[go: up one dir, main page]

JPH10254452A - Sound absorbing material - Google Patents

Sound absorbing material

Info

Publication number
JPH10254452A
JPH10254452A JP9057897A JP5789797A JPH10254452A JP H10254452 A JPH10254452 A JP H10254452A JP 9057897 A JP9057897 A JP 9057897A JP 5789797 A JP5789797 A JP 5789797A JP H10254452 A JPH10254452 A JP H10254452A
Authority
JP
Japan
Prior art keywords
fibers
absorbing material
sound absorbing
sound
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9057897A
Other languages
Japanese (ja)
Other versions
JP3375508B2 (en
Inventor
Akio Omori
昭夫 大森
Eiichi Sasagawa
栄一 笹川
Kazuo Nishimoto
一夫 西本
Haruko Hamanaka
晴子 濱中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Nichias Corp
Original Assignee
Kuraray Co Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Nichias Corp filed Critical Kuraray Co Ltd
Priority to JP05789797A priority Critical patent/JP3375508B2/en
Publication of JPH10254452A publication Critical patent/JPH10254452A/en
Application granted granted Critical
Publication of JP3375508B2 publication Critical patent/JP3375508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

(57)【要約】 【課題】 繊維質吸音材の有利な性質を損なうことな
く、特に中低周波音に対して高い吸音性能を有するとと
もに、振動による繊維の脱落がなく、しかも簡単な方法
で製造し得る吸音材を提供する 【解決手段】 無機繊維質材料とフィブリル化した有機
質繊維との混合物が、多孔質成形体を形成してなること
を特徴とする吸音材。
(57) [Summary] [PROBLEMS] To have a high sound absorbing performance especially for middle and low frequency sounds without deteriorating the advantageous properties of the fibrous sound absorbing material, and to prevent the fiber from falling off due to vibration, and to use a simple method. Provided is a sound absorbing material that can be manufactured. SOLUTION: The sound absorbing material is characterized in that a mixture of an inorganic fibrous material and fibrillated organic fibers forms a porous molded body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築、音響装置等
の分野で使用されるフェルト状ないしボード状の吸音材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a felt-like or board-like sound-absorbing material used in the fields of construction, acoustic equipment and the like.

【0002】[0002]

【従来の技術】ガラス繊維、岩綿、各種有機繊維等を少
量の結合剤で結合しつつ成形してなる繊維質吸音材は公
知である。繊維質吸音材は、フェルト状ないし多孔質の
ボード状のものまで、また繊維素材を選ぶことにより安
価で、常温使用品から高度の耐熱性を有するものまで、
様々な性状のものを用途に応じて容易に製造することが
できるという特徴がある。しかし、従来の繊維質吸音材
は吸音作用の周波数特性が平坦でなく、高周波音に対し
ては良好な吸音特性を示すが、約500Hz以下の中低
周波音に対してはほとんど効果がないという欠点があっ
た(図2参照)。また、実際に建造物等に取り付ける際
には吸音材と壁面との間に空気層を設けるなどして、中
低周波音の吸収率を高める必要が有り、このため吸音材
の施工厚さが厚くなって室内が狭くなるという欠点があ
った。更に、従来の繊維質吸音材は表面が平滑な繊維質
材料だけからなるため音の反射が単純で、入射した音波
振動のうち透過するものや音源方向に反射されるものの
率が高いという欠点があった。
2. Description of the Related Art A fibrous sound-absorbing material formed by combining glass fibers, rock wool, various organic fibers, and the like with a small amount of a binder is known. Fibrous sound-absorbing materials are felt-like or porous board-like, and inexpensive depending on the fiber material used, from products used at room temperature to those with high heat resistance.
There is a feature that various properties can be easily manufactured according to the application. However, the conventional fibrous sound-absorbing material has a non-flat frequency characteristic of the sound absorbing effect and shows a good sound absorbing characteristic for high-frequency sound, but has little effect on medium-low frequency sound of about 500 Hz or less. There were drawbacks (see FIG. 2). In addition, when actually attaching to a building, etc., it is necessary to increase the absorptivity of middle and low frequency sound by providing an air layer between the sound absorbing material and the wall surface. There was a drawback that the room became thick and the room became narrow. Furthermore, the conventional fibrous sound-absorbing material has a drawback that the reflection of sound is simple because the surface is made of only a fibrous material having a smooth surface, and that a high percentage of incident sound wave vibration is transmitted or reflected in the direction of the sound source. there were.

【0003】また、特開平8−91909号には無機繊
維基材と、この繊維基材に結晶成長されてなる直径0.
1〜0.4μm、長さ1〜5μmの針状結晶体とを備え
た吸音材が記載されている。しかしながら、この吸音材
は針状結晶体を結晶成長させるため、その製造が困難で
あると共に、振動によって針状結晶体が脱落しやすく、
その取り扱いも困難であるという欠点がある。また、中
低周波音域での吸音性能も不十分で、特に250Hz以
下の垂直入射吸音率が劣り、実用的に十分満足し得るも
のではない。更にまた、特開平6−33398号には、
燐酸エステル化した木材パルプをその繊維質が破壊され
るまでミクロフィブリル化したバインダーを用いて無機
質繊維を結合した建築用資材が記載されているが、この
吸音材も実用的に十分満足し得るものではない。
[0003] Japanese Patent Application Laid-Open No. Hei 8-91909 discloses an inorganic fiber base material and a crystal having a diameter of 0.1 mm formed by crystal growth on the fiber base material.
A sound-absorbing material comprising a needle-like crystal having a length of 1 to 0.4 μm and a length of 1 to 5 μm is described. However, this sound-absorbing material is difficult to manufacture because the needle-like crystal grows as a crystal, and the needle-like crystal easily falls off due to vibration.
There is a disadvantage that the handling is also difficult. Further, the sound absorption performance in the middle and low frequency sound range is insufficient, and particularly, the normal incidence sound absorption coefficient of 250 Hz or less is inferior and cannot be practically sufficiently satisfied. Furthermore, JP-A-6-33398 discloses that
A building material in which inorganic fibers are combined using a binder obtained by microfibrillating phosphoric acidated wood pulp until the fibrous material is destroyed is described, but this sound absorbing material can also be practically satisfactory. is not.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の繊維
質吸音材を改良し、繊維質吸音材の有利な性質を損なう
ことなく、特に中低周波音に対して高い吸音性能を有す
るとともに、振動による繊維の脱落がなく、しかも簡単
な方法で製造し得る吸音材を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION The present invention is an improvement of the conventional fibrous sound absorbing material, which has a high sound absorbing performance, especially for middle and low frequency sounds, without impairing the advantageous properties of the fibrous sound absorbing material. It is another object of the present invention to provide a sound absorbing material which does not fall off the fibers due to vibration and can be manufactured by a simple method.

【0005】[0005]

【課題を解決するための手段】上記目的は本発明に従っ
て、(1)無機繊維質材料と、フィブリル化した有機質
繊維との混合物が、多孔質成形体を形成してなることを
特徴とする吸音材、(2)フィブリル化した有機質繊維
が、ポリビニルアルコール系繊維、芳香族ポリアミド系
繊維、ポリアリレート系繊維、ポリオレフィン系繊維、
アクリル系繊維、セルロース系繊維であることを特徴と
する上記(1)に記載の吸音材、(3)フィブリル化し
た有機質繊維の開繊度が、カナダ標準濾水度で50〜6
00ミリリットルであることを特徴とする、上記(1)
又は(2)記載の吸音材。(4)フィブリル化した有機
質繊維の含有量が、吸音材の全重量に対して0.1〜6
0重量%であることを特徴とする、上記(1)〜(3)
のいずれか1つに記載の吸音材により達成される。
According to the present invention, there is provided a sound absorbing apparatus comprising: (1) a mixture of an inorganic fibrous material and a fibrillated organic fiber forming a porous molded body. Materials, (2) fibrillated organic fibers are polyvinyl alcohol fibers, aromatic polyamide fibers, polyarylate fibers, polyolefin fibers,
The sound-absorbing material according to the above (1), which is an acrylic fiber or a cellulosic fiber, and (3) the fibrillated organic fiber has a fiber opening degree of 50 to 6 in Canadian standard freeness.
(1) characterized in that the amount is 00 ml.
Or the sound absorbing material according to (2). (4) The content of the fibrillated organic fibers is 0.1 to 6 with respect to the total weight of the sound absorbing material.
(1) to (3), which is 0% by weight.
This is achieved by the sound absorbing material according to any one of the above.

【0006】[0006]

【発明の実施の形態】本発明は、無機繊維質材料及びフ
ィブリル化した有機質繊維の混合物が、多孔質成形体を
形成してなる吸音材である。本発明の吸音材では、従来
の繊維質吸音材における繊維間間隙と同様の比較的大き
な連通間隙に、フィブリル化した有機質繊維が存在して
いる。本発明のフィブリル化した有機質繊維は、適度に
開繊されてその表面に多数のヒゲ状突起を有している
か、または繊維自体がミクロンオーダー以下の極細の径
を有しており、外部からの音のエネルギー(音波)を受
けると、基材である繊維質材料とともにこれらが振動
し、空気の振動エネルギーを繊維の振動エネルギーとし
て発散させ消費する。この場合、繊維を構成する材料の
損失正接(tanδ)が大きい程エネルギーの消費が大
きく優れた吸音特性を示す。金属、ガラスなどの無機材
料に比べ、ポリビニルアルコール、ポリオレフィン、芳
香族ポリアミド、ポリアリレート、ポリアクリロニトリ
ル、セルロース等の有機高分子材料は大きな損失正接を
示すため、本発明に用いるフィブリル化した繊維の材質
として好適である。特にポリビニルアルコールは室温〜
80℃付近の損失正接が大きく最も好ましい。ここで、
本発明のフィブリル化した有機質繊維は、互いに絡み合
い、また、基材の繊維質材料とも絡み合って一体化して
いるため、振動によって吸音材中から脱落することはな
い。また本発明の吸音材では、音が繊維質材料の他にフ
ィブリル化した有機質繊維にも当たり、従来の繊維質材
料のみからなる吸音材に比較してより複雑な乱反射を起
こし、その間に大きなエネルギー消費が生じる。更に、
フィブリル化した有機質繊維は基材繊維間の空隙に極細
径のヒゲ状フィブリルが多数存在しているため、空気の
流動抵抗が大きくなり、エネルギー消費が更に増大す
る。以上のように本発明の吸音材は損失正接の大きな有
機質繊維をフィブリル化したものを含有するものとした
ことにより、広い周波数領域にわたって高い吸音率を示
すものと考えられる。更に有機質結合剤を用いる場合に
は、繊維同士の結合はより強くなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a sound absorbing material comprising a mixture of an inorganic fibrous material and a fibrillated organic fiber forming a porous molded body. In the sound absorbing material of the present invention, fibrillated organic fibers are present in a relatively large communication gap similar to the inter-fiber gap in the conventional fibrous sound absorbing material. The fibrillated organic fiber of the present invention is appropriately opened and has a number of whisker-like projections on its surface, or the fiber itself has an ultrafine diameter of micron order or less. When receiving sound energy (sound waves), they vibrate together with the fibrous material as the base material, and radiate and consume the vibration energy of air as the vibration energy of the fibers. In this case, the larger the loss tangent (tan δ) of the material constituting the fiber, the greater the energy consumption and the more excellent the sound absorbing characteristics. Compared with inorganic materials such as metals and glass, organic polymer materials such as polyvinyl alcohol, polyolefin, aromatic polyamide, polyarylate, polyacrylonitrile, and cellulose exhibit a large loss tangent, so that the material of the fibrillated fiber used in the present invention is used. It is suitable as. In particular, polyvinyl alcohol is at room temperature
The loss tangent near 80 ° C. is large and most preferable. here,
Since the fibrillated organic fibers of the present invention are entangled with each other and entangled with the fibrous material of the base material, they are not dropped out of the sound absorbing material by vibration. Further, in the sound absorbing material of the present invention, the sound also hits the fibrillated organic fibers in addition to the fibrous material, and causes more complicated diffuse reflection as compared with the conventional sound absorbing material consisting of only the fibrous material, and a large energy during the reflection. Consumption occurs. Furthermore,
The fibrillated organic fibers have a large number of ultra-fine beard-like fibrils in the gaps between the base fibers, so that the flow resistance of air increases and the energy consumption further increases. As described above, the sound absorbing material of the present invention is considered to exhibit a high sound absorbing coefficient over a wide frequency range by containing a fibrillated organic fiber having a large loss tangent. Further, when an organic binder is used, the bonding between fibers becomes stronger.

【0007】次に本発明の吸音材を形成する基材の繊維
質材料について説明する。本発明の無機繊維質材料とし
ては、従来の繊維質吸音材の材料として使用されている
ものを用いることができ、用途に応じて選択することが
できる。適当な無機繊維質材料の具体例を示すと、岩
綿、ガラス繊維、シリカ繊維、セラミック系繊維などの
酸化物系繊維や、金属系繊維、炭素繊維などの非酸化物
系繊維などの無機質繊維が挙げられる。無機質繊維は不
燃性であるため、吸音材の最も一般的な用途の一つであ
る建築材料用として広く使われている。これらの繊維を
基材として選んだ場合、フィブリル化した有機繊維の添
加量を適切にすることによって、不燃材料、準不燃材料
などとして、建築材料として使用することができる。ま
た、無機質繊維を使用した場合、有機質繊維よりも密度
が高いため容易に吸音材のかさ密度を高くすることが可
能であり、質量則に従い吸音率が向上するため、有利で
ある。基材として有機質繊維、例えば、ポリエステル系
繊維、アクリル系繊維、フェノール系繊維、ポリビニル
アルコール系繊維、ポリアミド系繊維、芳香族ポリアミ
ド系繊維、ポリアリレート系繊維、ポリオレフィン系繊
維、蛋白質系繊維などを選んだ場合、可燃性である、有
毒ガスが出る場合がある、などの理由から、建築材料と
して使用することは困難である。また、有機質繊維は無
機質繊維に比較して密度が小さいため、かさ密度を高く
することが難しい。このため、吸音率は相対的に低く不
利である。しかし、有機質繊維は軽量であること、ま
た、繊維の種類によっては価格が安い、加工性がよい、
触感が良いなどの特徴を持つことから、用途によっては
少量の有機質繊維を無機質繊維と併用することも可能で
ある。繊維径は50μm以下、好ましくは20μm以下
のものがよく、あまり繊維径の大きいものは十分な吸音
性能を得にくい。
Next, the fibrous material of the base material forming the sound absorbing material of the present invention will be described. As the inorganic fibrous material of the present invention, a material used as a material of a conventional fibrous sound absorbing material can be used, and can be selected according to the application. Specific examples of suitable inorganic fibrous materials include oxide fibers such as rock wool, glass fibers, silica fibers, and ceramic fibers, and inorganic fibers such as non-oxide fibers such as metal fibers and carbon fibers. Is mentioned. Since inorganic fibers are nonflammable, they are widely used for building materials, one of the most common uses of sound absorbing materials. When these fibers are selected as the base material, they can be used as building materials as non-combustible materials, quasi-non-combustible materials, and the like by appropriately adding the fibrillated organic fibers. In addition, when inorganic fibers are used, the bulk density of the sound absorbing material can be easily increased since the density is higher than that of the organic fibers, and the sound absorbing coefficient is improved according to the mass rule, which is advantageous. Organic fibers such as polyester fibers, acrylic fibers, phenol fibers, polyvinyl alcohol fibers, polyamide fibers, aromatic polyamide fibers, polyarylate fibers, polyolefin fibers, and protein fibers are selected as the base material. In such a case, it is difficult to use it as a building material because it is flammable and may emit toxic gas. Further, since the density of the organic fiber is smaller than that of the inorganic fiber, it is difficult to increase the bulk density. For this reason, the sound absorption coefficient is relatively low and disadvantageous. However, organic fiber is lightweight, and depending on the type of fiber, its price is low, its processability is good,
Since it has characteristics such as good tactile sensation, it is also possible to use a small amount of organic fibers in combination with inorganic fibers in some applications. The fiber diameter is preferably 50 μm or less, and more preferably 20 μm or less. If the fiber diameter is too large, it is difficult to obtain sufficient sound absorbing performance.

【0008】本発明において使用されるフィブリル化し
た有機質繊維とは、繊維自体が数μm以下の極細の径を
有する有機質繊維フィブリル、または繊維の表面に数μ
m以下の極細径ひげ状突起を有する有機質繊維である。
径が1μm以下の繊維フィブリル又はひげ状突起を有す
る有機質繊維であると、吸音特性が優れるので好まし
い。本発明のフィブリル化した有機質繊維としては、例
えばポリビニルアルコール(以下PVAと略記)系繊
維、芳香族ポリアミド系繊維、ポリアリレート系繊維、
ポリオレフィン系繊維、アクリル系繊維、セルロース系
繊維等のフィブリル化繊維が挙げられるが、吸音特性の
点でPVA系繊維が特に優れており、より好ましい。
The fibrillated organic fiber used in the present invention is an organic fiber fibril having a very small diameter of several μm or less, or several μm on the surface of the fiber.
It is an organic fiber having a beard-like projection having an extremely small diameter of not more than m.
Organic fibers having fiber fibrils or whisker-like projections having a diameter of 1 μm or less are preferable because of excellent sound absorption characteristics. Examples of the fibrillated organic fibers of the present invention include polyvinyl alcohol (hereinafter abbreviated as PVA) fibers, aromatic polyamide fibers, polyarylate fibers, and the like.
Fibrillated fibers such as polyolefin-based fibers, acrylic fibers, and cellulosic fibers are exemplified, but PVA-based fibers are particularly excellent in terms of sound absorption characteristics, and are more preferable.

【0009】フィブリル化繊維の製造方法としては、繊
維形成時高剪断力を加えて極細径のフィブリルを直接得
ることもできるし、通常の開繊度の繊維を得た後、繊維
に機械的応力や化学的膨潤力を加えてフィブリル繊維を
得ることもできる。例えばPVA系繊維では、PVAと
PVAとの相溶性がよくないポリマーの海島混合繊維を
水中叩解することにより径が1μm程度のPVA系フィ
ブリル繊維を得ることができる。またアクリル系繊維で
はポリアルキレンポリマーなどのフィブリル化助剤ポリ
マーをポリアクリロニトリルとブレンド紡糸し、水中叩
解することによりアクリル系フィブリル繊維を得ること
ができる。さらに芳香族ポリアミド系繊維、ポリアリレ
ート系繊維、ポリオレフィン系繊維、セルロース系繊維
などでは分子鎖を高度に配向させた後、空気中、水中、
有機溶媒中で高剪断力を加えて、数μm以下の極細径ひ
げ状突起を有する有機質繊維やフィブリル繊維を得るこ
ともできる。これらのフィブリル化繊維は、2種以上を
混合して用いることもできる。
As a method for producing fibrillated fibers, a high-shear force can be applied at the time of fiber formation to directly obtain ultrafine fibrils. Fibril fibers can also be obtained by applying a chemical swelling force. For example, in the case of a PVA-based fiber, a PVA-based fibril fiber having a diameter of about 1 μm can be obtained by beating underwater a sea-island mixed fiber of a polymer having poor compatibility between PVA and PVA. In the case of an acrylic fiber, an acrylic fibril fiber can be obtained by blend-spinning a fibrillation aid polymer such as a polyalkylene polymer with polyacrylonitrile and beating it in water. In aromatic polyamide fibers, polyarylate fibers, polyolefin fibers, cellulosic fibers, etc., after highly orienting molecular chains, in air, water,
By applying a high shearing force in an organic solvent, it is also possible to obtain an organic fiber or a fibril fiber having a very small whisker projection of several μm or less. These fibrillated fibers can be used as a mixture of two or more kinds.

【0010】本発明においてフィブリル化繊維の開繊度
は特に限定されるものではないが、開繊度が低すぎると
極細フィブリル繊維またはヒゲ状突起が振動することに
よる吸音効果が十分得られず、一方大きすぎるとフィブ
リル同士が絡み合い、分散が不良となる。本発明におい
ては、開繊度としてカナダ標準濾水度で、50ミリリッ
トル以上600ミリリットル以下であることが好まし
く、更に100〜400ミリリットルであることが特に
好ましい。このカナダ標準濾水度とは、木材パルプの濾
水度試験方法JIS P8121に規定されている値で
あり、この値が小さい程フィブリル繊維の開繊度が大き
いことを示す。
In the present invention, the degree of opening of the fibrillated fibers is not particularly limited. However, if the degree of opening is too low, a sufficient sound absorbing effect due to the vibration of the ultrafine fibril fibers or the whisker-like projections cannot be obtained. If too much, the fibrils are entangled with each other, resulting in poor dispersion. In the present invention, the opening degree is preferably 50 ml or more and 600 ml or less, more preferably 100 to 400 ml, in terms of Canadian standard freeness. The Canadian standard freeness is a value defined in a freeness test method for wood pulp JIS P8121, and a smaller value indicates a larger fibril fiber opening degree.

【0011】また、吸音材中のフィブリル化した有機質
繊維の量は、吸音材全重量に対して0.1〜60重量
%、好ましくは1〜30重量%である。フィブリル化し
た有機質繊維の含有量が0.1%未満の場合は中低周波
音の吸音性能が十分ではなく、一方60重量%を越える
場合は吸音材とする時の成形性に劣り好ましくない。
The amount of the fibrillated organic fibers in the sound absorbing material is 0.1 to 60% by weight, preferably 1 to 30% by weight based on the total weight of the sound absorbing material. When the content of the fibrillated organic fibers is less than 0.1%, the sound absorbing performance of the medium and low frequency sounds is not sufficient. On the other hand, when the content exceeds 60% by weight, the formability of the sound absorbing material is inferior.

【0012】次に、無機繊維質材料及びフィブリル化し
た有機質繊維から本発明の吸音材を製造する方法を説明
する。本発明の吸音材を製造するには、乾式法、半乾式
法、および湿式法の三つの方法を適用し得る。乾式法に
おいては、製繊装置において形成した直後の無機繊維に
フィブリル化した有機質繊維と結合剤を吹き付け、堆積
した繊維を成形し乾燥する。この過程で結合剤は硬化す
る。この製造法は、嵩密度の小さいフェルト状のものを
製造する場合に適しており、安価に製造できる。半乾式
法では、無機繊維質材料、フィブリル化した有機質繊維
および結合剤を容器中で混合し、得られた混合物を型に
詰めて加熱乾燥する。この過程で結合剤は硬化する。こ
の方法は、乾式法に比べてフィブリル化した有機質繊維
を均一に混入することができ、且つ嵩密度の大きいボー
ド状のものを製造する場合に適している。湿式法は、無
機繊維質材料とフィブリル化した有機質繊維を水中に分
散させ、得られた原料混合物のスラリーを脱水成形用の
型に入れて脱水成形したのち加熱乾燥する。この製造法
は、構成物をより均質に分散させたい場合に適当であ
る。
Next, a method for producing the sound absorbing material of the present invention from an inorganic fibrous material and fibrillated organic fibers will be described. To produce the sound absorbing material of the present invention, three methods, a dry method, a semi-dry method, and a wet method, can be applied. In the dry method, a fibrillated organic fiber and a binder are sprayed on the inorganic fiber immediately after being formed in the fiber-making apparatus, and the deposited fiber is formed and dried. During this process, the binder cures. This manufacturing method is suitable for manufacturing a felt-like material having a small bulk density, and can be manufactured at low cost. In the semi-dry method, an inorganic fibrous material, fibrillated organic fibers and a binder are mixed in a container, and the resulting mixture is filled in a mold and dried by heating. During this process, the binder cures. This method is suitable for producing a board-like material having a large bulk density, in which the fibrillated organic fibers can be uniformly mixed as compared with the dry method. In the wet method, an inorganic fibrous material and fibrillated organic fibers are dispersed in water, a slurry of the obtained raw material mixture is placed in a mold for dehydration molding, subjected to dehydration molding, and then heated and dried. This manufacturing method is suitable when it is desired to disperse the components more uniformly.

【0013】成形して得られた多孔質成形体の嵩密度
は、原料とする無機繊維質材料の種類、無機繊維質材料
とフィブリル化した有機質繊維との比率、成形圧等によ
って変化する。吸音特性を考慮したとき適当な嵩密度は
約10〜700kg/m3なので、そのような成形体が得ら
れるように製造条件を選ぶのが好ましい。
The bulk density of the porous compact obtained by molding varies depending on the type of the inorganic fiber material used as a raw material, the ratio of the inorganic fiber material to the fibrillated organic fibers, the molding pressure, and the like. Considering sound absorption characteristics, a suitable bulk density is about 10 to 700 kg / m 3, so it is preferable to select manufacturing conditions so as to obtain such a molded product.

【0014】成形に際しては、必要に応じて例えばフェ
ノール樹脂、ユリアメラミン樹脂、ポリエステル樹脂、
酢酸ビニル樹脂、エポキシ樹脂、ウレタン樹脂、アクリ
ル樹脂、スチレン樹脂等などの結合剤、例えば硫酸アル
ミニウム、硫酸アンモニウムなどのゲル化剤、例えばポ
リアクリルアミド系、ポリアクリルエステル系などの凝
集剤、成形助剤を加えることができる。
At the time of molding, if necessary, for example, phenol resin, urea melamine resin, polyester resin,
Binders such as vinyl acetate resin, epoxy resin, urethane resin, acrylic resin, styrene resin, etc., for example, gelling agents such as aluminum sulfate, ammonium sulfate, etc., for example, flocculants such as polyacrylamide type, polyacrylester type, etc., molding aids Can be added.

【0015】[0015]

【実施例】以下、実施例および比較例を示して本発明を
説明するが、本発明はこれらに限定されるものではな
い。なお、これらの例中、結合剤その他の助剤の添加量
は固形分としての量を表す。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. In these examples, the added amount of the binder and other auxiliaries indicates the amount as a solid content.

【0016】実施例1〜3、比較例1 岩綿、フィブリル化したポリビニルアルコール系繊維
(開繊度がカナダ標準濾水度で、150ミリリットルの
もの)及びポリエステル系結合剤を水中に入れて攪拌
し、さらにゲル化剤(硫酸アルミニウム)を加えてゲル
化させた。これにポリアクリルアマイド系凝集剤を加え
て成形型に流し込み、脱水成形した。ついで加熱乾燥
し、厚さ30mmのフェルト状吸音材を製造した。また、
比較のためにポリビニルアルコール系繊維を配合しない
ほかは上記と同様にして、繊維質吸音材を製造した。原
料配合量、得られた各吸音材のかさ密度及び厚さ20mm
における垂直入射吸音率を表1に、実施例1と比較例1
の垂直入射吸音率を図1、2に示す。
Examples 1 to 3 and Comparative Example 1 Rock wool, fibrillated polyvinyl alcohol-based fiber (having a fiber opening degree of Canadian standard freeness of 150 ml) and a polyester-based binder were stirred in water. Further, a gelling agent (aluminum sulfate) was added to cause gelation. A polyacrylamide-based coagulant was added thereto, and the mixture was poured into a mold and subjected to dehydration molding. Then, it was heated and dried to produce a felt-like sound absorbing material having a thickness of 30 mm. Also,
For comparison, a fibrous sound-absorbing material was produced in the same manner as described above except that the polyvinyl alcohol-based fiber was not blended. Raw material mix amount, bulk density and thickness of each obtained sound absorbing material 20mm
Table 1 shows the normal incidence sound absorption coefficient of Example 1 and Comparative Example 1.
1 and 2 show the normal incidence sound absorption coefficient of FIG.

【0017】[0017]

【表1】 [Table 1]

【0018】表1より、本発明の吸音材は、500Hz
以下、特に250Hzにおいて高い吸音率を示すことが
明らかである。また、図1、2より実施例1の吸音材
は、比較例1の吸音材には見られない500Hz付近に
吸音率の高いピークが現れ、またそれより低周波領域に
おいても比較例1の吸音材よりも全体的に高い吸音率を
示すことがわかる。
From Table 1, it can be seen that the sound absorbing material of the present invention has a frequency of 500 Hz.
In the following, it is apparent that a high sound absorption coefficient is exhibited particularly at 250 Hz. 1 and 2, the sound absorbing material of Example 1 has a high sound absorption coefficient peak at around 500 Hz, which is not found in the sound absorbing material of Comparative Example 1, and the sound absorbing material of Comparative Example 1 also has a lower frequency range than that. It can be seen that the overall sound absorption coefficient is higher than that of the material.

【0019】実施例4〜6 ガラス繊維、フィブリル化したアラミド系繊維(開繊度
がカナダ標準濾水度で、300ミリリットルのもの)及
びアクリル系結合剤を水中に入れて攪拌し、さらにゲル
化剤(硫酸アルミニウム)を加えてゲル化させた。これ
にポリアクリルアマイド系凝集剤を加えて成形型に流し
込み、脱水成形した。ついで加熱乾燥し、厚さ30mmの
フェルト状吸音材を製造した。原料配合量、得られた各
吸音材のかさ密度及び厚さ20mmにおける垂直入射吸音
率を表2に示す。
Examples 4 to 6 Glass fiber, fibrillated aramid fiber (opening degree: 300 ml, Canadian standard freeness, 300 ml) and acrylic binder were stirred in water, and further gelled. (Aluminum sulfate) was added to cause gelation. A polyacrylamide-based coagulant was added thereto, and the mixture was poured into a mold and subjected to dehydration molding. Then, it was heated and dried to produce a felt-like sound absorbing material having a thickness of 30 mm. Table 2 shows the amounts of the raw materials, the bulk density of each obtained sound absorbing material, and the normal incidence sound absorption coefficient at a thickness of 20 mm.

【0020】[0020]

【表2】 [Table 2]

【0021】表2より、本発明の吸音材は、500Hz
以下、特に250Hzにおいて高い吸音率を示すことが
明らかである。
According to Table 2, the sound-absorbing material of the present invention has a frequency of 500 Hz.
In the following, it is apparent that a high sound absorption coefficient is exhibited particularly at 250 Hz.

【0022】実施例7〜9 セラミック系繊維、フィブリル化したポリエチレン系繊
維(開繊度がカナダ標準濾水度で、500ミリリットル
のもの)を水中に入れて攪拌し、これにポリアクリルア
マイド系凝集剤を加えて成形型に流し込み、脱水成形し
た。ついで加熱乾燥し、厚さ30mmのフェルト状吸音材
を製造した。原料配合量、得られた各吸音材のかさ密度
及び厚さ20mmにおける垂直入射吸音率を表3に示す。
Examples 7 to 9 Ceramic fibers and fibrillated polyethylene fibers (with a fiber opening degree of Canadian standard freeness of 500 ml) were stirred in water and mixed with a polyacrylamide-based flocculant. Was added and poured into a mold, followed by dehydration molding. Then, it was heated and dried to produce a felt-like sound absorbing material having a thickness of 30 mm. Table 3 shows the amounts of the raw materials, the bulk density of each of the obtained sound absorbing materials, and the normal incidence sound absorption coefficient at a thickness of 20 mm.

【0023】[0023]

【表3】 [Table 3]

【0024】表3より、本発明の吸音材は、500Hz
以下、特に250Hzにおいて高い吸音率を示すことが
明らかである。
From Table 3, it can be seen that the sound absorbing material of the present invention has a frequency of 500 Hz.
In the following, it is apparent that a high sound absorption coefficient is exhibited particularly at 250 Hz.

【0025】実施例10、比較例2 フィブリル化したポリビニルアルコール繊維(開繊度が
カナダ標準濾水度で、170ミリリットルのもの)とフ
ェノール樹脂を水中に分散させたものを用意し、これを
製繊装置で繊維化した直後の岩綿に吹き付けた。ポリビ
ニルアルコールが付着した岩綿のフリースを積層し、加
熱して、厚さ50mmのフェルト状吸音材を得た。また、
比較のためにポリビニルアルコール系繊維を配合しない
ほかは上記と同様にして、繊維質吸音材を製造した。原
料配合量、得られた各吸音材のかさ密度及び厚さ50mm
における垂直入射吸音率を表4に示す。
Example 10 and Comparative Example 2 A fibrillated polyvinyl alcohol fiber (having a standard freeness of Canadian standard of 170 ml) and a phenol resin dispersed in water were prepared. It was sprayed on rock wool immediately after fiberization by the device. Rock wool fleece to which polyvinyl alcohol had adhered was laminated and heated to obtain a felt-like sound absorbing material having a thickness of 50 mm. Also,
For comparison, a fibrous sound-absorbing material was produced in the same manner as described above except that the polyvinyl alcohol-based fiber was not blended. Raw material mixing amount, bulk density and thickness of each obtained sound absorbing material 50mm
Table 4 shows the normal incidence sound absorption coefficient at.

【0026】[0026]

【表4】 [Table 4]

【0027】表4より、本発明の吸音材は、500Hz
以下、特に250Hzにおいて高い吸音率を示すことが
明らかである。
As shown in Table 4, the sound absorbing material of the present invention was 500 Hz
In the following, it is apparent that a high sound absorption coefficient is exhibited particularly at 250 Hz.

【0028】[0028]

【発明の効果】以上説明したように、本発明の吸音材は
従来の繊維質吸音材と比べると中低周波音の吸音率が著
しく改善されている。従って、本発明の吸音材を用いる
ならば従来の繊維質吸音材を使用する場合よりも施工効
率が向上し、あるいは建築物等における吸音材層の厚さ
を薄くしたり、施工を簡単にすることができる。
As described above, the sound-absorbing material of the present invention has a remarkably improved sound absorption coefficient for middle and low frequency sounds as compared with the conventional fibrous sound-absorbing material. Therefore, if the sound absorbing material of the present invention is used, the construction efficiency is improved as compared with the case where the conventional fibrous sound absorbing material is used, or the thickness of the sound absorbing material layer in a building or the like is reduced or the construction is simplified. be able to.

【0029】[0029]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の吸音材における、各周波数に対する
垂直入射吸音率を示すグラフである。
FIG. 1 is a graph showing the normal incidence sound absorption coefficient with respect to each frequency in the sound absorbing material of Example 1.

【図2】比較例1の吸音材における、各周波数に対する
垂直入射吸音率を示すグラフである。
FIG. 2 is a graph showing the normal incidence sound absorption coefficient for each frequency in the sound absorbing material of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 一夫 神奈川県横浜市鶴見区大黒町1丁目70番地 ニチアス株式会社内 (72)発明者 濱中 晴子 神奈川県横浜市鶴見区大黒町1丁目70番地 ニチアス株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuo Nishimoto 1-70, Ogurocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within Nichias Corporation (72) Inventor Haruko Hamana 1-70, Ogurocho, Tsurumi-ku, Yokohama-shi, Kanagawa Nichias Inside the corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機繊維質材料とフィブリル化した有機
質繊維との混合物が、多孔質成形体を形成してなること
を特徴とする吸音材。
1. A sound absorbing material comprising a mixture of an inorganic fibrous material and fibrillated organic fibers forming a porous molded body.
【請求項2】 フィブリル化した有機質繊維が、ポリビ
ニルアルコール系繊維、芳香族ポリアミド系繊維、ポリ
アリレート系繊維、ポリオレフィン系繊維、アクリル系
繊維、セルロース系繊維であることを特徴とする請求項
1記載の吸音材。
2. The fiber according to claim 1, wherein the fibrillated organic fibers are polyvinyl alcohol fibers, aromatic polyamide fibers, polyarylate fibers, polyolefin fibers, acrylic fibers, and cellulose fibers. Sound absorbing material.
【請求項3】 フィブリル化した有機質繊維の開繊度
が、カナダ標準濾水度で50〜600ミリリットルであ
ることを特徴とする請求項1又は2記載の吸音材。
3. The sound-absorbing material according to claim 1, wherein the degree of opening of the fibrillated organic fibers is 50 to 600 ml in Canadian standard freeness.
【請求項4】 フィブリル化した有機質繊維の含有量
が、吸音材の全重量に対して0.1〜60重量%である
ことを特徴とする請求項1〜3のいずれか1項に記載の
吸音材。
4. The method according to claim 1, wherein the content of the fibrillated organic fibers is 0.1 to 60% by weight based on the total weight of the sound absorbing material. Sound absorbing material.
JP05789797A 1997-03-12 1997-03-12 Sound absorbing material Expired - Fee Related JP3375508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05789797A JP3375508B2 (en) 1997-03-12 1997-03-12 Sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05789797A JP3375508B2 (en) 1997-03-12 1997-03-12 Sound absorbing material

Publications (2)

Publication Number Publication Date
JPH10254452A true JPH10254452A (en) 1998-09-25
JP3375508B2 JP3375508B2 (en) 2003-02-10

Family

ID=13068789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05789797A Expired - Fee Related JP3375508B2 (en) 1997-03-12 1997-03-12 Sound absorbing material

Country Status (1)

Country Link
JP (1) JP3375508B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232137A (en) * 2003-01-30 2004-08-19 Okayama Prefecture Sound absorbing material and method of manufacturing the same
WO2010038491A1 (en) * 2008-10-02 2010-04-08 名古屋油化株式会社 Sound absorbing material, multilayer sound absorbing material, molded product of multilayer sound absorbing material, sound absorbing interior material, and sound absorbing floor covering material
JP4521065B1 (en) * 2009-12-22 2010-08-11 名古屋油化株式会社 Insulation and sound insulation material and vehicle insulation and sound insulation structure
JP2010248666A (en) * 2009-04-17 2010-11-04 Teijin Techno Products Ltd Sound absorbing material and sound absorbing composite material
WO2011013427A1 (en) * 2009-07-31 2011-02-03 名古屋油化株式会社 Sound-absorbing adhesive sheet, sound-absorbing skin material, sound-absorbing material, and molded sound-absorbing material
WO2011045950A1 (en) * 2009-10-13 2011-04-21 名古屋油化株式会社 Interior material for motor vehicles
WO2012137353A1 (en) 2011-04-08 2012-10-11 株式会社ハウス119 Laminate structure of sound-absorbing material
JP2015100667A (en) * 2013-11-28 2015-06-04 三菱電機株式会社 Sound absorbing material for home appliances and home appliances
WO2018003936A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Separator for capacitor
JP2020153223A (en) * 2019-03-13 2020-09-24 積水化学工業株式会社 Piping structure and cover
CN112376129A (en) * 2020-12-07 2021-02-19 广州市白云区战神汽车音响商行 Crystal composite fiber with porous sound-absorbing structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139807A (en) * 1977-05-13 1978-12-06 Toray Industries Coposite molded article containing metal short fiber
JPH0257333A (en) * 1988-08-22 1990-02-27 Sekisui Chem Co Ltd Sound absorption material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139807A (en) * 1977-05-13 1978-12-06 Toray Industries Coposite molded article containing metal short fiber
JPH0257333A (en) * 1988-08-22 1990-02-27 Sekisui Chem Co Ltd Sound absorption material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232137A (en) * 2003-01-30 2004-08-19 Okayama Prefecture Sound absorbing material and method of manufacturing the same
US8393438B2 (en) 2008-10-02 2013-03-12 Nagoya Oilchemical Co., Ltd. Sound absorbing material, multilayer sound absorbing material, molded product of multilayer sound absorbing material, sound absorbing interior material, and sound absorbing floor covering material
WO2010038491A1 (en) * 2008-10-02 2010-04-08 名古屋油化株式会社 Sound absorbing material, multilayer sound absorbing material, molded product of multilayer sound absorbing material, sound absorbing interior material, and sound absorbing floor covering material
AU2009299007B2 (en) * 2008-10-02 2014-12-18 Nagoya Oilchemical Co., Ltd. Sound absorbing material, multilayer sound absorbing material, molded product of multilayer sound absorbing material, sound absorbing interior material, and sound absorbing floor covering material
JPWO2010038491A1 (en) * 2008-10-02 2012-03-01 名古屋油化株式会社 Sound-absorbing material, multilayer sound-absorbing material, multilayer sound-absorbing material molding, sound-absorbing interior material and sound-absorbing flooring material
JP2010248666A (en) * 2009-04-17 2010-11-04 Teijin Techno Products Ltd Sound absorbing material and sound absorbing composite material
WO2011013427A1 (en) * 2009-07-31 2011-02-03 名古屋油化株式会社 Sound-absorbing adhesive sheet, sound-absorbing skin material, sound-absorbing material, and molded sound-absorbing material
JP5421372B2 (en) * 2009-07-31 2014-02-19 名古屋油化株式会社 Adhesive sound-absorbing sheet, sound-absorbing skin material, sound-absorbing material and sound-absorbing material molding
WO2011045950A1 (en) * 2009-10-13 2011-04-21 名古屋油化株式会社 Interior material for motor vehicles
JPWO2011045950A1 (en) * 2009-10-13 2013-03-04 名古屋油化株式会社 Automotive interior materials
CN102481881A (en) * 2009-10-13 2012-05-30 名古屋油化株式会社 Interior material for motor vehicles
CN102481881B (en) * 2009-10-13 2014-09-10 名古屋油化株式会社 Interior material for motor vehicles
EP2363325A4 (en) * 2009-12-22 2012-08-29 Nagoya Oilchemical HEAT-INSULATING AND SOUND ABSORBING MATERIAL FOR THE HEAT INSULATION AND SOUND ABSORPTION STRUCTURE OF A VEHICLE BODY
WO2011077482A1 (en) * 2009-12-22 2011-06-30 名古屋油化株式会社 Insulating material and vehicular insulation structure
JP4521065B1 (en) * 2009-12-22 2010-08-11 名古屋油化株式会社 Insulation and sound insulation material and vehicle insulation and sound insulation structure
WO2012137353A1 (en) 2011-04-08 2012-10-11 株式会社ハウス119 Laminate structure of sound-absorbing material
US9027705B2 (en) 2011-04-08 2015-05-12 Aural Sonic Inc. Sound-absorbing member lamination structure
JP2015100667A (en) * 2013-11-28 2015-06-04 三菱電機株式会社 Sound absorbing material for home appliances and home appliances
WO2018003936A1 (en) * 2016-06-30 2018-01-04 株式会社クラレ Separator for capacitor
JP2020153223A (en) * 2019-03-13 2020-09-24 積水化学工業株式会社 Piping structure and cover
CN112376129A (en) * 2020-12-07 2021-02-19 广州市白云区战神汽车音响商行 Crystal composite fiber with porous sound-absorbing structure and preparation method thereof

Also Published As

Publication number Publication date
JP3375508B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
RU2524105C2 (en) Low-density nonwoven fabric, applied with products of acoustic ceiling tiles
JPH10254452A (en) Sound absorbing material
US5013405A (en) Method of making a low density frothed mineral wool
CN1116397A (en) Loudspeaker and manufacture of same
US4650621A (en) Method of preparing heat exchange element
JP2004017041A (en) Filter medium for high performance air filter and high performance air filter using filter medium
JPH03167390A (en) Activated carbon fiber sheets and filters
JPH10240269A (en) Sound absorber and its manufacture
JPH10182214A (en) Sound absorbing material
JPH10319970A (en) Sound absorbing and insulating plate
EP0296233B1 (en) Low density frothed mineral wool panel and method
JP2878638B2 (en) Manufacturing method of heat-insulated molded body
JPH10251951A (en) Sound-absorbing sheet using polyvinyl alcohol fibril fiber
JPH03202108A (en) Activated carbon fiber sheets and filters
JPH11241297A (en) Thermally insulating sheet
KR0159041B1 (en) Foam type sound absorbing and dustproof plate using polymer resin binder and pulp sludge and manufacturing method thereof
JP3048680B2 (en) Heat-resistant speaker diaphragm
JPS60255681A (en) Manufacture of porous ceramic
JPH0895576A (en) Sound absorbing material and its production
JP4278801B2 (en) Speaker diaphragm
JP2003094583A (en) Sound absorbing and insulating material made of polyester fiber and its manufacturing method
KR102200957B1 (en) Porous fiber reinforced composite material
JP2932360B2 (en) Sound absorbing material
JP3351599B2 (en) Foam board
JP2004232137A (en) Sound absorbing material and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees