set to the calculated pure water injection amount Tiwf is injected into the supply gas flowing through the gas supply passage 14 (step ST14).

【0023】この場合、第1の実施形態では、先ず、供
給ガス流量検出手段16を介して検出された供給ガス流
量に基づいてガス流量補正値が読み込まれ、このガス流
量補正値に対応して基本純水噴射量Tiwが設定され
る。次に、基本純水噴射量Tiwにガス温度補正値Tg
f(必要に応じて)、純水温度補正値Twf、電池温度
補正値Tfcfおよび電池負荷補正値Tfcffが乗算
されて、実際の純水噴射量Tiwfが演算される。そこ
で、純水噴射量Tiwfに設定された純水がガス供給通
路14中の供給ガスに噴射されて加湿される。
In this case, in the first embodiment, first, a gas flow rate correction value is read based on the supply gas flow rate detected by the supply gas flow rate detection means 16, and the gas flow rate correction value is read in accordance with the gas flow rate correction value. The basic pure water injection amount Tiw is set. Next, the gas temperature correction value Tg is added to the basic pure water injection amount Tiw.
f (if necessary), the pure water temperature correction value Twf, the battery temperature correction value Tfcf, and the battery load correction value Tfcff are multiplied to calculate the actual pure water injection amount Tiwf. Then, the pure water set to the pure water injection amount Tiwf is injected into the supply gas in the gas supply passage 14 and humidified.

【0024】このため、供給ガスの流量および温度を加
味して、燃料電池本体12の作動状況に則した加湿量制
御が遂行され、例えば、この燃料電池本体12の内部温
度のみを検出するものに比べ、時間的な応答遅れが発生
することがない。これにより、燃料電池本体12から最
適な電池出力を得ることができるとともに、電解質膜3
0が加湿不足によって乾燥する等の不具合を確実に回避
することが可能になるという効果が得られる。
For this reason, the humidification amount control in accordance with the operating condition of the fuel cell main body 12 is performed in consideration of the flow rate and the temperature of the supply gas. For example, only the internal temperature of the fuel cell main body 12 is detected. In comparison, there is no time delay in response. As a result, an optimal cell output can be obtained from the fuel cell main body 12, and the electrolyte membrane 3
An effect is obtained that it is possible to reliably avoid problems such as drying due to insufficient humidification.

【0025】ここで、図9には、ガス流量補正値のみに
よる効果が示されており、図10には、ガス温度補正値
のみによる効果が示されており、さらに図11には、純
水温度補正値のみによる効果が示されている。
FIG. 9 shows the effect of the gas flow rate correction value alone, FIG. 10 shows the effect of the gas temperature correction value only, and FIG. The effect of only the temperature correction value is shown.

【0026】すなわち、図9では、ガス流量に基づいて
ガス流量補正値が設定され(図9中、(a)参照)、こ
のガス流量補正値に基づいて基本純水噴射量Tiwが変
更される(図9中、(b)参照)。そして、基本純水噴
射量Tiwが純水噴射量Tiwfとして供給ガスに噴射
されることにより、ガス流量の増加に伴って電池出力が
有効に増加するという効果が得られる(図9中、(c)
参照)。従って、供給ガスの流量が大量になったとき、
電解質膜30が乾燥して電池出力が低下することを確実
に阻止することができる。
That is, in FIG. 9, a gas flow rate correction value is set based on the gas flow rate (see (a) in FIG. 9), and the basic pure water injection amount Tiw is changed based on the gas flow rate correction value. (See (b) in FIG. 9). Then, by injecting the basic pure water injection amount Tiw into the supply gas as the pure water injection amount Tiwf, the effect of effectively increasing the battery output with an increase in the gas flow rate is obtained ((c) in FIG. 9). )
reference). Therefore, when the flow rate of the supply gas becomes large,
It is possible to reliably prevent the battery output from lowering due to the drying of the electrolyte membrane 30.

【0027】図10では、供給ガス温度に対応してガス
温度補正値Tgfが読み取られ(図10中、(a)参
照)、このガス温度補正値Tgfに基づいて純水噴射量
Tiwfが変更される(図10中、(b)参照)。ここ
で、供給ガスの温度が低いときに大量の純水が噴射され
ると、ガス供給通路14内で結露が発生する。このた
め、供給ガス温度が低い際には、純水噴射量Tiwfを
低く抑える。一方、供給ガスの温度が高くなったときに
は、加湿量の不足を防止するため、純水噴射量Tiwf
を多く設定する。これにより、最適な加湿量を確保して
電池出力を向上させることが可能になる(図10中、
(c)参照)。
In FIG. 10, a gas temperature correction value Tgf is read corresponding to the supply gas temperature (see (a) in FIG. 10), and the pure water injection amount Tiwf is changed based on the gas temperature correction value Tgf. (See (b) in FIG. 10). Here, if a large amount of pure water is injected when the temperature of the supply gas is low, dew condensation occurs in the gas supply passage 14. Therefore, when the supply gas temperature is low, the pure water injection amount Tiwf is kept low. On the other hand, when the temperature of the supply gas becomes high, the pure water injection amount Tiwf
Set many. This makes it possible to secure an optimal humidification amount and improve the battery output (see FIG. 10,
(C)).

【0028】図11では、純水温度に応じて純水温度補
正値Twfが読み込まれ、この純水温度補正値Twfに
基づいて純水噴射量Tiwfが読み込まれる(図11
中、(a)および(b)参照)。ここで、純水温度が低
いときに大量の純水を噴射すると、ガス供給通路14内
の供給ガス温度が低下して結露が発生する。このため、
純水温度が低い際には、純水噴射量Tiwfを低く抑え
ている。一方、純水温度が高くなったときには、加湿量
の不足が発生し易く、この純水温度に応じて純水噴射量
Tiwfを多くする。これにより、常時、最適な加湿量
を確保して電池出力の向上を図ることが可能になる(図
11中、(c)参照)。
In FIG. 11, a pure water temperature correction value Twf is read according to the pure water temperature, and a pure water injection amount Tiwf is read based on the pure water temperature correction value Twf (FIG. 11).
Medium, (a) and (b)). Here, if a large amount of pure water is injected when the temperature of the pure water is low, the temperature of the supply gas in the gas supply passage 14 decreases, and dew condensation occurs. For this reason,
When the pure water temperature is low, the pure water injection amount Tiwf is kept low. On the other hand, when the temperature of the pure water increases, the humidification amount tends to be insufficient, and the pure water injection amount Tiwf is increased in accordance with the pure water temperature. Thereby, it is possible to always secure the optimal humidification amount and improve the battery output (see (c) in FIG. 11).

【0029】図12は、本発明の第2の実施形態に係る
燃料電池60の概略構成説明図である。
FIG. 12 is a schematic structural explanatory view of a fuel cell 60 according to a second embodiment of the present invention.

【0030】この燃料電池60は、加湿セクション62
を備えており、この加湿セクション60が燃料電池本体
64に一体的に取着されている。なお、第1の実施形態
に係る燃料電池10と同一の構成要素には同一の参照符
号を付して、その詳細な説明は省略する。
The fuel cell 60 includes a humidifying section 62
The humidifying section 60 is integrally attached to the fuel cell main body 64. Note that the same components as those of the fuel cell 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0031】このように構成される燃料電池60では、
第1の実施形態に係る燃料電池10と同様に、燃料電池
本体64の作動状況に応じて最適な加湿量制御が可能に
なる等の効果が得られる。
In the fuel cell 60 configured as described above,
Similar to the fuel cell 10 according to the first embodiment, effects such as an optimum humidification amount control according to the operation state of the fuel cell main body 64 can be obtained.

【0032】[0032]

【発明の効果】以上のように、本発明に係る燃料電池お
よびその制御方法では、供給ガス流量検出手段、供給ガ
ス温度検出手段(必要に応じて)、純水温度検出手段、
電池負荷検出手段および電池内部温度検出手段からの信
号に基づいて純水噴射手段が制御されるため、供給ガス
を最適な加湿状態に維持することができる。これによ
り、電池性能の低下や電解質膜の乾燥等を有効に阻止す
ることが可能になる。
As described above, in the fuel cell and the control method thereof according to the present invention, the supply gas flow rate detection means, the supply gas temperature detection means (if necessary), the pure water temperature detection means,
Since the pure water injection unit is controlled based on the signals from the battery load detection unit and the battery internal temperature detection unit, the supply gas can be maintained in an optimal humidified state. As a result, it is possible to effectively prevent a decrease in battery performance, drying of the electrolyte membrane, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る燃料電池の概略
構成説明図である。
FIG. 1 is a schematic configuration explanatory view of a fuel cell according to a first embodiment of the present invention.

【図2】図2Aは、供給ガス流量と加湿量との関係図で
あり、図2Bは、供給ガス流量と純水噴射量との関係図
である。
FIG. 2A is a relationship diagram between a supply gas flow rate and a humidification amount, and FIG. 2B is a relationship diagram between a supply gas flow rate and a pure water injection amount.

【図3】供給ガス流量とガス流量補正値との補正テーブ
ルである。
FIG. 3 is a correction table of a supply gas flow rate and a gas flow rate correction value.

【図4】供給ガス温度とガス温度補正値との補正テーブ
ルである。
FIG. 4 is a correction table of a supply gas temperature and a gas temperature correction value.

【図5】純水温度と純水温度補正値との補正テーブルで
ある。
FIG. 5 is a correction table of a pure water temperature and a pure water temperature correction value.

【図6】電池温度と電池温度補正値との補正テーブルで
ある。
FIG. 6 is a correction table of a battery temperature and a battery temperature correction value.

【図7】電池負荷と電池負荷補正値との補正テーブルで
ある。
FIG. 7 is a correction table of a battery load and a battery load correction value.

【図8】前記燃料電池の動作を説明するフローチャート
である。
FIG. 8 is a flowchart illustrating an operation of the fuel cell.

【図9】ガス流量補正値による効果説明図である。FIG. 9 is an explanatory diagram of an effect by a gas flow rate correction value.

【図10】ガス温度補正値による効果説明図である。FIG. 10 is an explanatory diagram of an effect by a gas temperature correction value.

【図11】純水温度補正値による効果説明図である。FIG. 11 is an explanatory diagram of an effect of a pure water temperature correction value.

【図12】本発明の第2の実施形態に係る燃料電池の概
略構成説明図である。
FIG. 12 is a schematic structural explanatory view of a fuel cell according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10、60…燃料電池 12、64…燃料電
池本体 14…ガス供給通路 16…供給ガス流量
検出手段 18…供給ガス温度検出手段 20…純水噴射手段 22…純水温度検出手段 24…電池負荷検出
手段 26…電池内部温度検出手段 28…制御ユニット 30…電解質膜 32…空気極 34…水素極 36…燃料電池構造
体 62…加湿セクション
10, 60 ... fuel cell 12, 64 ... fuel cell body 14 ... gas supply passage 16 ... supply gas flow rate detection means 18 ... supply gas temperature detection means 20 ... pure water injection means 22 ... pure water temperature detection means 24 ... battery load detection Means 26 ... Battery internal temperature detecting means 28 ... Control unit 30 ... Electrolyte membrane 32 ... Air electrode 34 ... Hydrogen electrode 36 ... Fuel cell structure 62 ... Humidification section

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月23日[Submission date] June 23, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電解質膜を挟んでアノード側電極とカソー
ド側電極が対設された燃料電池構造体を組み込む燃料電
池本体と、 前記燃料電池本体に供給ガスを送るためのガス供給通路
と、 前記ガス供給通路を流れる前記供給ガスの流量を検出す
るための供給ガス流量検出手段と、 前記ガス供給通路を流れる前記供給ガスに純水を供給す
るための純水噴射手段と、 前記純水噴射手段に供給される前記純水の温度を検出す
るための純水温度検出手段と、 前記燃料電池本体の電池負荷を検出するための電池負荷
検出手段と、 前記燃料電池本体内の温度を検出するための電池内部温
度検出手段と、 前記供給ガス流量検出手段、前記純水温度検出手段、前
記電池負荷検出手段および前記電池内部温度検出手段か
らの信号に基づいて、前記純水噴射手段を制御するため
の制御手段と、 を備えることを特徴とする燃料電池。
A fuel cell body incorporating a fuel cell structure having an anode electrode and a cathode electrode opposed to each other with an electrolyte membrane interposed therebetween; a gas supply passage for sending a supply gas to the fuel cell body; Supply gas flow detecting means for detecting a flow rate of the supply gas flowing through the gas supply passage; pure water injection means for supplying pure water to the supply gas flowing through the gas supply passage; and the pure water injection means A pure water temperature detecting means for detecting a temperature of the pure water supplied to the fuel cell; a battery load detecting means for detecting a battery load of the fuel cell main body; and a temperature detecting means for detecting a temperature in the fuel cell main body. Battery internal temperature detecting means, based on signals from the supply gas flow rate detecting means, the pure water temperature detecting means, the battery load detecting means and the battery internal temperature detecting means, A fuel cell, comprising: control means for controlling.
【請求項2】請求項1記載の燃料電池において、前記ガ
ス供給通路を流れる前記供給ガスの温度を検出するため
の供給ガス温度検出手段を備え、 前記制御手段は、前記供給ガス温度検出手段からの信号
を付加して前記純水噴射手段を制御することを特徴とす
る燃料電池。
2. The fuel cell according to claim 1, further comprising a supply gas temperature detecting means for detecting a temperature of the supply gas flowing through the gas supply passage, wherein the control means comprises a control unit for detecting a temperature of the supply gas from the supply gas temperature detecting means. Wherein the pure water injection means is controlled by adding the signal of
【請求項3】電解質膜を挟んでアノード側電極とカソー
ド側電極が対設された燃料電池構造体を組み込む燃料電
池本体に、ガス供給通路を介して送られる供給ガスの流
量を検出する工程と、 前記ガス供給通路を流れる前記供給ガスに噴射される純
水の温度を検出する工程と、 前記燃料電池本体の電池負荷を検出する工程と、 前記燃料電池本体内の温度を検出する工程と、 前記検出された供給ガスの流量、純水の温度、電池負荷
および電池内部温度に基づいて、前記純水噴射手段を制
御する工程と、 を有することを特徴とする燃料電池の制御方法。
Detecting a flow rate of a supply gas sent through a gas supply passage to a fuel cell body incorporating a fuel cell structure in which an anode electrode and a cathode electrode are opposed to each other with an electrolyte membrane interposed therebetween; A step of detecting a temperature of pure water injected into the supply gas flowing through the gas supply passage; a step of detecting a cell load of the fuel cell main body; a step of detecting a temperature inside the fuel cell main body; Controlling the pure water injection means based on the detected flow rate of the supplied gas, the temperature of the pure water, the battery load, and the battery internal temperature.
【請求項4】請求項3記載の制御方法において、前記検
出された前記供給ガスの流量に基づいてガス流量補正値
を読み込むとともに、前記ガス流量補正値に対応する基
本純水噴射量を読み込む工程と、 前記検出された純水の温度、電池負荷および電池内部温
度に基づいて、純水温度補正値、電池負荷補正値および
電池内部温度補正値を読み込む工程と、 前記基本純水噴射量と前記純水温度補正値、前記電池負
荷補正値および前記電池内部温度補正値とに基づいて、
前記供給ガスに噴射される純水噴射量を演算する工程
と、 を有することを特徴とする燃料電池の制御方法。
4. The control method according to claim 3, further comprising: reading a gas flow rate correction value based on the detected flow rate of the supply gas, and reading a basic pure water injection amount corresponding to the gas flow rate correction value. Reading a pure water temperature correction value, a battery load correction value and a battery internal temperature correction value based on the detected temperature of the pure water, the battery load and the battery internal temperature; and Based on the pure water temperature correction value, the battery load correction value and the battery internal temperature correction value,
Calculating a pure water injection amount to be injected into the supply gas.
【請求項5】請求項4記載の制御方法において、前記ガ
ス供給通路を流れる前記供給ガスの温度を検出し、前記
検出された前記供給ガスの温度に基づいてガス温度補正
値を読み込むとともに、 前記ガス温度補正値を付加して前記純水噴射量を演算す
ることを特徴とする燃料電池の制御方法。
5. The control method according to claim 4, wherein a temperature of the supply gas flowing through the gas supply passage is detected, and a gas temperature correction value is read based on the detected temperature of the supply gas. A fuel cell control method comprising calculating the pure water injection amount by adding a gas temperature correction value.
JP9059671A 1997-03-13 1997-03-13 Fuel cell and control method therefor Pending JPH10255828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9059671A JPH10255828A (en) 1997-03-13 1997-03-13 Fuel cell and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9059671A JPH10255828A (en) 1997-03-13 1997-03-13 Fuel cell and control method therefor

Publications (1)

Publication Number Publication Date
JPH10255828A true JPH10255828A (en) 1998-09-25

Family

ID=13119895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9059671A Pending JPH10255828A (en) 1997-03-13 1997-03-13 Fuel cell and control method therefor

Country Status (1)

Country Link
JP (1) JPH10255828A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980106A2 (en) * 1998-08-10 2000-02-16 Kabushiki Kaisha Equos Research Solid polymer electrolyte fuel cell system with supply of liquid water to the cathode
WO2000065678A1 (en) 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
US6238814B1 (en) 1997-12-22 2001-05-29 Kabushikikaisha Equos Research Fuel cell system
US6294277B1 (en) 1997-12-22 2001-09-25 Kabushikikaisha Equos Research Fuel cell system
US6338472B1 (en) 1999-05-17 2002-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Mist atomizer and mist atomizing device for fuel cells
US6468681B1 (en) 1998-06-26 2002-10-22 Kabushikikaisha Equos Research Fuel cell system
KR20030018079A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Apparatus for humidifying hydrogen in fuel cell stack
US6537692B1 (en) 1999-11-17 2003-03-25 Kabushikikaisha Equos Research Fuel cell apparatus
US6562501B1 (en) 1999-11-30 2003-05-13 Toyota Jidosha Kabushiki Kaisha Control system for fuel cell
WO2004015800A3 (en) * 2002-08-13 2004-05-21 Nuvera Fuel Cells Inc Reformate cooling by water injectioin
EP1526598A1 (en) * 2003-10-25 2005-04-27 P 21-Power for the 21st Century GmbH Method for determining the humidity of gases in a fuel cell
JP2007188893A (en) * 1999-04-26 2007-07-26 Matsushita Electric Ind Co Ltd Method for operating polymer electrolytic fuel cell
KR100778585B1 (en) 2006-09-28 2007-11-29 현대자동차주식회사 Optimum humidification system of fuel cell vehicle
KR100867822B1 (en) 2006-12-11 2008-11-10 현대자동차주식회사 Battery temperature and humidity control unit for hybrid electric vehicles
JP2009181806A (en) * 2008-01-30 2009-08-13 Equos Research Co Ltd Fuel cell system and operation method thereof
KR100952838B1 (en) 2008-04-15 2010-04-15 삼성에스디아이 주식회사 Fuel cell system and its control method
JP2010147029A (en) * 2002-04-15 2010-07-01 Panasonic Corp Fuel cell system
JP2020532050A (en) * 2017-08-17 2020-11-05 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh How to adjust the water content of the fuel cell membrane
CN116742048A (en) * 2023-05-09 2023-09-12 深圳金鲤飞鱼科技有限公司 Air supply humidification system, air supply humidification method and storage medium for fuel cell

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511765B2 (en) 1997-12-22 2003-01-28 Kabusikikaisha Equos Research Fuel cell system
US6238814B1 (en) 1997-12-22 2001-05-29 Kabushikikaisha Equos Research Fuel cell system
US6294277B1 (en) 1997-12-22 2001-09-25 Kabushikikaisha Equos Research Fuel cell system
US6468681B1 (en) 1998-06-26 2002-10-22 Kabushikikaisha Equos Research Fuel cell system
EP0980106A3 (en) * 1998-08-10 2005-04-27 Kabushiki Kaisha Equos Research Solid polymer electrolyte fuel cell system with supply of liquid water to the cathode
EP0980106A2 (en) * 1998-08-10 2000-02-16 Kabushiki Kaisha Equos Research Solid polymer electrolyte fuel cell system with supply of liquid water to the cathode
US7144645B2 (en) 1999-04-26 2006-12-05 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolyte fuel cell
WO2000065678A1 (en) 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
EP1187240A1 (en) * 1999-04-26 2002-03-13 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
JP2007188893A (en) * 1999-04-26 2007-07-26 Matsushita Electric Ind Co Ltd Method for operating polymer electrolytic fuel cell
EP1187240A4 (en) * 1999-04-26 2007-03-28 Matsushita Electric Ind Co Ltd METHOD FOR OPERATING AN ELECTROLYTIC POLYMER FUEL CELL
KR100437292B1 (en) * 1999-04-26 2004-06-25 마쯔시다덴기산교 가부시키가이샤 Operation method for polymer electrolytic fuel cell
US6830840B1 (en) 1999-04-26 2004-12-14 Matsushita Electric Industrial Co., Ltd. Operation method for polymer electrolytic fuel cell
US6338472B1 (en) 1999-05-17 2002-01-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Mist atomizer and mist atomizing device for fuel cells
US6537692B1 (en) 1999-11-17 2003-03-25 Kabushikikaisha Equos Research Fuel cell apparatus
DE10057804B4 (en) * 1999-11-30 2008-06-26 Toyota Jidosha Kabushiki Kaisha, Toyota Method for controlling the humidification of a fuel cell and control system for a fuel cell
US6562501B1 (en) 1999-11-30 2003-05-13 Toyota Jidosha Kabushiki Kaisha Control system for fuel cell
KR20030018079A (en) * 2001-08-27 2003-03-06 현대자동차주식회사 Apparatus for humidifying hydrogen in fuel cell stack
JP2010147029A (en) * 2002-04-15 2010-07-01 Panasonic Corp Fuel cell system
WO2004015800A3 (en) * 2002-08-13 2004-05-21 Nuvera Fuel Cells Inc Reformate cooling by water injectioin
EP1526598A1 (en) * 2003-10-25 2005-04-27 P 21-Power for the 21st Century GmbH Method for determining the humidity of gases in a fuel cell
KR100778585B1 (en) 2006-09-28 2007-11-29 현대자동차주식회사 Optimum humidification system of fuel cell vehicle
KR100867822B1 (en) 2006-12-11 2008-11-10 현대자동차주식회사 Battery temperature and humidity control unit for hybrid electric vehicles
JP2009181806A (en) * 2008-01-30 2009-08-13 Equos Research Co Ltd Fuel cell system and operation method thereof
KR100952838B1 (en) 2008-04-15 2010-04-15 삼성에스디아이 주식회사 Fuel cell system and its control method
US8492039B2 (en) 2008-04-15 2013-07-23 Samsung Sdi Co., Ltd. Fuel cell system and method of controlling the same
JP2020532050A (en) * 2017-08-17 2020-11-05 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh How to adjust the water content of the fuel cell membrane
CN116742048A (en) * 2023-05-09 2023-09-12 深圳金鲤飞鱼科技有限公司 Air supply humidification system, air supply humidification method and storage medium for fuel cell

Similar Documents

Publication Publication Date Title
JPH10255828A (en) Fuel cell and control method therefor
US6103412A (en) Polymer electrolyte fuel cell
JP3111697B2 (en) Solid polymer electrolyte fuel cell
US6844094B2 (en) Gas-supplying apparatus for fuel cell
JP4886170B2 (en) Fuel cell system
KR20050046785A (en) Liquid fuel direct supply fuel cell system and its operation controlling method and controller
US7029775B2 (en) Fuel cell system
JPH0547394A (en) Solid polymer electrolyte fuel cell and operating method thereof
CN108400351A (en) The method of fuel cell operation system and the relative humidity of setting cathode operation gas
JP3249282B2 (en) Solid polymer electrolyte fuel cell
JP4467415B2 (en) Fuel cell system
JP4815666B2 (en) Fuel cell system
JP2002015759A (en) Operating method of phosphoric acid fuel cell
JP2008041505A (en) Fuel cell system, fuel cell water content estimation apparatus and method
JP3147518B2 (en) Cell structure of solid polymer electrolyte fuel cell
JP2004172125A (en) Fuel cell system with dry cathode supply
JP2914898B2 (en) Polymer electrolyte fuel cell system
JPH10172593A (en) Fuel cell system
JP4444148B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2000106206A (en) Fuel cell system
JP4346702B2 (en) Fuel cell system
JP4264996B2 (en) Operation method of fuel cell system
JP2005353580A (en) Humidifier for fuel cell
JP5411901B2 (en) Fuel cell system
JP3743339B2 (en) Polymer electrolyte fuel cell and method of operating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621