JPH10252823A - Base isolation structure body - Google Patents
Base isolation structure bodyInfo
- Publication number
- JPH10252823A JPH10252823A JP8201097A JP8201097A JPH10252823A JP H10252823 A JPH10252823 A JP H10252823A JP 8201097 A JP8201097 A JP 8201097A JP 8201097 A JP8201097 A JP 8201097A JP H10252823 A JPH10252823 A JP H10252823A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- rubber material
- isolation structure
- seismic isolation
- soft layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
- Springs (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は優れたクリープ性を
維持しながら、より高い減衰性を有する免震構造体に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure having higher damping properties while maintaining excellent creep properties.
【0002】[0002]
【従来の技術】近年、地震によって発生する建造物への
振動の入力加速度を減少させる目的で免震構造体を用い
た免震構法が注目されている。これは地盤と建造物を軟
質層で絶縁し、地震時の地盤の振動数に対し建造物の固
有振動数を小さくすることにより、振動の入力加速度を
減少させ、建造物或いはその中に含まれる人、機械等に
対する被害を最小限に食い止めるものである。2. Description of the Related Art In recent years, a seismic isolation method using a seismic isolation structure has been attracting attention for the purpose of reducing the input acceleration of vibration to a building generated by an earthquake. This insulates the ground and the building with a soft layer, reduces the natural frequency of the building with respect to the frequency of the ground at the time of the earthquake, reduces the input acceleration of vibration, and is included in the building or in it It minimizes damage to people, machines, etc.
【0003】ここで用いられている免震構造体は軟質層
(ゴム)と硬質層(鉄板等)を交互に組合せたもので、
建造物を支えるため縦方向には硬く、逆に振動の入力加
速度を和らげるため横方向には軟かく、しかも横方向の
大変形時にも破壊しない性能を持つようになっている。The seismic isolation structure used here is a combination of a soft layer (rubber) and a hard layer (iron plate or the like) alternately.
In order to support the building, it is hard in the vertical direction, and conversely soft in the horizontal direction to reduce the input acceleration of vibration, and has the performance of not breaking even in the case of large horizontal deformation.
【0004】しかしながら、従来用いられている免震ゴ
ム組成物は非常にヒステリシスロスが小さい為、このゴ
ム組成物の用いられた免震構造体はそれ自身では上部構
造物の振動を減衰させる能力が非常に小さいので、その
為、粘性ダンパー等各種ダンパーによって、振動の減衰
を計つていた。しかし、これでは建造物として構造が複
雑となり、又工期、コストの面でも不利になるという欠
点があった。However, the conventionally used seismic isolation rubber composition has a very small hysteresis loss. Therefore, the seismic isolation structure using the rubber composition itself has an ability to damp the vibration of the upper structure. Because it is very small, vibration damping was measured by various dampers such as viscous dampers. However, this has the drawback that the structure becomes complicated as a building, and the construction period and cost are disadvantageous.
【0005】そこで、免震構造体の中央に鉛プラグを入
れてエネルギーの吸収能力を高めたものが提案されてい
るが、微振動を上部構造物にそのまま伝達してしまうと
いう問題がある。更に軟質層のゴム材料として高減衰性
のゴムを用いた免震構造体があるが、高減衰性のゴムが
上部構造物の大きな荷重を直接支持するためクリープ量
が大きく耐久性に劣るという欠点がある。そこで免震構
造体の中央部に貫通孔を設け、この貫通孔に高減衰性の
ゴム材料を入れた免震構造体も提案されているが、やは
りクリープによる内部歪みがあると共に、貫通孔の存在
により硬質層が分断され荷重の支持面が小さくなってし
まう欠点があった。このような点に鑑み、鉛直クリープ
量の小さい免震構造体として硬質層と圧縮永久歪みの小
さいゴム状軟質層を交互に積層した支承体の周囲に、高
減衰エラストマーを配設した免震構造体(特開平2−4
9834号)が提案されている。しかし、この免震構造
体では荷重を受ける支承体の部分を大型化しないと荷重
を受けきれないという欠点がある。In order to solve this problem, there has been proposed a structure in which a lead plug is inserted into the center of the seismic isolation structure to increase the energy absorbing ability. However, there is a problem that the micro vibration is transmitted to the upper structure as it is. In addition, there is a seismic isolation structure that uses high-damping rubber as the rubber material of the soft layer, but the high-damping rubber directly supports the large load of the upper structure, resulting in a large amount of creep and poor durability. There is. Therefore, a seismic isolation structure has been proposed in which a through hole is provided in the center of the seismic isolation structure and a high damping rubber material is inserted into the through hole. There was a drawback in that the presence of the hard layer resulted in the separation of the hard layer and the reduction of the load supporting surface. In view of the above, a seismic isolation structure with a small amount of vertical creep as a seismic isolation structure in which a high-damping elastomer is arranged around a bearing body in which hard layers and rubber-like soft layers with small compression set are alternately laminated. Body (JP-A-2-4
No. 9834) has been proposed. However, this seismic isolation structure has a drawback that the load cannot be received unless the size of the bearing that receives the load is increased.
【0006】[0006]
【発明が解決しようとする課題】本発明の課題はクリー
プ量が少なく優れたクリープ性を維持しながら、より高
い減衰性を有する免震構造体を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a seismic isolation structure having higher damping while maintaining excellent creep with a small amount of creep.
【0007】[0007]
【課題を解決するための手段】本発明はそれぞれ複数の
硬質層と軟質層を交互に積層した免震構造体において、
軟質層を中央部と周囲部に分け、それぞれにゴム材料を
用い、その中央部に用いるゴム材料は周囲部に用いるゴ
ム材料より高い減衰性を、その周囲部に用いるゴム材料
は高い減衰性を有するが、中央部のゴム材料よりは低い
減衰性と中央部のゴム材料より小さい圧縮永久歪み性を
有することを特徴とする免震構造体に係る。SUMMARY OF THE INVENTION The present invention provides a seismic isolation structure in which a plurality of hard layers and soft layers are alternately laminated.
The soft layer is divided into a central part and a peripheral part, and a rubber material is used for each.The rubber material used for the central part has a higher damping property than the rubber material used for the peripheral part, and the rubber material used for the peripheral part has a higher damping property. The present invention relates to a seismic isolation structure characterized in that the seismic isolation structure has a lower damping property than the central rubber material and a smaller compression set than the central rubber material.
【0008】[0008]
【発明の実施の形態】本発明の免震構造体においては、
硬質層と軟質層を積層し、その際中央部に貫通孔を設け
るものではなく、従って硬質層を分断するものではな
い。従って、鉛直方向の荷重を受ける支持部分が狭くな
ることはない。ただ軟質層を中央部と周囲部に分け、そ
れぞれにゴム材料を用い、その中央部に用いるゴム材料
と周囲部に用いるゴム材料の特性を変化させることによ
り、優れたクリープ性と高い減衰性を達成するものであ
る。そのために中央部に用いるゴム材料は周囲部に用い
るゴム材料より高い減衰性を、その周囲部に用いるゴム
材料は高い減衰性を有するが、中央部に用いるゴム材料
より低い減衰性と中央部のゴム材料より小さい圧縮永久
歪み性(良好なクリープ性)を有するようにする。この
ようにすることにより、鉛直方向の荷重を硬質層、軟質
層の全体で受けることができるようになり、また中央部
ゴムの水平方向へのはみ出しを抑えることができるよう
になり、より小型で優れたクリープ性、換言すれば耐久
性の良い、より高減衰性の免震構造体を得ることが可能
となった。BEST MODE FOR CARRYING OUT THE INVENTION In the seismic isolation structure of the present invention,
A hard layer and a soft layer are laminated, and a through hole is not provided at the center at that time, and therefore, the hard layer is not divided. Therefore, the support portion receiving the load in the vertical direction does not become narrow. However, by dividing the soft layer into a central part and a peripheral part, using rubber materials for each, and changing the characteristics of the rubber material used for the central part and the rubber material used for the peripheral part, excellent creep properties and high damping properties are achieved. To achieve. Therefore, the rubber material used for the central part has a higher damping property than the rubber material used for the peripheral part, and the rubber material used for the peripheral part has a higher damping property. It has a compression set (good creep) smaller than that of the rubber material. By doing so, it becomes possible to receive the load in the vertical direction on the entire hard layer and the soft layer, and it is possible to suppress the central rubber from protruding in the horizontal direction. It has become possible to obtain a seismic isolation structure with excellent creep properties, in other words, good durability and higher damping.
【0009】本発明の軟質層の中央部に用いる非常に高
い減衰性を有するゴム材料のゴム成分としては例えば天
然ゴム(NR)、イソプレンゴム(IR)、スチレンブ
タジエンゴム(SBR)、ニトリルブタジエンゴム(N
BR)、エチレンプロピレンゴム(EPDMまたはEP
M)、ポリブタジエンゴム(BR)、ブチルゴム(II
R)、ハロゲン化ブチルゴム(X−IIR)、クロロプ
レンゴム(CR)等を挙げることができる。また本発明
の軟質層の周囲部に用いる高い減衰性を有するが、中央
部のゴム材料よりは低い減衰性と中央部のゴム材料より
小さい圧縮永久歪み性を有するゴム材料のゴム成分とし
ても上記と同様のものを用いることができる。この場
合、上記ゴム成分にシリカ、カーボン及び/又は粘着付
与剤の配合量を増やせば減衰性が上がり、また減らせば
圧縮永久歪み性が小さくなる傾向にある。The rubber component of the rubber material having an extremely high damping property used in the center of the soft layer of the present invention includes, for example, natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), nitrile butadiene rubber (N
BR), ethylene propylene rubber (EPDM or EP
M), polybutadiene rubber (BR), butyl rubber (II
R), halogenated butyl rubber (X-IIR), chloroprene rubber (CR) and the like. The rubber component of the rubber material having high damping property used in the peripheral portion of the soft layer of the present invention, but having a lower damping property than the rubber material in the central portion and a compression set smaller than the rubber material in the central portion. The same as described above can be used. In this case, increasing the amount of silica, carbon and / or tackifier added to the rubber component tends to increase the damping property, while decreasing the amount tends to decrease the compression set.
【0010】ここで非常に高い減衰性とはゴム組成物を
用い作成した直径135mm×1mmの軟質層(ゴム)30
層と直径133mm×1mmの硬質層(鋼板)29層を交互
に積層した免震構造体の、等価減衰定数(heq)を、
「免震構造用積層ゴムの寿命と信頼性報告書」(免震構
造用積層ゴム特別委員会)に記載の方法により測定し評
価した場合に、heqが18%以上のものを、また高い
減衰性とは同様にheqが15%以上のものをいい、別
の言い方をすれば、本発明の軟質層の中央部のゴムの周
囲部のゴムに対する減衰性(heq)の比率が1.2〜
5.0、好ましくは1.2〜3.0、より好ましくは1.2
〜1.6の範囲が好ましい。また本発明の周囲部に用い
るゴム材料は中央部に用いるゴム材料より、より小さい
圧縮永久歪み性を有するようにする。この周囲部のゴム
材料の小さい圧縮永久歪み性とは、JIS K6301
に準拠した、70℃、22時間の圧縮永久歪みが70%
以下のものを指す。別の言い方をすれば、本発明の軟質
層の周囲部のゴム材料の中央部のゴム材料に対する圧縮
永久歪みの比率が0.1〜0.9、好ましくは0.4〜0.
85、より好ましくは0.6〜0.8の範囲が好ましい。Here, the extremely high damping property means that a soft layer (rubber) 30 having a diameter of 135 mm × 1 mm made of a rubber composition.
The equivalent damping constant (heq) of a base-isolated structure in which layers and 29 layers of 133 mm x 1 mm hard layers (steel plates) are alternately stacked,
When measured and evaluated by the method described in "Life and Reliability Report of Seismic Isolation Laminated Rubber" (Special Committee for Seismic Isolation Structural Rubber), those with a heq of 18% or more and high attenuation Similarly, the property refers to a material having a heq of 15% or more. In other words, the ratio of the damping property (heq) of the rubber at the center of the soft layer to the rubber at the periphery of the soft layer of the present invention is 1.2 to 1.2.
5.0, preferably 1.2-3.0, more preferably 1.2
The range of ~ 1.6 is preferred. The rubber material used for the peripheral portion of the present invention has a smaller compression set than the rubber material used for the central portion. The small compression set of the rubber material in the periphery is defined by JIS K6301.
70% compression set at 70 ° C for 22 hours
Refers to: Stated another way, the ratio of the compression set of the rubber material at the periphery of the soft layer to the rubber material at the center of the soft layer of the present invention is 0.1 to 0.9, preferably 0.4 to 0.4.
85, more preferably in the range of 0.6 to 0.8.
【0011】このように本発明では、軟質層の中央部の
ゴム材料は非常に高い減衰性を有し、周囲部のゴム材料
は高い減衰性を有するが、中央部のゴム材料よりは低い
減衰性と中央部のゴム材料より小さい圧縮永久歪みを有
することを特徴とする。これに対して前記特開平2−4
9834号に記載の免震支承体は中央部のゴム材料より
も周囲部のゴム材料の方が、より高い減衰性を有するも
ので、本発明とは全く逆である。またこの特開平2−4
9834号に記載の免震支承体は荷重を受ける支承体の
部分を大型化しないと荷重を受けきれないという問題点
がある。As described above, in the present invention, the rubber material at the center of the soft layer has a very high damping property, and the rubber material at the periphery has a high damping property, but has a lower damping than the rubber material at the center. It is characterized by having a property and a compression set smaller than that of the rubber material at the center. On the other hand, Japanese Unexamined Patent Publication No.
In the base isolation bearing described in Japanese Patent No. 9834, the rubber material at the peripheral portion has higher damping property than the rubber material at the central portion, which is completely opposite to the present invention. Also, this Japanese Patent Laid-Open No. 2-4
The seismic isolation bearing described in No. 9834 has a problem that the load cannot be received unless the size of the bearing receiving the load is increased.
【0012】本発明において中央部と周囲部の面積比は
1:9〜8:2、好ましくは2:8〜5:5の範囲が好
適である。この範囲の場合、減衰性の向上を達成し、ま
た一方で免震構造体に大きな水平剪断歪みがかかった場
合、早期破断を防ぐことができる。中央部のゴム材料は
加硫ゴム又は未加硫ゴムのいずれでも良く、周囲部のゴ
ム材料は加硫ゴムであるのが好ましい。中央部のゴム材
料は硬質層と接着もしくは非接着のいずれでもよく、周
囲部のゴム材料は硬質層と接着しているのが好ましい。
本発明の中央部と周囲部とにおいて異なる物性を有する
ゴム材料からなる軟質層は、予め加硫した後、硬質層と
積層して免震構造体に組み込んでも、或いは先に硬質層
と積層して免震構造体に組み込んだ後に加硫しても、ど
ちらでも良い。In the present invention, the area ratio between the central portion and the peripheral portion is preferably in the range of 1: 9 to 8: 2, and more preferably in the range of 2: 8 to 5: 5. In this range, the damping property can be improved, and on the other hand, if a large horizontal shear strain is applied to the seismic isolation structure, early rupture can be prevented. The rubber material at the center may be either vulcanized rubber or unvulcanized rubber, and the rubber material at the periphery is preferably vulcanized rubber. The rubber material at the center may be either bonded or non-bonded to the hard layer, and the rubber material at the periphery is preferably bonded to the hard layer.
The soft layer made of a rubber material having different physical properties in the central part and the peripheral part of the present invention is vulcanized in advance, then laminated with the hard layer and incorporated into the seismic isolation structure, or laminated with the hard layer first. It may be vulcanized after being incorporated into the seismic isolation structure.
【0013】本発明においては免震構造体の外周部に、
更に引っ張り伸びの大きいゴム材料層を設けるのが好ま
しく、これにより免震構造体に大きな水平剪断歪みがか
かっても、その外周部に亀裂が発生しないようにするこ
とができる。引っ張り伸びの大きいゴム材料のゴム成分
としては、例えば天然ゴム(NR)、イソプレンゴム
(IR)、スチレンブタジエンゴム(SBR)、ニトリ
ルブタジエンゴム(NBR)、ポリブタジエンゴム(B
R)、ブチルゴム(IIR)、ハロゲン化ブチルゴム
(X−IIR)、クロロプレンゴム(CR)、エチレン
プロピレンゴム(EPDMまたはEPM)等を挙げるこ
とができる。これらは1種でも又は2種以上のブレンド
としても用いることができる。この場合、補強剤の量、
種類、ゴムの架橋密度等を調整することにより、引っ張
り伸びの大きさを調整することができる。In the present invention, on the outer periphery of the seismic isolation structure,
Further, it is preferable to provide a rubber material layer having a large tensile elongation, so that even if a large horizontal shear strain is applied to the seismic isolation structure, it is possible to prevent a crack from being generated on the outer peripheral portion thereof. Examples of the rubber component of the rubber material having a large tensile elongation include natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and polybutadiene rubber (B
R), butyl rubber (IIR), halogenated butyl rubber (X-IIR), chloroprene rubber (CR), ethylene propylene rubber (EPDM or EPM), and the like. These can be used alone or as a blend of two or more. In this case, the amount of reinforcing agent,
The magnitude of the tensile elongation can be adjusted by adjusting the type, rubber crosslinking density, and the like.
【0014】本発明においてクリープ性の優れた免震構
造体とは、60年後推定クリープ率が5%以内であるも
のを指す。クリープ率は直径135mm×1mmの軟質層
(ゴム)30層と直径133mm×1mmの硬質層(鋼板)
29層を交互に積層した免震構造体を、面圧 50kgf
/cm2の条件で、周囲部のゴム材料の活性化エネルギー
Eより求めた、25℃、60年相当のクリープ促進試験
(80℃)によりクリープ量を測定し、下記の式より求
めた。 クリープ率(%)=(クリープ量/ゴム総厚)×100In the present invention, a seismic isolation structure having excellent creep properties refers to a structure whose estimated creep rate after 60 years is within 5%. Creep rate: 30 soft layers (rubber) with a diameter of 135 mm x 1 mm and a hard layer (steel) with a diameter of 133 mm x 1 mm
A seismic isolation structure consisting of 29 layers is alternately stacked, with a surface pressure of 50 kgf.
The creep amount was measured by a creep acceleration test (80 ° C.) at 25 ° C. for 60 years, which was obtained from the activation energy E of the rubber material in the surrounding area under the condition of / cm 2 , and was obtained by the following equation. Creep rate (%) = (Creep amount / Total rubber thickness) × 100
【0015】本発明のゴム組成物には公知の加硫剤、加
硫促進剤、加硫促進助剤、加硫遅延剤、着色剤、補強
剤、老化防止剤、充填剤、軟化剤、可塑剤、活性剤、粘
着付与剤、滑剤等を添加できる。充填剤としては、例え
ばシリカ、カーボンブラック、クレー、タルク、マイ
カ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウ
ム、水酸化アルミニウム、酸化亜鉛等、又各種天然又は
人工の繊維等が挙げられ、その配合割合はゴム100重
量部に対し1〜150重量部とするのが好ましい。The rubber composition of the present invention contains a known vulcanizing agent, vulcanization accelerator, vulcanization accelerating aid, vulcanization retarder, coloring agent, reinforcing agent, antioxidant, filler, softener, plasticizer. Agents, activators, tackifiers, lubricants and the like can be added. Examples of the filler include silica, carbon black, clay, talc, mica, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, zinc oxide and the like, and various natural or artificial fibers. It is preferable that the amount be 1 to 150 parts by weight based on 100 parts by weight of rubber.
【0016】軟化剤としては、例えばリノール酸、オレ
イン酸、アビエチン酸を主とするトール油、パインター
ル、菜種油、綿実油、落花生油、ひまし油、パーム油、
フアクチス等の植物系軟化剤、パラフィン系油、ナフテ
ン系油、芳香族系油等の鉱物油系軟化剤等が挙げられ、
その配合割合はゴム 100重量部に対して1〜150
重量部とするのが好ましい。可塑剤としては、フタル酸
系、セバシン酸系、アジピン酸系、リン酸エステル系、
エポキシ系、塩素化パラフィン系、エーテル系、チオエ
ーテル系、ポリエステル系、ポリエーテル系可塑剤等が
挙げられ、その配合割合はゴム 100重量部に対して
1〜150重量部とするのが好ましい。Examples of the softening agent include tall oils mainly containing linoleic acid, oleic acid and abietic acid, pine tar, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil,
Plant softeners such as Factis, paraffinic oils, naphthenic oils, and mineral oil softeners such as aromatic oils;
The compounding ratio is 1 to 150 with respect to 100 parts by weight of rubber.
It is preferred to use parts by weight. As plasticizers, phthalic acid type, sebacic acid type, adipic acid type, phosphate ester type,
Epoxy-based, chlorinated paraffin-based, ether-based, thioether-based, polyester-based, polyether-based plasticizers and the like can be mentioned, and the compounding ratio is preferably 1 to 150 parts by weight with respect to 100 parts by weight of rubber.
【0017】粘着付与剤としては、アルキルフェノール
ホルムアルデヒド系樹脂、アルキルフェノールアセチレ
ン系樹脂、クマロンインデン系樹脂、キシレンホルムア
ルデヒド系樹脂、ポリブテン、ロジン誘導体等が挙げら
れ、その配合割合はゴム 100重量部に対して1〜5
0重量部とするのが好ましい。滑剤としては、ステアリ
ン酸、ステアリン酸の金属石鹸、高融点ワックス、低分
子量ポリエチレン、ポリエチレングリコール、オクタデ
シルアミン等が挙げられ、その配合割合はゴム 100
重量部に対して1〜50重量部とするのが好ましい。Examples of the tackifier include an alkylphenol formaldehyde resin, an alkylphenol acetylene resin, a coumarone indene resin, a xylene formaldehyde resin, polybutene, and a rosin derivative. 1-5
It is preferably 0 parts by weight. Examples of the lubricant include stearic acid, metal soap of stearic acid, high melting point wax, low molecular weight polyethylene, polyethylene glycol, octadecylamine and the like.
The amount is preferably 1 to 50 parts by weight based on parts by weight.
【0018】本発明のゴム組成物は上記成分を通常の加
工装置、例えばロール、バンバリーミキサー、ニーダー
などにより混練することにより得られる。The rubber composition of the present invention can be obtained by kneading the above components with a usual processing device, for example, a roll, a Banbury mixer, a kneader or the like.
【0019】本発明において硬質層の材質としては、金
属、セラミックス、プラスチックス、FRP、ポリウレ
タン、木材、紙板、スレート板、化粧板などを用いるこ
とができるが、なかでも鋼板が好ましい。また、硬質層
及び軟質層の形状は、円形、方形、その他五角形、六角
形等の多角形としても良い。このような硬質層と軟質層
とを接着させるには、接着剤を用いたり共加硫すればよ
い。In the present invention, as the material of the hard layer, metal, ceramics, plastics, FRP, polyurethane, wood, paper board, slate board, decorative board and the like can be used, and among them, steel sheet is preferable. The shape of the hard layer and the soft layer may be circular, square, polygonal such as pentagon, hexagon, or the like. In order to bond such a hard layer and a soft layer, an adhesive or co-vulcanization may be used.
【0020】本発明はそれぞれ複数の硬質層と軟質層を
交互に積層した免震構造体において、軟質層を中央部と
周囲部に分け、中央部と周囲部のゴム材料が上記ゴム組
成物より得られたものであることを特徴とする免震構造
体である。軟質層と硬質層を交互に積層した積層構造体
の上下面にはフランジを設けるのが好ましく、更に免震
構造体を被覆層で被覆するのも任意である。また硬質層
と軟質層に、免震構造体の作製時における硬質層と軟質
層の位置決めに必要な位置決めピンを通すための穴を設
けることもできる。そして、その穴が軟質層の中央部部
分に存在する場合で、該中央部のゴム材料が未加硫ゴム
の場合は、該ゴムが加硫時に流れる恐れがあるので、位
置決め後ピンを抜いてできる穴に予め周囲部ゴムや被覆
ゴムに用いるような加硫ゴムを充填しておくことが好ま
しい。According to the present invention, in a seismic isolation structure in which a plurality of hard layers and soft layers are alternately laminated, a soft layer is divided into a central portion and a peripheral portion, and the rubber material in the central portion and the peripheral portion is made of the rubber composition. A seismic isolation structure characterized by being obtained. It is preferable to provide flanges on the upper and lower surfaces of the laminated structure in which soft layers and hard layers are alternately laminated, and it is also optional to cover the seismic isolation structure with a covering layer. In addition, the hard layer and the soft layer may be provided with holes for passing positioning pins required for positioning the hard layer and the soft layer when the seismic isolation structure is manufactured. Then, when the hole exists in the central portion of the soft layer, and when the rubber material in the central portion is unvulcanized rubber, the rubber may flow at the time of vulcanization. It is preferable to fill the formed holes with vulcanized rubber used in the surrounding rubber or the covering rubber in advance.
【0021】[0021]
【実施例】以下に実施例及び比較例を挙げて説明する。
尚、単に部とあるは重量部を示す。 実施例1〜4 下記表1に記載の中央部と周囲部の面積比になる直径1
35mm×1mmの軟質層(ゴム)30層と直径133mm×
1mmの硬質層(鋼板)29層を交互に積層したのち加硫
して目的とする免震構造体を得た。この際ゴム加硫と、
ゴム−鋼板加硫接着が同時に進行した。 中央部ゴム材料 ポリイソプレンゴム 100部、シリカ 90部、シラン
カップリング剤 4部、硫黄 1部、加硫促進剤(CB
S)2部、加硫遅延剤(CTP)0.3部、亜鉛華、ス
テアリン酸、軟化剤、粘着付与剤、老化防止剤を通常の
ゴム配合において使用される量からなる組成物をバンバ
リーミキサーにより混練しゴム組成物を得た。このゴム
材料の減衰性は21.5%、圧縮永久歪み性は75%で
あった。The present invention will be described below with reference to examples and comparative examples.
It is to be noted that “parts” simply means “parts by weight”. Examples 1 to 4 The diameter 1 which is the area ratio between the central part and the peripheral part described in Table 1 below.
35mm × 1mm soft layer (rubber) 30 layers and diameter 133mm ×
29 layers of 1 mm hard layers (steel plates) were alternately laminated and then vulcanized to obtain the desired seismic isolation structure. At this time, rubber vulcanization,
Rubber-steel vulcanization bonding proceeded simultaneously. Central rubber material 100 parts polyisoprene rubber, 90 parts silica, 4 parts silane coupling agent, 1 part sulfur, vulcanization accelerator (CB
S) 2 parts, 0.3 parts of vulcanization retarder (CTP), zinc white, stearic acid, softener, tackifier, and antioxidant in an amount used in usual rubber compounding, a Banbury mixer To obtain a rubber composition. This rubber material had a damping property of 21.5% and a compression set of 75%.
【0022】周囲部ゴム材料 ポリイソプレンゴム 100部、シリカ 80部、シラン
カップリング剤 4部、硫黄 1部、加硫促進剤(CB
S)2部、加硫遅延剤(CTP)0.3部、亜鉛華、ス
テアリン酸、軟化剤、粘着付与剤、老化防止剤を通常の
ゴム配合において使用される量からなる組成物をバンバ
リーミキサーにより混練しゴム組成物を得た。このゴム
材料の減衰性は16.0%、圧縮永久歪み性は58%で
あった。 中央部のゴムの周囲部のゴムに対する減衰性(heq)
の比率=1.34 周囲部のゴムの中央部のゴムに対する圧縮永久歪みの比
率=0.77Peripheral rubber material 100 parts of polyisoprene rubber, 80 parts of silica, 4 parts of silane coupling agent, 1 part of sulfur, vulcanization accelerator (CB
S) 2 parts, 0.3 parts of vulcanization retarder (CTP), zinc white, stearic acid, softener, tackifier, and antioxidant in an amount used in usual rubber compounding, a Banbury mixer To obtain a rubber composition. This rubber material had a damping property of 16.0% and a compression set of 58%. Attenuation (heq) of the rubber at the center to the rubber at the periphery
Ratio = 1.34 The ratio of the compression set of the peripheral rubber to the central rubber = 0.77.
【0023】比較例1 軟質層を全て周囲部のゴム材料で作成したものを用いた
以外は実施例と同様にして免震構造体を得た。 比較例2 軟質層を全て中央部のゴム材料で作成したものを用いた
以外は実施例と同様にして免震構造体を得た。 比較例3 軟質層を全て比較例1のゴム材料より高い減衰性(1
7.6%)と、大きい圧縮永久歪み性(73%)を有す
る同一のゴム材料で作成したものを用いた以外は実施例
と同様にして免震構造体を得た。COMPARATIVE EXAMPLE 1 A seismic isolation structure was obtained in the same manner as in the example, except that the entire soft layer was made of a rubber material in the surrounding area. Comparative Example 2 A seismic isolation structure was obtained in the same manner as in Example, except that the soft layer was entirely made of a rubber material at the center. Comparative Example 3 All the soft layers had higher damping properties (1) than the rubber material of Comparative Example 1.
7.6%), and a seismic isolation structure was obtained in the same manner as in the example except that the same rubber material having a large compression set (73%) was used.
【0024】[0024]
【表1】 [Table 1]
【0025】表1においてクリープ率比は比較例1のク
リープ率を100として指数で表した。実施例及び比較
例におけるクリープ率比と減衰性のグラフを図1に示
す。一般にクリープ率比と減衰性は正の関係があり、減
衰性を上げていくとクリープも悪くなるが、図1から明
らかなように本発明の場合は、その悪くなる程度が比較
例の従来のものに比べて小さい。In Table 1, the creep rate ratio was represented by an index with the creep rate of Comparative Example 1 being 100. FIG. 1 shows a graph of the creep rate ratio and the damping property in Examples and Comparative Examples. Generally, the creep rate ratio and the damping property have a positive relationship, and as the damping property increases, the creep deteriorates. However, as is clear from FIG. Smaller than things.
【0026】表1よりクリープ性も良い高減衰ゴムのみ
を軟質層とした比較例1、それより減衰性の高い高減衰
ゴムのみを軟質層とした比較例2に対し、軟質層を中央
部と周囲部に分け、その中央部に用いるゴム材料には周
囲部に用いるゴム材料より高い減衰性を、その周囲部に
用いるゴム材料には高い減衰性を有するが、中央部のゴ
ム材料よりは低い減衰性と中央部に用いるゴム材料より
小さい圧縮永久歪み性を有する高減衰ゴムを配置した実
施例1〜4は、高減衰性でありかつ、クリープ性にも優
れる免震構造体であることが判る。また軟質層が同一ゴ
ム材料である比較例3は、実施例2と同等の減衰性であ
るのに対し、クリープ性が実施例2より劣っていること
を示す。From Table 1, it can be seen that Comparative Example 1 in which only the high-damping rubber having good creep properties was a soft layer and Comparative Example 2 in which only the high-damping rubber having a higher damping property was used as the soft layer, the soft layer was located at the center. Divided into peripheral parts, the rubber material used for the central part has a higher damping property than the rubber material used for the peripheral part, the rubber material used for the peripheral part has a higher damping property, but is lower than the rubber material used for the central part Examples 1 to 4 in which a high damping rubber having a damping property and a compression set smaller than that of the rubber material used in the center portion are arranged are high seismic isolation structures having high damping properties and excellent creep properties. I understand. Comparative Example 3, in which the soft layer is made of the same rubber material, has the same damping property as that of Example 2, but shows that the creep property is inferior to that of Example 2.
【0027】[0027]
【発明の効果】本発明によれば、クリープ量が少なく優
れたクリープ性を維持しながら、より高い減衰性を有す
る免震構造体が得られる。According to the present invention, a seismic isolation structure having a higher damping property while maintaining excellent creep properties with a small amount of creep can be obtained.
【図1】実施例及び比較例におけるクリープ率比と減衰
性の関係を示すグラフである。FIG. 1 is a graph showing a relationship between a creep ratio and a damping property in Examples and Comparative Examples.
Claims (7)
積層した免震構造体において、軟質層を中央部と周囲部
に分け、それぞれにゴム材料を用い、その中央部に用い
るゴム材料は周囲部に用いるゴム材料より高い減衰性
を、その周囲部に用いるゴム材料は高い減衰性を有する
が、中央部のゴム材料よりは低い減衰性と中央部のゴム
材料より小さい圧縮永久歪み性を有することを特徴とす
る免震構造体。In a seismic isolation structure in which a plurality of hard layers and soft layers are alternately laminated, a soft layer is divided into a central portion and a peripheral portion, and a rubber material is used for each, and the rubber material used for the central portion is The rubber material used for the peripheral part has a higher damping property, and the rubber material used for the peripheral part has a higher damping property, but has a lower damping property than the rubber material at the center and a compression set smaller than the rubber material at the center. A seismic isolation structure characterized by having.
対する減衰性(heq)の比率が1.2〜5.0の範囲で
ある請求項1に記載の免震構造体。2. The seismic isolation structure according to claim 1, wherein the ratio of the damping property (heq) of the rubber at the central portion of the soft layer to the rubber at the peripheral portion is in the range of 1.2 to 5.0.
対する圧縮永久歪みの比率が0.1〜0.9の範囲である
請求項1に記載の免震構造体。3. The seismic isolation structure according to claim 1, wherein a ratio of a compression set of rubber in a peripheral portion of the soft layer to rubber in a central portion is in a range of 0.1 to 0.9.
2である請求項1に記載の免震構造体。4. The area ratio of the central part to the peripheral part is 1: 9 to 8:
2. The seismic isolation structure according to claim 1.
ゴムで、周囲部のゴム材料は加硫ゴムである請求項1に
記載の免震構造体。5. The seismic isolation structure according to claim 1, wherein the rubber material at the center is vulcanized rubber or unvulcanized rubber, and the rubber material at the periphery is vulcanized rubber.
は非接着のいずれでもよく、周囲部のゴム材料は硬質層
と接着している請求項1に記載の免震構造体。6. The seismic isolation structure according to claim 1, wherein the rubber material at the central portion may be either bonded or non-bonded to the hard layer, and the rubber material at the peripheral portion is bonded to the hard layer.
びの大きいゴム材料層を設けた請求項1に記載の免震構
造体。7. The seismic isolation structure according to claim 1, wherein a rubber material layer having a greater tensile elongation is provided on an outer peripheral portion of the seismic isolation structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8201097A JPH10252823A (en) | 1997-03-14 | 1997-03-14 | Base isolation structure body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8201097A JPH10252823A (en) | 1997-03-14 | 1997-03-14 | Base isolation structure body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10252823A true JPH10252823A (en) | 1998-09-22 |
Family
ID=13762561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8201097A Pending JPH10252823A (en) | 1997-03-14 | 1997-03-14 | Base isolation structure body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10252823A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261484A (en) * | 2009-04-30 | 2010-11-18 | Bridgestone Corp | Base isolation device |
JP2014111969A (en) * | 2012-12-05 | 2014-06-19 | Shimizu Corp | Laminated rubber bearing |
TWI656023B (en) * | 2015-04-13 | 2019-04-11 | 日商住友橡膠工業股份有限公司 | Rubber support |
-
1997
- 1997-03-14 JP JP8201097A patent/JPH10252823A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010261484A (en) * | 2009-04-30 | 2010-11-18 | Bridgestone Corp | Base isolation device |
JP2014111969A (en) * | 2012-12-05 | 2014-06-19 | Shimizu Corp | Laminated rubber bearing |
TWI656023B (en) * | 2015-04-13 | 2019-04-11 | 日商住友橡膠工業股份有限公司 | Rubber support |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4830927A (en) | Anti-seismic bearing and assembly of anti-seismic bearings | |
JP5407082B2 (en) | building | |
JP2570340B2 (en) | Seismic isolation structure | |
JPH0754132B2 (en) | Seismic isolation device | |
JP2570341B2 (en) | Seismic isolation structure | |
JPH10252823A (en) | Base isolation structure body | |
KR20000049079A (en) | Highly damping rubber composition | |
JP3140192B2 (en) | High damping rubber composition and seismic isolation structure using the same | |
JP4010680B2 (en) | Brace damper | |
JP3469621B2 (en) | High damping rubber composition and seismic isolation structure using the same | |
JP3266572B2 (en) | Soundproof board, soundproof floor material and soundproof floor structure | |
JP3754530B2 (en) | Rubber composition for seismic isolation laminate | |
JPH10278178A (en) | Base-isolation pivotally supporting structure | |
JPH09177370A (en) | Vibration isolation structure | |
JPH11348182A (en) | Laminated rubber structure and its production | |
JPH0859899A (en) | Highly damping rubber composition and earthquake-proof structure made thereof | |
JP3845499B2 (en) | Rubber composition for seismic isolation laminate | |
JPH0893845A (en) | Base isolation structural body for light load | |
JPH09317822A (en) | Base isolation device | |
JP3296756B2 (en) | Vulcanization method of seismic isolation structure | |
JP3845500B2 (en) | Rubber composition for seismic isolation laminate | |
JPH10110552A (en) | Base isolation structure | |
JP3806492B2 (en) | Rubber composition for seismic isolation laminate | |
JP4114813B2 (en) | Damping wall structure | |
JP2949671B2 (en) | High damping rubber composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060320 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060404 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060801 |